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The attenuation coefficient of textured materials presents a complex

dependence on the preferred orientation with respect to the neutron beam.

Presented here is an attenuation coefficient model to describe textured

polycrystalline materials, based on a single-crystal to polycrystalline approach,

aiming towards use in full-pattern least-squares refinements of wavelength-

resolved transmission experiments. The model evaluates the Bragg contribution

to the attenuation coefficient of polycrystalline materials as a combination of the

Bragg-reflected component of a discrete number of imperfect single crystals

with different orientations, weighted by the volume fraction of the corre-

sponding component in the orientation distribution function. The proposed

methodology is designed to optimize the number of single-crystal orientations

involved in the calculation, considering the instrument resolution and the

statistical uncertainty of the experimental transmission spectra. The optimiza-

tion of the model is demonstrated through its application to experiments on

calibration samples presenting random crystallographic textures, measured on

two imaging instruments with different resolutions. The capability of the model

to simulate textured samples in different orientations is shown with a copper

sample used as a reference in texture studies of archaeological objects and a

316L stainless steel sample produced by laser powder-bed fusion. The ability of

the model to predict the attenuation coefficient of polycrystalline textured

materials on the basis of a reduced number of texture components opens the

possibility of including it in a least-squares fitting routine to perform

crystallographic texture analysis from wavelength-resolved transmission experi-

ments.

1. Introduction

Wavelength-resolved neutron imaging has been used to

analyse crystallographic texture in various materials

(Lehmann et al., 2009, 2014; Santisteban, Edwards & Stel-

mukh, 2006; Sato et al., 2011; Shiota et al., 2017). The analysis is

based on the sensitivity of the wavelength-dependent neutron

transmission signal of a polycrystalline material with respect

to the crystallographic texture of the sample and the orien-

tation of the specimen in the neutron beam. For samples with

uniform texture along the neutron beam direction, it is

possible to simulate the neutron transmission spectrum when

the orientation distribution function (ODF) of the specimen is

already known, and different approaches have been employed

over the years. Santisteban, Edwards & Stelmukh (2006)

extended the neutron elastic coherent cross-section expres-

sion obtained by Fermi et al. (1947) for random crystal-

lographic textured polycrystalline materials to textured
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samples. They introduced a correction factor, which accounts

for the difference in the diffracting volume fraction of a

textured specimen compared with a material with random

crystallographic texture. This approach has been applied to a

combination of simple models for the ODF [such as individual

components (Malamud & Santisteban, 2016; Santisteban et al.,

2012) or fibre texture components (Vogel, 2000)] and it has

been used to study several materials (Malamud et al., 2014;

Santisteban et al., 2012). In a recent paper, Laliena et al. (2020)

derived a compact expression for the elastic coherent cross

section for textured materials by analytical integration of the

expression proposed by Santisteban, Edwards & Stelmukh

(2006) when the ODF is expressed in terms of its Fourier

components. The coherent elastic cross-section term is

reduced to a summation of functions weighted by the Fourier

coefficients of the ODF.

Dessieux et al. (2018) presented a very different metho-

dology, considering the transmission contribution of each

single-crystal grain to generate the total neutron cross section

of a polycrystalline textured material. The model calculates

the neutron transmission for each crystallite grain as a func-

tion of neutron wavelength, crystal structure and crystal

orientation, including the crystal mosaicity and its orientation

in the neutron beam as input parameters, employing a Gaus-

sian instrumental function to convolve the simulated intensity.

This approach has been applied to simulate the effect of

deformation and recrystallization textures of an additively

manufactured Inconel 718 specimen (Dessieux et al., 2019).

Although it is not currently possible to quantify a comple-

tely unknown ODF from a neutron imaging experiment,

different models have been implemented in order to extract

crystallographic texture information for a material from

transmission experiments. The first approaches involved the

introduction of the March–Dollase formulation for fibre

textures in a Rietveld refinement analysis of transmission data

(Vogel, 2000; Sato, 2017; Sato et al., 2010). As an anisotropy

factor, this quantity measures the degree of departure of the

experimental data from those expected for a sample with

random crystallographic texture, and it has been used to study

e.g. Al welds (Sato et al., 2011; Kardjilov et al., 2012). A

different approach involves using the height of the Bragg

edges to quantify the fraction of crystals with their plane

normal to the neutron beam direction (Malamud, 2016; Busi et

al., 2021). This method does not take into account the shape of

the transmission spectrum for wavelengths in between the

Bragg edges, which is also strongly dependent on the crystal-

lographic texture. From the Fourier expansion of the elastic

coherent cross section, Vicente Alvarez et al. (2021) developed

a method to estimate the integral parameters of the ODF

(such as Kearns factors in hexagonal crystals) and tensorial

properties of textured polycrystals from wavelength-resolved

neutron transmission experiments.

