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We study generalized free fields (GFF) from the point of view of information measures. We first review
conformal GFF, their holographic representation, and the ambiguities in the assignation of algebras to regions
that arise in these theories. Then we study the mutual information (MI) in several geometric configurations.
The MI displays unusual features at the short distance limit: a leading volume term rather than an area term,
and a logarithmic term in any dimensions rather than only for even dimensions as in ordinary conformal field
theory’s. We find the dependence of some subleading terms on the conformal dimension Δ of the GFF. We
study the long distance limit of the MI for regions with boundary in the null cone. The pinching limit of these
surfaces show the GFF behaves as an interacting model from the MI point of view. The pinching exponents
depend on the choice of algebra. The entanglement wedge algebra choice allows these models to “fake”
causality, giving results consistent with its role in the description of large N models.
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I. INTRODUCTION

Generalized free fields (GFF) are the simplest models of
quantum field theories (QFT) satisfying Wightman’s axi-
oms [1]. They are defined by having Gaussian correlations,
that is, satisfyingWick’s theorem for the n-point correlation
functions. The theory is then completely specified by a two
point function satisfying positivity, spectral condition, and
Poincare covariance. For a scalar field, the most general
two point function has the Kallén Lehmann form,

hϕðxÞϕðyÞi ¼
Z

∞

0

ds ρðsÞW0ðx − y; sÞ; ð1:1Þ

with W0ðx − y; sÞ the two point function of a free scalar
field of square mass m2 ¼ s ≥ 0. The spectral density ρðsÞ
is a positive measure for s ≥ 0 with at most a polynomial
increase in s.
GFF appear naturally in some formal results in axiomatic

QFT [2–5]. Due to the simplicity of the theory they have
also been used in the mathematical literature as a source
of examples to test different conjectures or analyze the
independence or consistency of different properties, see
for example [6–8]. From the physical point of view, they

appear naturally as limits in large N vector or matrix
models [9]. The large N limit suppresses higher truncated
point functions with respect to the two point functions for
the symmetric fields. A notable example are holographic
theories where generalized free fields describe the low
energy sector of the theory in the large N approximation,
and are equivalent to ordinary free fields living in anti–de
Sitter (AdS) space [10–12].
In this paper we study the entanglement entropy of GFF

or, more precisely, we analyze the behavior of the mutual
information in several cases of interest. Mutual information
has the advantage of being regularization independent.
However, the setup of the problem needs some distinctions
to be made.
To expose the peculiarities that appear in entropic

quantities for GFF as opposed to the case of more ordinary
QFT let us consider a simple case first. When the GFF is a
free field of mass m, the spectral density consists in a
single delta function ρðsÞ ¼ δðs −m2Þ. In this case, an
algebra of operators can be assigned to a spatial region V
at x0 ¼ 0. This algebra is generated by ϕ and _ϕ in V.
Because of the hyperbolic equations of motion of the field,
ð□þm2Þϕ ¼ 0, this algebra coincides with the algebra
generated by the field in the causal development of the
spatial region V. In this case the entropy can be computed
by the usual formulas for Gaussian states in terms of
the field and momentum correlator at x0 ¼ 0, see for
example [13].
If we now take ρðsÞ ¼ δðs −m2

1Þ þ δðs −m2
2Þ, corre-

sponding to the sum of two independent free fields
ϕðxÞ ¼ ϕ1ðxÞ þ ϕ2ðxÞ, we could still apply the same
formula in terms of correlators of ϕ and _ϕ at x0 ¼ 0.
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The algebra generated by ϕ; _ϕ still closes in itself because of
the numerical commutator of the GFF. However, notice that
ϕðxÞ now obeys an equation of motion with a higher number
of time derivatives ð□þm2

1Þð□þm2
2Þϕ ¼ 0, so that ϕ̈ and

ϕ are independent operators. The inclusion or not of the
operator ϕ̈ leads to different algebras with different entro-
pies. Considering just ϕ and _ϕ at x0 ¼ 0 will give us an
entropy increasing like the volume of the region because it
measures translational invariant correlations between the
degrees of freedom of the two subsystems. These subsys-
tems are given by the algebra generated by fϕ; _ϕg and the
commuting algebra generated by ϕ1 − ϕ2 and its time
derivative. An analogous calculation can be found in [14].
If we now include ϕ̈; ⃛ϕ in the algebra the result turns out to
be exactly the algebra of two independent free fields of
masses m1 and m2. This follows from

□þm2
2

m2
2 −m2

1

ϕ ¼ ϕ1;
□þm2

1

m2
1 −m2

2

ϕ ¼ ϕ2; ð1:2Þ

from which we can reconstruct the two independent field
and momentum operators. Hence, this new algebra contain-
ing higher derivatives of ϕ is equal to the algebra of the two
fields ϕ1;ϕ2 in the causal development of V, and we get an
area law rather than a volume law for the entropy.
For a spectral density with any finite number n of delta

functions we have an analogous situation. We can take
algebras of the field and less than 2n − 1 time derivatives at
x0 ¼ 0 and get a volume term for the entropy, or, provided
we include 2n − 1 time derivatives, the algebra and entropy
will be the same as the one of n independent free fields. In
this last sense the n independent free fields are encoded in a
single GFF.
In relativistic QFT it is natural to define the algebras

taking a spacetime rather than a spatial region. If we take a
finite time span around the spatial region V there is no
difference between the GFF defined with a finite number of
delta functions in the spectral density and a theory of
independent free fields. However, this discussion anticipates
us the problems we can find when considering a continuous
measure ρðsÞ. In this case the theory has quite unusual
properties. It does not satisfy the time slice axiom [8],
meaning that the algebra generated by field operators in a
finite time slice around x0 ¼ 0 does not exhaust all
operators of the theory. This is another way to say that
the field does not obey any local equation of motion, with
any finite number of time derivatives. By the same reason it
does not contain a stress tensor. Otherwise we could use it to
construct the Hamiltonian in the algebra of a time slice.
With the Hamiltonian we can then move operators in time to
generate all operators in the theory. The Hamiltonian for a
GFF with spectral measure having support in a nondiscrete
set still exists but is rather nonlocal [1].

Then, it is clear that a spacial region does not determine
uniquely an algebra for these theories, and we must choose
a spacetime region instead. A natural choice is to focus
on causally complete regions. These are the domain of
dependence of spatial regions. However, even for a causally
complete region there is in general an ambiguity in the
algebra that can be associated to it for a GFF. Ambiguities
on the assignation of algebras to regions appear also in
ordinary QFT with generalized symmetries such as the
Maxwell field [15], but they are much more severe for
the GFF.
A great simplification in the understanding of the nature

of these ambiguities and the allowed algebras appear with
the holographic realization of (a class) of these GFF as
ordinary free fields in the bulk of a spacetime of one more
dimension. We will focus on holographic GFF, specially in
conformal GFF, and profit from the dual description to
define the algebras for a given region and compute the
entropy. In fact, independent computation of the entropies
of the GFF in the boundary theory by standard methods
without using the holographic description run into diffi-
culties precisely because the nature of the algebras remain
unspecified. For example, it is unclear how to apply the
replica method because there is no action for the GFF.
There is an action in the holographic bulk description that
allows us to apply the replica method there, but the region/
algebra in the bulk is not uniquely specified by the
boundary region in the GFF. Large N holographic theories
choose automatically this bulk region through the gravity
equations [16]. Another boundary way of computing the
entropy would be through formulas for Gaussian states in
terms of correlation functions. This seems a complicated
task. One should use correlation functions in the chosen
space-time region using the methods of [17]. This, how-
ever, has only access to one specific algebra for the region
which is selected from the correlator. We will not attempt
this calculation here.
An outline of the contents of the paper is as follows. We

first review GFF and their holographic description in the
next section, and describe possible assignations of algebras
to regions. Two choices of algebras are specially relevant.
One of them, the causal wedge algebra, is more natural from
the point of view of the GFF itself, while the other, the
entanglement wedge algebra, is more relevant from the
point of view of the limits of holographic large N theories.
In Sec. III we show why the MI can be expected to be

finite even if the AdS dual space is of infinite volume. In
Sec. IV we explore the short distance limit of the mutual
information (MI). Interestingly, we find that the GFF has a
volume law in this regime. This is in contrast to the case of
ordinary theories where we have an area law in the short
distance limit, even for theories coming from higher
dimensions by Kaluza Klein dimensional reduction.
The coefficient of the volume law can be computed and
is universal in the sense that it does not depend on
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particular details of the GFF such as the conformal
dimension. Other peculiarities include the existence of
a logarithmic term for odd spacetime dimensions. We
compute this logarithmic term in d ¼ 3 as a function of the
GFF conformal dimension.
In Sec. V we study the long distance limit of the MI. For

spheres in conformal field theory’s (CFT) this long distance
limit is fixed by symmetry reasons and apply as well for
conformal GFF [18–20]. For GFF the universality of this
result can be understood by two reasons. The first is that
there is a unique choice of algebras for spheres. The second
is that spheres have a universal modular flow in CFT’s. We
show that the fact that general results for spheres apply to
GFF imply certain holographic relations for the coefficients
of the MI in general theories for different specific dimen-
sions and spins whose reason would be rather mysterious
otherwise. Taking nonspherical regions, we study the case
of regions with arbitrary boundaries in the light cone. This is
useful to study the pinching limit of the MI in these theories
by taking out a pencil of null generators from the null
horizon of the region [20,21]. Two particular pinching limits
are relevant. One of them is a discriminator between free
and interacting CFT. Free here is used in the sense of having
a linear equation of motion rather than having Gaussian
correlators. This gives us, as expected, vanishing MI in the
pinching limit for all possible algebra choices of the GFF.
The other limit is an indicator of violations of causality in
the sense of the time slice axiom. For the causal wedge
algebra we find causality violations while the entanglement
wedge algebras avoids detection of causality violations in
the GFF. This is a necessary condition for this algebras to
come from the largeN limit of a theory with stress tensor. In
both cases we compute the relevant pinching exponents for
specific conformal dimensions. Here we make use of the
results for the MI of free fields derived in [20]. We end with
a discussion of the results.

II. CONFORMAL GFF AND LOCAL ALGEBRAS

We first introduce conformal GFF fields. We will follow
the description of [12]. These have a spectral density given
by a power law,

ρðsÞ ¼ sΔ−
d
2; ð2:1Þ

and conformal dimensionΔ. Equation (2.1) gives a measure
provided Δ obeys the unitarity bound Δ > ðd − 2Þ=2. For
any suchΔ the GFF defines a CFT. The caseΔ ¼ ðd − 2Þ=2
is excluded because ρðsÞ becomes nonintegrable around
s ¼ 0. The free massless field has ρðsÞ ¼ δðsÞ instead.
The holographic description is in AdS space. In the

Poincare patch we write the metric,

ds2 ¼ z−2ðdz2 þ dx2Þ; ð2:2Þ

with dx2 the Minkoswki metric in d spacetime dimensions
and z ∈ ð0;∞Þ. The dual field φ of the GFF is a free
massive field in AdS with equation of motion,

ðz2∂2z þ z2□d þ ð1 − dÞz∂z −m2Þφ ¼ 0; ð2:3Þ

where

m2 ¼ ΔðΔ − dÞ ð2:4Þ

can be negative. The minimal possible mass square is
given by the Breitenlohner-Freedman bound m2 ≥ m2