Here, we present a different version of the single-crystal to

polycrystalline model introduced by Dessieux et al. (2018),

aimed towards its use in full-pattern least-squares refinements

of wavelength-resolved transmission experiments. For this

purpose, we propose a methodology designed to optimize the

number of single-crystal orientations involved in the calcula-

tion with the actual resolution of the instrument and the

statistical uncertainty of the experiment. The present

methodology is based on equations developed to describe and

fit the full-pattern transmission spectra of mosaic crystals

(Malamud & Santisteban, 2016) and oligo-crystalline mater-

ials (Malamud et al., 2022). The reduced number of crystal

orientations required to describe the ODF in the present

approach enables its introduction in a least-squares fitting

routine to refine the volume fractions of the selected

components, unlocking the possibility of employing wave-

length-resolved neutron imaging experiments to perform

quantitative crystallographic texture analysis of polycrystal-

line materials. This paper is organized as follows. Section 2

gives a description of neutron transmission experiments on

textured polycrystalline materials and mosaic crystals, and

Section 3 presents the theoretical expressions required to

describe the transmission of textured specimens. A full

description of the Bragg-reflected contribution of a mosaic

crystal adopted in this work is provided by Malamud &

Santisteban (2016), and a detailed description of the profile

function and the parameterization of the peak width is

presented in Appendix A. Section 4 establishes the assump-

tions and expressions of our improved single-crystal-based

model, together with the methodology for optimizing its basic

input parameters, and Section 5 provides details about the

practical implementation of the equations within a computing

system. Section 6 describes the studied samples and the opti-

mized model parameters. Section 7 demonstrates the

capability of the model through its application to experiments

on calibration samples presenting random crystallographic

textures and on textured materials measured along different

directions: a copper sample used as a reference in texture

studies of archaeological objects (Artioli, 2007) measured on

ENGIN-X at the Rutherford Appleton Laboratory (UK), and

a 316L stainless steel sample produced by laser powder-bed

fusion measured on RADEN at J-PARC Laboratory (Japan)

(Busi et al., 2022). Finally, the expected capabilities and

limitations of the model introduced here are discussed in

Section 8.

2. Neutron transmission of textured crystalline
materials

In a neutron transmission experiment, a polychromatic colli-

mated neutron beam is incident on a specimen [Fig. 1(a)], and

the transmission T(�) is determined by normalizing the signal

recorded by a detector when the sample is in the beam, I(�),

with the incident beam recorded without the specimen, I0(�),

Tð�Þ ¼
Ið�Þ

I0ð�Þ
: ð1Þ

Since neutrons with different wavelengths are diffracted

differently by a crystalline material, depending on the crystal

structure and its microstructure and texture, the wavelength-

resolved transmission signal can provide valuable information

to characterize these quantities. Fig. 1(b) shows the fraction of
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neutrons removed from the beam, as given by 1 � T(�), by a

textured 1 cm thick copper specimen along two different

directions, obtained by rotating the specimen around the

vertical direction. The spectra are characterized by the

presence of Bragg edges, appearing at wavelengths corre-

sponding to twice the interplanar distances of the different

crystal planes. As seen in the figure, the edge heights change

greatly for the different orientations, whilst the regions

between the Bragg edges are continuous functions of wave-

length.

A textured material is defined as a fine-grained poly-

crystalline material where the component crystallites are

preferentially present in particular orientations or have some

crystal directions aligned to specific directions of the specimen

(e.g. axial, radial, transverse). This non-uniform distribution of

orientations can be described by a probability density func-

tion, usually referred to as the orientation distribution func-

tion (Kocks, 2000). The ODF gives the number of crystallites

present in a sample for each possible crystallite orientation.

The changes observed in the Bragg edge spectra arise because

different numbers of crystal planes fulfil the diffraction

condition for the different orientations of the specimen. For

comparison, Fig. 1 includes the spectrum Rrandom(�) expected

for a specimen of similar thickness but composed of an

aggregate of small (1–10 mm) crystallites with random crys-

tallographic orientations (Fermi et al., 1947). We observe that

such a model is not capable of describing the measured spectra

of textured samples, so a different, more complex, model is

indeed necessary.

The goal of this work is to evaluate efficiently the spectra

observed in Fig. 1(b) as the sum of the individual diffracting

signals from different crystallite groups, separated according

to their orientation. Each crystalline group will be described

by its mean orientation and a characteristic misalignment

around that orientation. In this sense, these groups share a

similarity with a mosaic crystal, e.g. a single crystal having a

certain ‘mosaic’ substructure that produces small angular

deviations around the average orientation of the crystal,

usually expressed in terms of a mosaicity �, representing the

width of a Gaussian distribution of misorientations

(Schneider, 1974). Fig. 2 shows the fraction of neutrons

removed from the incident neutron beam by a 1 cm thick

mosaic copper crystal. In contrast to Fig. 1, the spectrum is

composed of a series of peaks appearing at specific neutron

wavelengths, due to diffraction by those crystallographic

planes that fulfil Bragg’s law (Santisteban, 2005). These peaks

are similar to the spots observed in traditional Laue diffrac-

tion experiments. The position, height and width of these Laue

peaks depend on the material properties, the orientation and

mosaicity of the crystal, and the resolution of the instrument

(Malamud & Santisteban, 2016). The Laue peaks appear on

top of a rather smooth background, due to the combined

effects of nuclear absorption A(�) and thermal diffuse scat-

tering S(�), which are nearly identical for both mosaic crystals

and polycrystalline specimens.

The model proposed here will construct the spectra

observed in Fig. 1(b) as a weighted sum of a large number of

spectra similar to the one presented in Fig. 2. The model

assumes that the ODF of the polycrystalline material can be

considered as being composed of a set of radially symmetric
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Figure 1
(a) A schematic representation of a neutron transmission experiment. (b) Spectra of the fraction of neutrons removed by a textured copper sample from
the incident beam along two different directions (red and blue symbols), compared with the spectrum expected for a specimen with random
crystallographic texture (solid black line).