BF ¼
−d2=4 [22]. The field φ can be canonically quantized with
an AdS symmetric vacuum. For −d2=4 ≤ m2 < −d2=4þ
1 there are two inequivalent quantizations corresponding
to the two roots of (2.4). These are defined by different
boundary conditions for the field at the boundary z ¼ 0 of
AdS. Dirichlet boundary condition corresponds to Δ ¼
1
2
ðdþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4m2

p
Þ and Neumann boundary condition to

Δ ¼ 1
2
ðd −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4m2

p
Þ. See Fig. 1. For m2 ≥ −d2=4þ 1

only the Dirichlet boundary condition is allowed. The limit
m2 → −d2=4þ 1 of the Neumann branch hits the unitarity
bound Δ → ðd − 2Þ=2. There is no holographic description
of this point. There are also notable points at
m2 ¼ −d2=4þ 1=4, Δ ¼ ðd� 1Þ=2, in which the bulk is
a massless conformally coupled scalar, and hence a con-
formal field. These particular bulk theories can be

FIG. 1. The plot shows the relation (2.4) and highlights some
important points in the curve. The blue and green colored
segments correspond to the standard and alternative quantization
with Dirichlet and Neumann boundary conditions respectively.
From bottom to top, the red dot is the end of the curve, where the
CFTd reaches the unitarity bound, precisely at m2 ¼ m2

BF þ 1.
The green dot shows the point where the massive AdS field is
conformally coupled. The green and blue point is the BF mass
bound, the lowest possible mass in AdS consistent with unitarity
m2

BF ¼ −d2=4. The blue point highlights the conformally coupled
AdS field with the other boundary condition. The conformal
dimension Δ at this point does not match the one of a free field in
flat dþ 1 space.
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conformally mapped to half dþ 1-dimensional Minkowski
space with metric ds2 ¼ ðdz2 þ dx2Þ, where we have the
two possible conformal boundary conditions at z ¼ 0. The
Neumann branch at this point has Δ ¼ ðd − 1Þ=2 corre-
sponding to a free massless dþ 1-dimensional free field,
and the Dirichlet branch has a different boundary dimension
Δ ¼ ðdþ 1Þ=2 due to the boundary condition.
The relation between the boundary and bulk fields can be

described as follows. The GFF is the boundary limit of the
bulk field,

lim
z→0

z−Δφðx; zÞ ¼ 2−α−1=2

Γ½αþ 1�ϕΔðxÞ; ð2:5Þ

where α ¼ Δ − d=2, while the bulk field has a non local
expression in terms of the boundary one,

φðx; zÞ ¼ 1ffiffiffi
2

p zΔðz2□Þ−α=2Jαðz
ffiffiffiffi
□

p
ÞϕΔðxÞ: ð2:6Þ

A. Algebras

Amore illuminating relation between bulk and boundary
theories is given in terms of local algebras. If W is a region
in AdS let us call W0 to the set of points spatially separated
fromW in the bulk. The causal completion ofW isW00, and
a causally complete region satisfies W ¼ W00. Causally
complete regions in the bulk are the domain of dependence
of spatial surfaces and are naturally attached to algebras
AφðWÞ generated by the bulk free field φ in W.
In the boundary theory, for any space-time region U let

us call AϕðUÞ to the algebra generated by the GFF ϕ in U.
If we considerU as a region in the boundary of AdS we can
define an associated causal region in the bulk as U00. For a
double cone D (the intersection of the past of a point with
the future of another point) in the boundary it was shown
in [12] that we have the equality,

AϕðDÞ ¼ AφðD00Þ: ð2:7Þ

This relation can be generalized. The boundary algebras
AϕðUÞ are generated by the local GFF and then are additive
under union of spacetime regions, that is, we can decom-
pose them as generated by double cone algebras,

AϕðUÞ ¼ ⋁
D⊂U

AϕðDÞ ¼ ⋁
D⊂U

AφðD00Þ: ð2:8Þ

In particular, if U is causally closed in the boundary, we
have

AϕðUÞ ¼ AφðJþðUÞ ∩ J−ðUÞÞ; ð2:9Þ

where JþðUÞ and J−ðUÞ are the bulk future and past
of U. This generalizes (2.7). The bulk region UCW ¼

JþðUÞ ∩ J−ðUÞ is called the causal wedge of U [23].1

Therefore, smearing the GFF for such U one obtains the
bulk free field algebra in the causal wedge. This assignation
of algebra is the most natural one from the point of view of
the GFF and is also the minimal possible one, being
generated by the GFF in the region. It will be called the
causal wedge algebra. We write

ACWðUÞ ¼ AϕðUÞ ¼ AφðUCWÞ: ð2:10Þ

We can also define the causal complement in the
boundary spacetime as Ū, and a causally complete
region in the boundary satisfies U ¼ ¯̄U.2 By causality,
algebras corresponding to complementary boundary
regions commute

AϕðUÞ ⊆ ðAϕðŪÞÞ0; ð2:11Þ

where A0 is the commutant of A, that is, the set of
operators that commute with those of A. For a general
QFTwhen there is equality AðUÞ ¼ ðAðŪÞÞ0 the theory is
said to satisfy Haag duality for U. An ordinary free scalar
field satisfies duality for any causal region [24]. Then,
from the bulk representation (2.9) we can easily check that
the causal wedge algebras of the GFF do not satisfy
duality for general regions. This is because to the
boundary complementary regions U and Ū it corresponds
the bulk regions UCW and ŪCW which generally fail to be
complementary. The region spacelike to these two regions
ðUCW ∪ ŪCWÞ0 is called the causal shadow [25]. See
Fig. 2. An exception is the case where U is a double
cone and the causal shadow vanish. Haag duality for
double cones is in fact always necessarily valid for all
CFT’s, where the complement is taken in the compactified
space [26].
Examples of failure of Haag duality are also known for

more familiar theories obeying the time slice axiom. In
these examples the problems in the relations of algebras
and regions are related to the existence of operators in
regions with nontrivial topology which cannot be gener-
ated locally by field operators in the same region. These
topological failures of Haag duality are associated to
generalized symmetries and are absent for sufficiently
complete theories [15,27]. A simple example is the case of
the free Maxwell field which does not satisfy Haag duality
for regions with the topology of a ring due to the existence
of Wilson loop operators. However, the present case is

1This region is not in general a bulk causally closed region.
Therefore, a natural expectation is that using properties of the
algebras of free fields [24], the bulk region in the left-hand side
of (2.9) could be extended to ððJþðUÞ ∩ J−ðUÞÞ00 ¼ U00, having
same algebra. We will not need this in the following.

2We take the complement Ū in the compactified space or
equivalently in the spacetime cylinder.
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different in several aspects. The failure of duality for GFF
is related to the failure of the time slice axiom and the
consequent failure of additivity for causal regions based on
the same spatial plane. The algebra generated by the field
in two overlapping double cones does not correspond to
the algebra of a causal region for a GFF. In contrast,
ordinary QFT examples satisfy this form of causal addi-
tivity. Moreover, the relative commutantAðUÞ0 ∩ AðŪÞ0 is
trivial in ordinary QFT examples while it is a large algebra
for the GFF. This is represented by the algebra of the bulk
fields in the causal shadow region, see Fig. 2.
Once Haag duality fails, the possible assignation of

algebras to regions is not unique. We can enlarge the
algebras of U and Ū by keeping them still commuting to
each other. In the holographic representation, a simple way
to do this is by moving the boundaries of the associated
algebra of bulk field towards the bulk but keeping them
spatial to each other. If we partition the bulk in two regions,
one containing UCW and the other ŪCW, the associated free
field algebras will be dual to each other, and we can recover
Haag duality. This is a possible Haag-Dirac net as defined
in [15]. The prescription should also be monotonically
increasing with the region size to give larger algebras to
larger regions.
This is precisely what the holographic prescription does.

It selects a particular division of the space in two given by
the minimal surface ΣU anchored at the boundary of U (or
equivalently ¯̄U). This is called the RT [28] or HRT [29]
surface. Here U is assumed to be a boundary causal region.
The bulk causal region spanning from U to ΣU is called the
entanglement wedgeUEW . It follows thatUCW ⊆ UEW , and
that the mapping U → UEW is monotonic under the
inclusion order. This property is called entanglement wedge

nesting [30]. The corresponding assignation of algebras to
the boundary regions will be called the entanglement
wedge algebra,

AEWðUÞ ¼ AφðUEWÞ: ð2:12Þ

This is in fact the algebra of low dimension operators
attached to the region in the large N limit of holographic
models.3 By construction it follows that

ACWðUÞ ⊆AEWðUÞ; AEWðUÞ ¼ ðAEWðŪÞÞ0: ð2:13Þ

We remark that from the point of view of the GFF theory
itself there are potentially infinitely many different choices
of algebras for the regions that satisfy duality and the
nesting property, and the entanglement wedge is just one of
them. An important open question is whether there is some
intrinsic GFF argument that selects the entanglement
wedge as a preferred choice. For holographic theories
there is the idea of bulk reconstruction, i.e., reconstruction
of bulk operators inUEW from the boundary operators inU.
At the level of the GFF this reconstruction is done using the
modular flow of AEWðUÞ [32]. But this modular flow
already involves the bulk operators in the region. In
principle, for other bulk regions different from the entan-
glement wedge, one could reconstruct the bulk fields in a
like manner.

B. Mutual information

Coming to the problem of computing the mutual
information for a GFF, we see that there is no unique
definition of the MI between two regions. Namely, one
should also choose the specific algebras one is assigning to
them. To define a precise problem we turn to a holographic
description. A choice of algebra can then be made via a
choice of bulk region and the unique algebras of a free field
assigned to it.
The comparison with the large N limit of a holographic

theory is as follows. This large N limit selects the entan-
glement wedge, a privileged bulk region which is bounded
by the RT surface. The bulk free field on this region
represents the low dimension CFT algebra coming from a
UV complete theory and thus avoids all possible ambigu-
ities in the region-algebra correspondence. One possible
way to define the mutual information for a GFF assigns
precisely the entanglement wedge algebras,

IEWðA; BÞ ¼ IφðAEW; BEWÞ: ð2:14Þ

However, while this quantity is always sensible for the
theory of the GFF, it is not always relevant for the large N
theory itself. In this later theory MI admits a decomposition

FIG. 2. A constant time cut of AdS. The causal wedges
UCW and ŪCW for complementary boundary regions U and Ū
do not exhaust the space. A surface dividing the causal shadow in
two, can be used to define complementary algebras. The HRT
surface ΣU gives one such partition defining the entanglement
wedge UEW .

3For an algebraic description of this low dimension sector and
its relation to error correction codes see [31].
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in terms of heavy and light operators as follows. We split
between Δ ≫ c and Δ ≪ c operators [33],

ICFTðA;BÞ ∼ IΔ≳cCFT ðA; BÞ þ IΔ≪c
CFT ðA; BÞ: ð2:15Þ

The rhs of (2.14) also splits in terms of a leading G−1 ∼ N2

contribution coming from the RT area term and a G0 ∼ N0

contribution coming from the free fields living inside the
causal wedges [34], i.e.,

IΔ≳cCFT ðA;BÞ ¼
1

4G
ðAðΣAÞ þ AðΣBÞ − AðΣA∪BÞÞ; ð2:16Þ

IΔ≪c
CFT ðA;BÞ ¼

X
φ

ðSφðAEWÞ þ SφðBEWÞ− SφððA ∪ BÞEWÞÞ:

ð2:17Þ

The combination of area terms describes the Δ≳ c oper-
ator’s contribution to MI, while the last term gives the bulk
contribution by the free fields φ representing the sector of
Δ ≪ c in the CFT. To leading order inN−1, the bulk fields φ
are free, and the contribution to the MI of each eventual
conformal dimension Δ ≪ c decouple on the rhs. Two
opposite situations may occur in applying this formula. If A
and B are far enough the RT surface of the union decouple
into the union of RT surfaces ΣA∪B ¼ ΣA ∪ ΣB. In this case
the area term cancel in the MI, and we get