Figure 2
The fraction of neutrons removed by a copper mosaic specimen from a
neutron beam incident along the [110] direction.



functions in the orientation space, known as unimodal

components. The Bragg contribution to the attenuation co-

efficient is calculated as a summation of the individual

attenuation contributions weighted by their volume fractions.

To do this, the orientation space is discretized in a series of

orientations depending on the resolution function of the

neutron instrument, and with a width dictated by the statistical

uncertainty of the measurement.

3. Transmission spectra and ODF

Within the kinematic theory of diffraction, the probability of a

neutron being removed from the transmitted beam is

proportional to an attenuation coefficient �(�),

1� Tð�Þ ¼ 1� exp ½��ð�Þ l�; ð2Þ

where l is the thickness of the specimen along the neutron

beam direction. �(�) can be defined according to the different

processes contributing to the attenuation coefficient,

�ð�Þ ¼ �Að�Þ þ �Sð�Þ þ �Rð�Þ; ð3Þ

where the subscripts A, S and R refer to absorption, scattering

and Bragg reflection, respectively. As described above, both

absorption and scattering contributions display a smooth

dependence on the neutron wavelength. The absorption

contribution in the relevant wavelength range is given by a

linear dependence on � as

�Að�Þ ¼ �abs

�

�0

� �
; ð4Þ

where �abs is the microscopic absorption cross section of the

unit cell at a specific wavelength �0 . The scattering contribu-

tion �S(�) includes a combination of incoherent scattering and

inelastic scattering. It can be evaluated using the theoretical

expressions given by Granada (1984), depending on the mass

A contained in the crystal unit cell, the Debye temperature

�D, and the coherent and incoherent cross sections of the

scattering, �coh and �inc , respectively. The explicit imple-

mentation of �S(�) employed in this work can be found in the

appendix of the report by Malamud & Santisteban (2016).

The Bragg contribution to the attenuation coefficient

depends on the crystal structure and microstructure of the

specimen, as well as on the orientation of the sample in the

neutron beam y. This contribution can be written as a function

of the elastic coherent neutron cross section �ela
cohð�Þ as

�Rð�; yÞ ¼ n yext �
ela
cohð�; yÞ; ð5Þ

where yext represents the extinction factor. �ela
cohð�; yÞ is

strongly dependent on the crystallographic texture of the

sample, described by the ODF (Kocks, 2000). The ODF gives

the number of crystallites present in the sample for each

possible crystallite orientation g, represented for instance by

three Euler angles ð’C
1 ;�

C; ’C
2 Þ in the coordinate system of

the specimen.

More strictly, the ODF f(g) corresponds to the probability

density associated with each orientation g, e.g. the volume

fraction of crystals that are in that specific orientation,

f ðgÞ ¼
1

V

dVðgÞ

dg
; where

R
FZ

f ðgÞ dg ¼ 1; ð6Þ

and f(g) needs only to be defined in the fundamental zone

(FZ) of the orientation space SO(3).

The explicit dependence of �ela
coh on the ODF can be written

as (Laliena et al., 2020)

�ela
coh ¼

nð2�Þ3

vk3

X
hkl

FGhkl

��� ���2Z dg f ðgÞ k � kẑz� gGhklẑz
�� ��� k
� �

;

ð7Þ

where v is the volume of the unit cell, k is the wavevector of

the incident neutrons, Ghkl is a reciprocal-lattice vector

attached to the fixed crystal frame and jFGhkl
j
2 is the corre-

sponding structure factor.

For a perfectly isotropic polycrystalline specimen, the

coherent elastic cross section does not depend on the orien-

tation of the specimen in the neutron beam. It is computed by

considering all the crystallites contributing to a Debye–

Scherrer cone (Fermi et al., 1947), obtaining

�ela
cohð�Þ ¼

n�2

4v

X
hkl

FGhkl

��� ���2 dhkl: ð8Þ

4. Proposed model

Many models exist to evaluate the ODF of a textured material.

Here the ODF will be represented by the superposition of

radially symmetric kernel functions  centred at each crys-

tallographic orientation g (gi = 1, . . . , N) on top of a uniform

function [ frandom(g) = 1 8 g 2 FZ] (Hielscher, 2013),

f ðgÞ ¼ 1�
XN

i¼1

wi

 !
frandomðgÞ þ

XN

i¼1

wi  ff gi; gð Þ
� �

; ð9Þ

where ff(gi , g) denotes the angle between the orientation gi

and g, and wi is the weight associated with each kernel func-

tion. Mathematically, the kernel functions  :SO(3)! R only

depend on the distance from g to the centre of rotation gi , and

in texture analysis they appear as unimodal bell-shaped model

ODFs with a characteristic width dg. In this way, the texture is

described as a superposition of unimodal components defined

by the selected kernel function  . This representation is

implemented in the texture analysis software MTEX to esti-

mate the ODF from pole figures measured in diffraction or

from the orientations identified in electron backscatter

diffraction images (Hielscher & Schaeben, 2008; Hielscher,

2013). The ODF estimator is defined as the solution of a

minimization problem, where the unknown ODF is approxi-

mated by a linear combination of up to 100 000 unimodal bell-

shaped standard ODFs, and the inversion is numerically

performed by applying fast Fourier techniques to the rotation

group SO(3) and the sphere S2 (Hielscher & Schaeben, 2008).

With this in mind, a textured specimen is described here as

composed of a large number of adequately small crystallites,

separated into N + 1 groups according to their orientation.
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N of the groups are angularly very narrow, whilst the

remaining group represents a completely random group of

orientations within the SO(3) space. In real space, it is

assumed that the crystallites have nearly spherical shapes and

a size smaller than the primary extinction length (typically 1–

40 mm), and the grains composing each group are uniformly

distributed across the specimen, separated by a distance larger

than the secondary extinction length (Sears, 1997). In this

approximation, no extinction effects are considered, and

therefore the spectra Rtex(�) of textured materials can be

written as a sum of the Ri(�) components of the individual

groups, plus a contribution from a polycrystalline material

with random crystallographic texture, Rrandom(�).

Considering the linearity between the elastic coherent cross

section and the ODF of equations (7) and (9), the Bragg

contribution to the attenuation coefficient of textured mater-

ials �R(�, y) can be written as

�Rð�; yÞ ¼ 1�
PN
i¼1

wi

� �
�randomð�Þ þ

PN
i¼1

wi� i
ð�; yÞ; ð10Þ

where �random(�) represents the Bragg contribution of a

randomly oriented sample, calculated from equation (8), and

� i
ð�; yÞ is the attenuation coefficient of the unimodal

component  centred at gi ,

� i
ð�; yÞ ¼

P
hkl

�hkl
Ri P i �hkl;$hkl; �ð Þ: ð11Þ

The function P(�hkl, $hkl, �) describes the actual peak shape

depending on the specific instrument (Malamud & Santis-

teban, 2016). In this expression, we explicitly include the

dependence on the beam direction y in the coordinate system

of the sample.

In this work, the ODF of the sample is defined as a super-

position of unimodal components using  as a de la Valleé

Poussin kernel function (Schaeben, 1997), where the half

width can be controlled by a single parameter � > 1. In the

present approach, the unimodal component centres gi are

defined by imposing an equi-spaced SO(3) grid on the FZ of

the orientation space. The distance �gi between adjacent

orientations, i.e. the resolution of the orientation space, and

the � parameter have a profound impact on the ODF repre-

sentation, and they can be optimized depending on the texture

of the sample and the experimental conditions (Biswas et al.,

2020).

Here we propose to define the number of unimodal

components (N) from the instrumental resolution of the

neutron transmission instrument. For a given wavelength

resolution ��/�, the distance between two adjacent compo-

nent centres �gi is derived from Bragg’s law as

��

�
¼
�hkl � �

�hkl

¼ 1� cosð�giÞ; ð12Þ

where � ¼ 2dhkl cos gi. This gives �gi as

�gi ¼ cos�1 1�
��

�

� �
: ð13Þ

The number N of unimodal components in the FZ is

N ¼
VFZ

�gi

; ð14Þ

where VFZ is the volume of the FZ that depends on the crystal

and specimen symmetry. In particular, for cubic crystal

symmetry and triclinic specimen symmetry, the FZ within the

Bunge–Euler orientation space is (Bunge, 1982)

FZ ¼

ð’1;�; ’2Þ j 0 � ’1 � 2�;

cos�1 cos ’2= 1þ cos2 ’2ð Þ
1=2

h i
� � � �=2;

0 � ’2 � �=4:

8<
: ð15Þ

The half-width � of the kernel function is defined consid-

ering the relative statistical uncertainty ��/� of the

measurements, with the requirement of fulfilling the normal-

ization condition of equation (8) for a polycrystalline material

with random crystallographic texture. For a given �gi reso-

lution, the ODF of a sample with random crystallographic

texture ~ff �ðgÞ can be constructed as a superposition of N

unimodal components with a half-width �, where the volume

fraction of each component is equal to 1/N.

In the present model, the kernel parameter � is defined by

considering that the error between the estimated ~ff �ðgÞ and a

uniform ODF frandom(g) should be similar to the statistical

uncertainty of the measurements. As an error measure, we

consider the L2 norm defined as

jj~ff � � frandomjj2 ¼

R
SOð3Þ

~ff randomðg; kÞ � ~ff �ðgÞ
�� �� dg

2
R

SOð3Þ frandomðgÞ
�� �� dg

: ð16Þ

5. Model implementation

The Bragg attenuation coefficient model has been imple-

mented within the MATLAB programming environment,

employing the MTEX toolbox (Hielscher & Schaeben, 2008).

The code incorporates the equations presented in the previous

sections and the sample properties [crystal symmetry, lattice

parameter, ODF, absorption, incoherent and coherent

microscopic cross sections (�abs, �inc and �coh , respectively),

atomic mass A, and Debye temperature �D], together with

experimental information [��/�, average/representative

relative statistical uncertainty of the measurement ��/�, the

divergence of the incident neutron beam 	, the instrument

decay constant 
hkl(�) and the orientation of the sample in the
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Figure 3
The architecture of the code. See the text for definitions of the symbols.



beam y], to calculate the total linear attenuation coefficient of

a polycrystalline material. Fig. 3 displays the code architecture.