ICFTðA;BÞ ∼ SφðAEWÞ þ SφðBEWÞ − SφðAEW ∪ BEWÞ
¼ IEWðA;BÞ: ð2:18Þ

The CFT MI coincides with the causal wedge MI of the
GFF to leading order inN. On the other hand, when A and B
are close enough, there is a phase transition to a connected
RT surface such that ΣA∪B ≠ ΣA ∪ ΣB. In this case not only
the area term in the MI does not vanish but the subleading
piece [rhs of (2.17)] is not the mutual information between
any regions in the bulk. In fact, it is a combination of bulk
entropies whose boundaries do not match, and hence it is
not free from UV ambiguities and divergences from the
point of view of the bulk free field. In this case, the orderN0

term cannot make sense without the presence of the area
term. Indeed, it is expected that the divergences and
ambiguities of the order N0 entropies to be renormalized
in the G−1 coefficient of the area term. However, to our
knowledge this calculation has not been made precise in the
literature yet. In any case, it is clear that after the phase
transition in the RT surface the mutual information of the
CFT loses contact with the GFF MI, which cannot be
considered even a subleading contribution. As we will see,
this is necessary because the GFF MI at short distances
increases beyond what is expected for an ordinary CFT.

In the following sections we analyze the MI of the GFF
theory itself and we will explore both short and long
distance leading terms.

III. FINITENESS OF THE MI

In the bulk there is an ordinary massive free field but it
lives in a hyperbolic space-time. In the near boundary
region the distance becomes large and correlations should
decay but the volume of the regions also increase to infinity.
This raises the question of whether the contribution of the
near boundary region to the MI remains finite for different
Δ. For the conformally coupled bulk the warp factor can be
eliminated, and the full MI is clearly finite. In this case,
whilst correlators fall off near the boundary the area
increases such as to compensate the decay of correlation,
but for generic Δ the situation is unclear. For example, in
the Neumann branch the correlator behaves as GN ∼ ðzϵÞ2Δ
which decays more slowly than the increase in the area
∼z−ðd−1Þ for Δ < ðd − 1Þ=2, below the conformally
coupled point. The intuition may lead us to think that this
regime could lead to divergences in the MI. We will see
below that this is not the case.
In order to settle this point we make the following

computation. We need to estimate the contribution of the
MI coming from the region close to the boundary between
two systems. Then we can simplify our calculation to the
one of the MI between two straight walls in AdS from
z ¼ 0 to a irrelevant infrared cutoff placed at a fix but
arbitrary z ¼ z0. Hence the regions have topology A × I,
B × I, were I is the interval z ∈ ð0; z0Þ. See Fig. 3. Since
we are interested in investigating the finiteness of the near
boundary contribution to the MI we can slightly change the
model and impose a boundary condition Φðx; z ¼ z0Þ ¼ 0
at the infrared cutoff z ¼ z0. This boundary condition just
simplifies the evaluation of the MI.

FIG. 3. Two regions in AdS that are straight in the z direction
and end at z ¼ z0. Their asymptotic boundaries define subregions
A and B in the CFT.
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Given this geometric configuration we reduce the AdS
massive scalar field action to a tower of massive scalars in
flat d dimensional spacetime given by the boundary
coordinates x. We start from the AdSdþ1 action for the
massive scalar in Poincarè AdS,

S ¼ 1

2

Z
dz ddx

ffiffiffi
g

p
φð□ −m2Þφþ b:t:; ð3:1Þ

where b:t: stand for boundary terms that are not relevant in
our analysis. The action is defined over z ∈ ð0; z0Þ at which
end points one should impose either Dirichlet or Neumann
boundary conditions. We impose φðx; z ¼ z0Þ ¼ 0, and the
boundary conditions at z ¼ 0 is fixed either to the standard
or alternative quantization, givingΔ ¼ d=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2=4þm2

p
respectively. The equations of motion are

ð□−m2Þφ¼ðz2∂2z þ z2□dþð1−dÞz∂z−m2Þφ¼ 0: ð3:2Þ

We now expand the field as

φðx; zÞ ¼
X
κ

zd=2JαðκzÞφκðxÞ; ð3:3Þ

where α ¼ Δ − d=2. This has the correct boundary con-
dition4 at z ¼ 0 for anyΔ. The condition at z ¼ z0 is fulfilled
provided the values of κ are quantized as the zeroes of the
Bessel function,

Jαðκz0Þ ¼ 0: ð3:4Þ

In this basis, we get

S ¼ 1

2

X
κ;κ0

Z
ddxφκ0 ðxÞð□d − κ2ÞφκðxÞ

×
�Z

z0

0

dzzJαðκzÞJαðκ0zÞ
�
þ b:t:

¼
X
κ

�
z0J0αðκz0Þ

2

�
2
Z

ddxφκðxÞð□d − κ2ÞφκðxÞ þ b:t:

ð3:5Þ

The first line is finite and the orthogonality relations for Jα
was used. We conclude that κ plays the role of the mass of
the d-dimensional fields.
At this point, we have shown that the system we

are describing has the same dynamics as tower of scalar
fields in a d-dimensional flat spacetime, with masses κn,
n ¼ 1; 2;…, given by the zeros of the Bessel function (3.4),
forming a discrete spectrum. By our choice of region the
algebras of the bulk field is just the tensor product of the

algebras of the d-dimensional modes. Then the entropies
and MI are additive for each mode [13],

IφðA × I; B × IÞ ¼
X
n

I0ðκn; A; BÞ; ð3:6Þ

where I0ðκ; A; BÞ is the MI of a d-dimensional flat space
scalar with mass κ. Since we are now dealing with standard
non divergent MI in flat space, the only possible divergen-
ces for any AdS setup must be apparent in the κ spectrum
given by Eq. (3.4). For large nwe have κn ∼ ðπ=z0Þn. Then,
the sum in (3.6) is finite since the MI I0ðκ; A; BÞ decays
exponentially for large mass [35].
The limit of the unitarity bound Δ → ðd − 2Þ=2 corre-

sponds to α → −1. In this limit the first mode has a mass,

κ1 ∼
2

z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ −

d − 2

2

r
→ 0: ð3:7Þ

For d > 2 this is in accordance with the fact that the GFF
MI must converge to the one of a massless free field in this
limit. For d ¼ 2 the massless free field is not a well-defined
theory since it has an IR divergent correlator. This gives
place to an IR divergent term for d ¼ 2 and small κ [13],