For a given ��/� and using the sample crystalline structure,

the code generates an equi-spaced grid with the corresponding

resolution in the fundamental region, where the ODF is

evaluated to extract the volume fractions wi. For each uni-

modal component centred at gi with half-width �, the model

evaluates the neutron attenuation coefficient � i
ð�; yÞ

[equation (11)] and generates the �R(�, y) weighting each

component by their corresponding volume wi plus a uniform

portion. Finally, the code incorporates the absorption [equa-

tion (8)] and scattering contributions (Granada, 1984) to

produce the total neutron linear attenuation coefficient.

6. Samples and measurements

The capability of the proposed model to calculate the

measured neutron attenuation coefficient of specimens with

random crystallographic texture and textured materials along

different directions of the specimen is demonstrated in the

following subsections. The validation is performed by

comparing the linear attenuation coefficient with the experi-

mental �(�), obtained from the measured transmission signal

T(�) using equation (4). The studied samples include a poly-

crystalline copper sample with random crystallographic

texture and an �-iron powder, together with a textured copper

specimen and a 316L austenitic stainless steel specimen

produced by laser powder-bed fusion (LPBF). The physical

properties required to perform the modelling of each sample

and to calculate �A(�) and �S(�) are listed in Table 1. For the

316L sample, the atomic mass, scattering length and �abs were

calculated considering the nominal chemical composition of

the alloy (Fe–17Cr–12Ni–2.3Si–2.5Mo–0.03C) and using the

free atom condition (Granada, 1984).

Wavelength-resolved neutron transmission experiments

were performed on ENGIN-X (Santisteban, Daymond et al.,

2006) and IMAT (Kockelmann et al., 2013) located at the ISIS

Facility, UK, and on RADEN (Shinohara et al., 2020) at the

J-PARC pulsed neutron spallation source, Japan. In all cases,

the resolution function of the instrument is described by a

Gaussian distribution convoluted with a truncated decaying

exponential, with a time constant depending on the specific

moderator (Kropff et al., 1982). The corresponding wave-

length resolutions in the wavelength ranges ��/� > 0.15, 0.25

and 0.4% for ENGIN-X, RADEN and IMAT lead to grid

resolutions of 4, 5 and 6�, respectively. On the other hand, the

statistical uncertainties of the measurements were dependent

on the wavelength interval, with typical values of 3.2% for

ENGIN-X, 3% for RADEN and 3.2% for IMAT. To define

the � parameter for the different experiments, Fig. 4 shows the

L2 error [equation (16)] between the estimated ~ff �ðgÞ as a

function of the half-width � for a specimen with random

crystallographic texture and a uniform ODF for different grid

resolutions (�gi = 4, 5 and 6�). The figure identifies the

corresponding � parameters that match the statistical uncer-

tainty of the measurement according to the L2 errors. The

corresponding half-widths are 2.3, 3.2 and 3.7� for ENGIN-X,

RADEN and IMAT measurements, respectively. Table 2

shows the grid resolution, number of components and kernel

half-width for the different ��/� and ��/� resolutions

employed in the simulations. In all cases the quality of the

simulation has been quantified by means of the Rp parameter

(Jansen et al., 1994), defined as

Rpð%Þ ¼ 100

P
i jyiðobsÞ � yiðcalcÞjP

i jyiðobsÞj
; ð17Þ
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Table 1
Physical parameters of the examined samples.

F.c.c. stands for face-centred cubic and b.c.c. denotes body-centred cubic. The
scattering lengths b and neutron cross sections �abs and �inc were taken from
the list compiled by NIST (Neutron Scattering Lengths and Cross Sections,
https://www.ncnr.nist.gov/resources/n-lengths/). The Debye temperatures �D

were taken from Sears & Shelley (1991). The lattice parameter for 316L steel
was taken from Morgano et al. (2020).

Sample
Crystal
structure

Lattice
parameter (Å)

b
(fm)

�abs

(barn)
�inc

(barn) �D (K) A

Cu F.c.c. 3.6149 7.718 3.78 0.55 343 63.55
Fe B.c.c. 2.8665 9.45 2.56 0.4 436 55.847
316L F.c.c. 3.5964 8.433 2.818 0.55 (Fe) 436 (Fe) 55.918

Figure 4
The L2 error between the estimated ~ff �ðgÞ for a specimen with random
crystallographic texture and a uniform ODF for different grid resolutions,
as a function of the half-width �.

Table 2
Instrumental resolution ��/�, statistical uncertainty on the measure-
ments ��/�, grid resolution �gi , the number of components N and the
kernel half-width � for different instruments.

Instrument
��/�
(%)

��/�
(%)

�gi

(�) N
Half-
width (�, �)

ENGIN-X 0.15 3.25 4 9807 2.3
RADEN 0.25 3 5 4958 3.1
IMAT 0.4 3.25 6 2881 3.7



where yi(obs) and yi(calc) are the observed and calculated

intensities, respectively.

7. Results

7.1. Powder specimens

Fig. 5(a) shows the linear attenuation coefficient of a fine-

grained copper powder specimen of l ’ 1 cm measured on

ENGIN-X with a neutron beam divergence of 0.3� (red dots),

the neutron attenuation coefficient calculated by the proposed

model (solid black line), and the residual between the simu-

lation and the experimental data. In this case, the ODF of the

powder is described as a superposition of 9807 identically

weighted de la Valleé Poussin-shaped kernel functions on an

equi-spaced 4� resolution grid in the FZ of cubic symmetry

specimens with a 2.3� half-width. As shown in the figure, the

model fully describes the height and position of the measured

Bragg edges, with an Rp value of 1.75%, demonstrating the

capability of the proposed model to describe the attenuation

coefficient of polycrystalline specimens with random crystal-

lographic texture.

The effect of the wavelength resolution of the instrument on

the experimental attenuation coefficient can be observed in

Fig. 5(b), where the Bragg edges corresponding to the (221),

(220), (311) and (222) lattice planes of an �-iron powder

measured on ENGIN-X (red dots) and IMAT (blue squares)

are compared. For the simulation of the ENGIN-X data the

same grid as in the previous case was employed, while for the

simulation of the attenuation coefficient measured on IMAT

the ODF was described using 2881 unimodal components with

identical weight on an equi-spaced 6� resolution grid with a

3.7� half-width. The resulting calculated attenuation coeffi-

cients for both instruments are shown by solid lines in Fig. 5(b),

with resulting Rp values of 2% for the ENGIN-X and 5% for

the IMAT measurement. This demonstrates that the model

captures the difference in the Bragg edge tails of the

ENGIN-X measurement in comparison with the IMAT data,

as highlighted in Fig. 5(b), and the overall effect of the reso-

lution, as can also be appreciated from the difference curve

shown at the bottom of Fig. 5(b).

7.2. Textured copper specimen

We analysed a textured copper sample that was produced

especially to identify possible manufacturing processes of

prehistoric copper axes (Artioli, 2007). The specimen is an

irregular parallelepiped of dimensions �20 	 20 	 10 mm

that shows a marked fibre texture due to columnar grain

growth during crystallization, as shown in Fig. 6(a). The

crystallographic texture of the sample has been used as a

standard in a comparison of the performance of different

instruments and data collection strategies. In this case, the

ODF of the sample was determined by employing neutron

diffraction measurements on ENGIN-X and the NyRTex

texture analysis routine (Malamud et al., 2014). The wave-

length-resolved neutron transmission of the sample in

different orientations was measured on ENGIN-X, simulta-

neously with diffraction measurements, using an incident

beam divergence of �0.5�. The explored neutron beam

directions in the sample reference system are labelled from 1

to 4 in the pole figures. Fig. 6(b) shows the corresponding

measured attenuation (blue crosses) together with the model.

In the calculation, the crystallographic texture of the sample

was described by evaluating the volume fractions of the ODF

determined by NyRTex on an equi-spaced 4� resolution grid

using a 2.3� half-width, with no uniform portion. The results of

the calculations for the different orientations are shown in

Fig. 6(b) as solid red lines, together with the expected

attenuation spectrum of a copper sample with random crys-

tallographic texture (dotted black line). In all cases, a very

good overall agreement is found between the experimental

data and model calculations, with corresponding Rp values of

8.2, 8.12, 10.1 and 11.2% for orientations 1 to 4, respectively.
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Figure 5
(a) Attenuation coefficient of a copper specimen with random crystallographic texture measured on ENGIN-X (red dots) and the simulated spectrum
(black solid line). (b) Attenuation coefficient of an �-iron powder measured on ENGIN-X (red dots) and IMAT (blue squares) and the corresponding
simulations (blue and red solid lines).



These values are mostly related to the minor differences

observed for all orientations close to the (200) Bragg edge,

where the sample displays the largest effects of preferred

orientation.

7.3. Stainless steel laser powder-bed fusion sample

The model was also applied to a rectangular sample of 316L

austenitic stainless steel produced by laser powder-bed fusion,

which presents strong texture variation in the transverse

direction, i.e. along x in Fig. 7 (Busi et al., 2022). A tomography

experiment was performed on RADEN at J-PARC (Japan),

rotating the sample with the rotation axis parallel to the LPBF

build direction. A full description of the sample and experi-

mental configuration employed during the measurement is

given by Busi et al. (2022). The crystallographic texture of the

sample was measured using conventional neutron diffraction

on the GEM diffractometer (Kockelmann et al., 2006). Fig. 7(a)

shows the pole figures and the incident neutron beam direc-

tion in the sample reference system for four selected orien-

tations, i.e. four different rotations around the building

direction Y. In this case, within the model, the crystallographic

texture was described by evaluating the volume fractions of

the obtained ODF on an equi-spaced 5� resolution grid using
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Figure 6
Results for the copper textured specimen. (a) Recalculated pole figures from the ODF produced from neutron diffraction experiments. (b) Experimental
(blue crosses) and simulated (solid red lines) attenuation coefficients measured along the directions denoted 1 to 4 in the pole figures, and comparison
with a random textured specimen (dotted black lines).



� = 3.1�, on top of a 0.1% volume fraction uniform portion to

fulfil the normalization condition. The measured attenuation

coefficients (blue crosses) and results of the simulations (solid

red lines) for the selected beam orientations are shown in

Fig. 7(b), together with the expected attenuation coefficient of

a 316L sample with random crystallographic texture (dashed

black lines). Again, good agreement is found between the

model and the experimental data for all explored sample

orientations, with Rp values of 4.1, 2.6, 4.8 and 4.3% for

orientations 1 to 4, respectively. In particular, for orientations

1 and 4 the attenuation coefficient model has fully captured

the symmetry of the crystallographic texture of the sample.