Iκ0 ∼
1

2
logð− logðκRÞÞ; κR ≪ 1; d ¼ 2; ð3:8Þ

where R is fixed by the geometry of A, B. This gives an IR
divergence in the MI as a function of Δ in the unitarity
bound limit,

IGFF ∼
1

2
log ð− logðΔÞÞ; Δ ≪ 1; d ¼ 2: ð3:9Þ

This divergence is independent of the geometry and happen
for any other pairs of bulk regions attached to the boundary,
in particular for the all possible algebras of the GFF.
Another commentary is that if we take the limit z0 → ∞

in (3.6) the mass spectrum becomes dense and we can
replace the sum by an integral,

IφðA × I; B × IÞ ∼ z0
π

Z
∞

0

dκ I0ðκ; A; BÞ: ð3:10Þ

The integral converges but the mutual information diverges
as z0. This divergence is natural since the bulk regions touch
each other in the point z → ∞ in this case, see Fig. 3. The
bulk algebras of the form A × z ∈ ð0;∞Þ form another set
of algebras that can be attached to boundary regions in the
GFF. This prescription is Poincare covariant but not
conformal invariant. This algebra assignation is called the
dual net in the mathematical literature because it arises as
the commutant of the algebra of the complement of the
region inside Minkowski space (rather than the complement
taken in the spacetime cylinder). It was shown that this

4To be explicit, α ≥ 0 describes the standard quantization
whilst −1 < α < 0 describes the alternate quantization and
α ¼ −1 sits at the AdS unitarity bound, cf. Fig. 1.
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algebra assignation does not satisfies the split property [7],
preventing the calculation of a meaningful MI. This is
consistent with the present results.

IV. SHORT DISTANCE MUTUAL INFORMATION

In this section, we compute the MI of the GFF in the
limit of short distances. For simplicity, we choose to
analyze the simplest case of a sphere A of radius R−

and the complementary region B of the sphere of radius Rþ.
For conformal GFF there is no issue of different possible
algebra choices for this geometry. We assume the regions to
be close together. This is 0 < Rþ − R− ¼ ϵ ≪ R�. Since
our theory is a CFT, only dimensionless quotients of R ¼
ðRþ þ R−Þ=2 and ϵ can appear. We are thus set to compute
the MI IGFFðA;BÞ via holography,

IGFFðA;BÞ ¼ IφðACW; BCWÞ: ð4:1Þ

We have that ACW and BCW are bulk hemi-spheres of radii
R� in the bulk standard coordinates x, z. At the end we
comment on the modifications that arise for non spherical
regions.

A. The conformal bulk case Δ= ðd � 1Þ=2
The analysis is simpler if we begin by considering the

m2 ¼ ð1 − d2Þ=4, corresponding to two possible conformal
dimensions Δ ¼ ðd� 1Þ=2. In this case the bulk field
is conformally coupled, and the theory can be mapped
via a Weyl transformation ds2 ¼ z−2ðdz2 þ dx2Þ → ds2 ¼
ðdz2 þ dx2Þ to a massless free field in dþ 1 flat space with
a wall. The MI is invariant under the Weyl transformations,
and we end up with a problem of a free massless field in flat
space. The leading contribution comes from local entan-
glement along the two nearby boundaries of the bulk
semispheres which are at a fixed distance ϵ between each
other. It is an extensive contribution along the boundary and
then will be proportional to the area of the semisphere,

IGFF ∼ kdþ1

Z
dA
ϵd−1

¼ kdþ1

πd=2

Γðd=2Þ
Rd−1

ϵd−1
: ð4:2Þ

The constant kd is the coefficient in the area term in the
mutual information for a free massless scalar between two
planar boundaries in d dimensions. It can be computed in
terms of solutions of a Painleve equation by dimensional
reduction to a d ¼ 2 massive field problem [13,35].5 The
surprising feature of (4.2) is that the MI of the GFF has a
volume law rather than the area law that holds for ordinary
QFT. The coefficient of the volume law is the same for the

two boundary conditions. A similar “wrong dimensional-
ity” formula6 is found for the thermal partition function of
GFF [37].
Though the general form of the MI as a function of R=ϵ is

complicated, some subleading terms in the limit of large
R=ϵ also follow from known results for ordinary free fields.
This limit of the mutual information can be understood
as a regularization of the entropy of a bulk semisphere in
presence of the wall boundary conditions, where ϵ plays
the role of the cutoff and we have to identify I ∼ 2S [38].
Hence, subleading terms in the mutual information follow
the same pattern as subleading terms in the entropy, and
universal terms in the entropy can be directly related to
terms in the mutual information. These terms arise either
from subleading bulk contributions or from boundary
contributions. For example, for d ¼ 2 (dþ 1 ¼ 3 bulk)
there is no bulk logarithmic term but there is a boundary
logarithmic term that depends on the particular conformal
boundary condition, induced by the so-called b anomaly
coefficient [39–41]. For a free scalar with Dirichlet
and Neumann boundary conditions these are computed
in [40,42–44], see also [45,46]. We have in this case,

IGFF ¼ πk3
R
ϵ
−
1

6
log

�
R
ϵ

�
þ� � � d¼ 2; Δ¼ dþ 1

2
¼ 3

2
;

ð4:3Þ

IGFF ¼ πk3
R
ϵ
þ 1

6
log

�
R
ϵ

�
þ �� � d¼ 2; Δ¼ d−1

2
¼ 1

2
:

ð4:4Þ

A logarithmic term appears in IGFF in any dimensions.
For even d this logarithmic term is induced by the boundary
conditions and depends on Δ as in the previous example,