8. Discussion and conclusions

The presented model fully captures the complex dependence

of the attenuation coefficient on the orientation distribution

function and the specimen orientation, as demonstrated in

Figs. 5, 6 and 7. In all cases, a very good overall agreement

was found between the experimental data and simulations,

with RP around 10% or significantly lower. In contrast to

sinpol, the model presented by Dessieux et al. (2018), where

the discretization is performed in real space, here the FZ of

the orientation space is discretized in regular grids with

angularly very narrow components (unimodal components).

research papers

J. Appl. Cryst. (2023). 56 Florencia Malamud et al. � Neutron transmission of textured materials 9 of 12

Figure 7
Results for the 316L LPBF specimen. (a) Recalculated pole figures from the ODF produced from neutron diffraction experiments where Y corresponds
to the building direction. (b) Experimental (blue crosses) and simulated (solid red lines) attenuation coefficients measured along the directions denoted
1 to 4 in the pole figures, and comparison with a specimen with random texture (dashed black lines).



This discretization allows optimization of the number of

single-crystal orientations involved in the calculation, consid-

ering the instrument resolution and the statistical uncertainty

of the experimental transmission spectra. This efficiently

reduces the computation time required to perform a model fit

by an order of magnitude [from 400 s using 10 000 individual

orientations in sinpol (Dessieux et al., 2018) to just 46 s using

9807 orientations in the current model] when using similar

computers (2.50 GHz Intel Core i5 processor personal laptop).

The reduced computation time of the proposed model opens

the possibility of employing it for simulating more complex

Bragg edge imaging experiments, e.g. spectral neutron tomo-

graphy (Carminati et al., 2020; Busi et al., 2022) or time-

resolved Bragg edge studies (Makowska et al., 2015), without

the need for computational clusters.

The proposed efficient discretization considers and is opti-

mized to the instrumental performance, in particular the

achievable resolution, which for a given experiment defines

the required definition of the gi grid centres and the � para-

meter of the unimodal distribution. Both parameters in the

ODF decomposition (and in the resulting intensities and

widths of Laue peaks) have a profound impact on the calcu-

lated spectra, as is shown in Fig. 8 for the (200) Bragg edge of a

copper specimen with random crystallographic texture.

Fig. 8(a) shows the impact of the resolution of the equi-spaced

grid on the modelled Bragg edge shape (for a fixed half-width

� = 3�), while Fig. 8(b) shows the effect of the half-width of the

unimodal component for a fixed grid resolution �gi = 6�. This

feature of being able to consider the instrumental capability,

besides accelerating the fitting procedure significantly, facil-

itates superior fitting quality and results. The good agreement

observed in Fig. 5 for both copper and iron powders measured

on two imaging instruments with different resolutions is direct

proof of the capability of the approach and model to describe

the measured transmission spectra when the instrumentally

determined parameters are properly defined. Similarly, Figs. 6

and 7 demonstrate the ability of the model to predict the

attenuation spectra of textured materials, i.e. a textured

copper sample and an additively manufactured 316L sample,

measured in different orientations.

The instrumental resolution function adopted for the

measurements performed at short-pulse spallation neutron

sources is described by an asymmetric profile, which has been

shown to be more suitable than a simple Gaussian function, as

was implemented e.g. by Dessieux et al. (2019), for wave-

length-resolved transmission experiments performed at such

sources (Kropff et al., 1982). The asymmetric profile allows a

complete description of the specific Bragg edge tails observed

on corresponding neutron imaging instruments, like those

presented here, as can be appreciated from the difference

curve shown at the bottom of Fig. 5(b). Moreover, the

versatility of the proposed approach allows the implementa-

tion of different resolution functions by simply modifying the

peak profile function, expanding the capabilities of the

approach to model wavelength-resolved transmission

measurements performed at different neutron sources and on

particular instruments.

In summary, we have successfully and efficiently modelled

the linear neutron attenuation coefficient spectra of textured

polycrystalline materials, as demonstrated using a copper

sample serving as a reference in texture studies of archae-

ological objects and a 316L stainless steel sample produced by

laser powder-bed fusion additive manufacturing. In all cases, a

very good overall agreement was found between the experi-

mental data and the fits, validating the versatility of the model

in predicting the attenuation coefficients of polycrystalline

textured materials. This opens the possibility of including the

proposed attenuation coefficient model, based on a parametric

model of the ODF with a reduced number of texture

components, into a least-squares fitting routine to refine the

volume fractions of the selected components from wave-

length-resolved neutron imaging experiments.

APPENDIX A
Bragg attenuation contribution of mosaic crystals

The spectrum R(�) of a mosaic crystal is described by a series

of Laue peaks, characterized by their position �hkl , integrated

area Ihkl and width $hkl (FWHM), resulting from all hkl
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Figure 8
Simulated (200) Bragg edge of a randomly oriented copper specimen for (a) different equi-spaced grids with the same half-width � = 3� and (b) different
half widths with fixed grid resolution �gi = 6�.



planes meeting the diffraction conditions within the wave-

length range of the experiment,

Rð�Þ ¼
P
hkl

Ihkl Pð�hkl;$hkl; �Þ: ð18Þ

Here, the function P(�hkl, $hkl, �) describes the actual peak

shape (with unit area), depending on the specific instrument.