IlogGFF ¼ ð−Þd=22B0 logðR=ϵÞ; d even; ð4:5Þ

with B0 a coefficient for a scalar depending on the chosen
boundary conditions [39]. For odd d is induced by the
spherical surface of the dþ 1-dimensional bulk and is
independent of Δ. It is proportional to the usual logarithmic
contribution for the entropy of a whole sphere since we
have a half sphere but the mutual information multiplies
contributions by 2. Thus we have

IlogGFF ¼ ð−Þðd−1Þ=22Adþ1 logðR=ϵÞ; d odd; ð4:6Þ

where Adþ1 is the trace anomaly coefficient of a free scalar
in dþ 1 dimensions.5We have, for example, k3 ¼ 0.0396506498…, k4 ¼

0.0055351600…, k5 ¼ 0.0013139220…. For higher dimensions

a good approximation is kd ≃
Γðd−2

2
Þ

2dþ2π
d−2
2

. 6See also [36] for other nonstandard properties of GFFs.
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B. Volume term for any Δ
When the bulk field is not conformally coupled

[m2 ≠ ð1 − d2Þ=4] we cannot conformally transform to
flat space. The bulk free field MI is one of a massive field
in AdS with boundary conditions. However, the short
distance leading term in the MI can still be computed in
a similar manner.
Suppose we have a free massless scalar in flat dþ 1-

dimensional Minkowski space. The leading contribution to
the MI between two nearby entanglement surfaces sepa-
rated by a distance lðxÞ is given by

I ∼ kdþ1

Z
dA

lðxÞd−1 : ð4:7Þ

This is a local area term produced entirely from local
correlations of nearby operators across the boundaries. In
this formula it is assumed that the distance changes slowly
in the scale of the distance itself j∇lðxÞj ≪ 1. The presence
of distant boundary conditions cannot change this local
contribution. For a massive field the same formula applies
if the distance scale is smaller than the mass scale
mlðxÞ ≪ 1. When mlðxÞ≳ 1 the correlations across the
gap between the regions fall exponentially, and the con-
tribution is cutoff. For a curved space the same formula
applies if the distance scale is much smaller than the
curvature scale.
In the present situation the distance between the two

boundaries in the metric ds2 ¼ ðdx2 þ dz2Þ is still ϵ, and
therefore, for small ϵ, the physical distance is lðzÞ ¼ ϵ=z,
getting smaller deeper into the bulk. We have j∇lðzÞj ¼ ϵ=z.
The curvature scale of the AdS was set to 1. Hence, in both
cases the condition for the application of the formula for the
area term is z ≫ ϵ. If the field mass is much larger than one
we also need that the distance is smaller than the inverse
mass mϵ=z ≪ 1. See Fig. 4. Thus we get

IGFF ∼ kdþ1

Z
z≫ϵ;ϵm

dA
ðϵ=zÞd−1 : ð4:8Þ

This is integrated on the surface z2 þ r2 ¼ R2. This is
again the same integral (4.2) once we take into account

the area element is scaled by z−ðd−1Þ with respect to (4.2).
The integral is on the half sphere excepting an angle
θ ∼maxðϵ=R; ϵm=RÞ from the AdS boundary. Therefore in
the short distance limit ϵ=R ≪ 1 the difference with (4.2) is
a subleading term, and we get

IGFF ∼ kdþ1

πd=2

Γðd=2Þ
Rd−1

ϵd−1
; Δ ≪

R
ϵ
: ð4:9Þ

In conclusion, we get a volume term7 with the same
universal coefficient for any scaling dimension of the
GFF, with the only provision that for large Δ the onset of
the volume term is for large enough radius R=ϵ ≫ Δ ∼m.

C. First subleading term

In the same way in which the leading term is a local
contribution along the entangling surface in the bulk whose
coefficient can be fixed by thinking in a flat wall, the first
subleading term in the short distance expansion comes from
a boundary contribution in AdS, that grows with the areaA
of the region. Wewill elaborate more on the general form of
the expansion in the next section. Here we note that this
same subleading term will be present in a configuration as
the one computed by Eq. (3.6), when A and B have flat
surfaces of area A, close together at a distance ϵ ≪ z0, and
are extended in the bulk direction z up to some arbitrary z0.
We begin by recalling that the sum in (3.6) is over the

masses κn ¼ z−10 jα;n, where jα;n are the zeroes of Jα. Except
for low n, this can be fairly accurately approximated by a
sum over positive integers as,

jα;n ∼ nπ þ π

4
ð2α − 1Þ; α > −1: ð4:10Þ

We recall α ¼ Δ − d=2. The contribution we are looking
for is the one extensive in the area A for small ϵ. In this
geometric limit we can write generically,

I0ðκ; A; BÞ ¼ fðκϵÞ A
ϵd−2

; ð4:11Þ

while for d ¼ 2 there is a logarithmic dependence on ϵ. As
the mass comes in a combination κϵ we can consider an

FIG. 4. In the light-blue region between the semispheres, z ≫ ϵ
and z ≫ ϵΔ, mass and curvature scale can be neglected to
compute the short distance bulk entanglement contribution.
The rest of the contribution, in violet, can be thought as a
boundary term.

7In the example of the Introduction, consisting of a GFF with
spectral density given by a sum of delta functions, a choice of
maximal local algebra eliminated the volume law leading to an
ordinary area law. One may wonder if there is an analogous step
that can be done for the conformal GFF. A maximal algebra for
the sphere in this context is discussed in the final paragraph of
Sec. III. As explained there, this algebra choice does not satisfy
the split property and cannot be assigned a mutual information.
The problem is that the z direction is noncompact which leads to
an area law with divergent coefficient. For a gapped model
however, represented by an AdS with an IR cutoff, an area law
can be obtained in this way.
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expansion in the perturbation δ ¼ ϵ
z0

π
4
ð2α − 1Þ ≪ 1.