The peak position is given by the interplanar distance dhkl and

the angle �hkl between the plane normal and the neutron

beam,

�hkl ¼ 2dhkl cos�hkl: ð19Þ

The peak width $hkl is a function of the crystal mosaicity

and mean-square microstrain within the sample, the instru-

ment resolution, and the angle �hkl . The integrated intensity

Ihkl is a complex function of the structure factor of the plane,

the mosaicity, the beam divergence, and the geometry, size and

orientation of the specimen. The integrated intensity of the

hkl peak is given, within the kinematic theory of diffraction, by

Ihkl ¼ 1� expð�l�hkl
R Þ, where l is the crystal thickness in the

neutron beam direction and �hkl
R is the integrated reflectivity

of the hkl reflection (Zachariasen, 1945),

�hkl
R ¼

Fhkl

�� ��2�4
hkl

2v2 sin2 �hkl

: ð20Þ

Here, |Fhkl| is the structure factor (including the Debye–Waller

factor), v is the volume of the unit cell and �hkl ¼

sin�1
ð�hkl=2dhklÞ is the Bragg angle for the reflection. In

particular, for a thin specimen (l 
 1=�hkl
R ) the integrated

intensity becomes Ihkl ’ l�hkl
R . As a result, R(�) of an indivi-

dual single crystal is written as

Rð�Þ ¼ l
P
hkl

�hkl
R Pð�hkl;$hkl; �Þ: ð21Þ

The peak profile function P(�hkl , $hkl , �) depends on the

instrumental resolution function. For transmission experi-

ments performed at pulsed sources, the neutrons are produced

in short pulses and their wavelength is determined by their

time of flight (TOF) along a fixed path between the moderator

and the detector L,

� ¼
h

mL
ðt � t0Þ: ð22Þ

h is Planck’s constant, m the neutron mass and t0 a delay time,

representing the average time spent by the neutrons within the

moderator and possible delays of the detection system. In such

cases, the resolution function is defined by all the experimental

errors contributing to the uncertainty in the arrival time of the

neutron (t): the average time spent by the neutrons within the

moderator (emission time te) and the time that the neutron

employs travelling to the detector (tL = mL�/h). The instru-

mental resolution corresponds to the convolution of the

probability distributions P(te) and P(tL) associated with te and

tL , respectively. Here we adopt for the resolution function the

model proposed by Kropff et al. (1982), consisting of a

Gaussian of deviation 
hkl(�) convoluted with a truncated

decaying exponential starting at t0 and decaying with a time

constant 
hkl(�). The decay constant 
hkl(�) is a characteristic

property of the moderator, depending on its geometry and

temperature, and its wavelength dependence can be obtained

by measuring randomly oriented polycrystalline samples

(Santisteban et al., 2001; Ramadhan et al., 2019). Employing

this resolution function, the expression for a peak located at

wavelength �hkl is

Pð�hkl; ½
hkl; 
hkl�; �Þ ¼
1


hklð�Þ
exp �

�� �hkl


hklð�Þ

	 


�
1

ð2�Þ1=2
hklð�Þ
exp �

ð�� �hklÞ
2

2
hklð�Þ
2

	 


¼
1

2
hklð�Þ
exp �

�� �hkl


hklð�Þ
þ

hklð�Þ

2

2
hklð�Þ
2

	 


	 erfc �
�� �hkl

21=2
hklð�Þ
þ

hklð�Þ


hklð�Þ

	 

;

ð23Þ

where dhkl is the interplanar distance for the (hkl) planes and

�hkl is the angle between the neutron beam and the normal to

the reflecting crystal planes.

The FWHM of the peak shape of equation (23) does not

have a simple analytical expression as a function of 
hkl(�),


hkl(�) and �hkl , but it can be estimated for an hkl reflection by

considering the uncertainties influencing the TOF arrival of

the neutrons t = te + mL�/h as

�t

thkl

� �2

¼
�te

thkl

� �2

þ
�L

L

� �2

þ
��hkl

�hkl

� �2

; ð24Þ

where �te, �L and ��hkl are the uncertainties in the emission

time, flight path and neutron wavelength, respectively.

The relative uncertainty in the flight path is usually small

[(�L/L) ’ 10�5] and can be neglected, while �te is propor-

tional to the decay constant 
hkl(�). The uncertainty in the

neutron wavelength ��hkl comes from Bragg’s law [equation

(19)] and, assuming that there is no correlation between dhkl

and �hkl , can be written as

��hkl

�hkl

� �2

¼
�dhkl

dhkl

� �2

þð��hklÞ
2 tan2 �hkl; ð25Þ

where "2 ¼ ð�dhkl=dhklÞ
2 represents the mean-square elastic

deformation of the crystal structure and (��hkl)
2 comes from

the finite distribution of scattering angles. (��hkl)
2 depends on

the divergence of the incident beam and the finite distribution

of crystal orientations. Considering both contributions as

Gaussian distributions with widths 	 and �, respectively,


hkl(�) can be written as


hklð�Þ
2
¼ �2

hkl "
2
þ ð	2

þ �2
Þ tan2 �hkl

� �
: ð26Þ
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Shinohara, T., Logé, R., Leinenbach, C. & Strobl, M. (2021).
Additive Manuf. 39, 101848.

Busi, M., Polatidis, E., Malamud, F., Kockelmann, W., Morgano, M.,
Kaestner, A., Tremsin, A., Kalentics, N., Logé, R., Leinenbach, C.,
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