Crucially, δ does not depend on n. We find

IφðA × I; B × IÞ ¼ A
ϵd−2

X∞
n¼1

fðκnϵÞ; ð4:12Þ

X∞
n¼1

fðκnϵÞ ∼
X∞
n¼1

fðnπϵ=z0Þ þ δ
X∞
n¼1

f0ðnπϵ=z0Þ þOðδ2Þ:

ð4:13Þ
We approximate both sums via the Euler-Maclaurin formula,

X∞
n¼1

fðnπϵ=z0Þ ∼
Z

∞

1

dnfðnπϵ=z0Þ −
1

2
fðπϵ=z0Þ

∼
z0
πϵ

Z
∞

0

dxfðxÞ − 1

2
fð0Þ; ð4:14Þ

δ
X∞
n¼1

f0ðnπϵ=z0Þ ∼ δ

Z
∞

1

dnf0ðnπϵ=z0Þ þOðδ2Þ

∼ −
2α − 1

4
fð0Þ þOðδ2Þ; ð4:15Þ

where we have used that fðxÞ → 0 as x → ∞ and have
replaced fðπϵ=z0Þ → fð0Þ. The first term in the right-hand

side of (4.14) gives the leading term analyzed previously,
proportional to the bulk surface z0A. This follows from [13],

1

π

Z
∞

0

dxfðxÞ ¼ kdþ1: ð4:16Þ

The subleading terms instead depend on fð0Þ ¼ kd. They
combine to give

IφðA × I; B × IÞ − kdþ1

Az0
ϵd−1

∼

(
− 2αþ1

12
lnðz0=ϵÞ þ… d ¼ 2

− 2αþ1
4

kd A
ϵd−2

þ… d > 2
ð4:17Þ

In order to apply this result to the GFF we still have to
identify what part of the contribution comes from the
boundary at z0. This corresponds to a Dirichlet boundary
for a massless field, since in the ϵ → 0 the mass can be
neglected for this boundary term inside the bulk (but not in
the AdS boundary). Then this unwanted contribution is half
the one of the case α ¼ 1=2, that has two identical boundary
conditions at the extremes of the interval z ∈ ð0; z0Þ.
Subtracting this contribution, setting α ¼ Δ − d=2, and
replacing the area by the area of the sphere, we get

IGFF ∼ kdþ1

πd=2

Γðd=2Þ
Rd−1

ϵd−1
þ
(
− Δ−1

3
lnðR=ϵÞ þ… d ¼ 2

−ðΔ − d=2Þkd πd−1

Γ½d−1�
Rd−2

ϵd−2
þ… d > 2

; Δ ≪
R
ϵ
: ð4:18Þ

For d ¼ 2 we have taken into account that the interval has two boundaries, and we have to double the result of a single
boundary.
We can check the subleading term for d ¼ 2 matches the ones in Sec. IVA for the conformal cases α ¼ �1=2 obtained

from the conformal boundary anomalies. This result generalizes this terms for any mass or conformal dimension.

D. General form of the short distance expansion

The short distance expansion of the MI for an “ordinary” CFT follows the same pattern of the expansion of the EE where
the cutoff is now replaced by the physical distance ϵ [47]. For a sphere this has the form,

I ¼ cd−2
Rd−2

ϵd−2
þ cd−4

Rd−4

ϵd−4
þ � � � þ

(
ð−Þd2A logðR=ϵÞ d even:

ð−ÞdF d odd:
ð4:19Þ

The last term is usually called the universal part, but for the
MI all terms are universal in the sense that they are
independent of the regularization. In particular, the first
term has coefficient cd−2 ¼ ð2πd−1

2 =Γ½d−1
2
�Þkd proportional

to the one of the mutual information between parallel
planes. The logic of this expansion is that the terms
divergent with ϵ are produced by local entanglement across
the entangling surface and then are given by integrals
of geometric quantities on the surface. To respect the

symmetry between the MI between the inside and outside
of the region these geometric terms are formed by even
powers of the extrinsic curvature. Hence the powers
involved in the expansion have the same parity as the area
term [48,49]. This also explains why there is a logarithmic
term only in even dimensions.
The conformal GFF differs notably from this expansion.

The arguments in the previous discussion can be extended
to give the following expansion for the GFF:
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IGFF ¼ cd−1
Rd−1

ϵd−1
þ cd−2

Rd−2

ϵd−2
þ cd−3

Rd−3

ϵd−3
þ � � �

þ c0 logðR=ϵÞ þ cons; Δ ≪
R
ϵ
: ð4:20Þ

Remarkably, the expansion starts at the volume term rather
than the area term and includes all integer powers of R=ϵ.
Again, divergent terms are produced locally by short
distance correlations. However, in the present case the terms
with the same parity of d − 1 are coming from the bulk
short distance entanglement while the ones with the parity of
d − 2 are local contributions associated to the boundary
entangling surface.
In particular, the leading term is the volume term is (4.9),

and the coefficient is independent of Δ. Other terms with
the same parity occur as subleading terms in the bulk short
distance entropy expansion. For a massive scalar in a
general dþ 1-dimensional curved space and a smooth
shape of the entangling surface these are of the form,8Z

dA

ðlðxÞÞd−1−2ðaþbþcÞ R
aðK2Þbðm2Þc: ð4:21Þ

These contributions are perturbative around the massless
flat case. Therefore they are of the form (4.7) where powers
of the distance lðxÞ (the cutoff if we think in the entropy)
are replaced by powers of the mass, the spacetime curvature
R, or the intrinsic curvatures K. When we plug this
expression for our semispheres in AdS we have to take
again z ≫ ϵ; ϵm. For smaller z the approximation breaks
down and the contribution is associated to the boundary.
Integrating (4.21) along the bulk entangling surface gives
us a term proportional to ðR=ϵÞd−1−2ðaþbþcÞ in (4.20). As a
bonus we get that the coefficients cd−3; cd−5; � � � can only
depend on Δ through a polynomial in the mass square
m2ðΔÞ ¼ ΔðΔ − dÞ,

cd−1−2s ¼ a2sðΔðΔ − dÞÞ2s þ a2s−2ðΔðΔ − dÞÞ2s−2 þ � � � :
ð4:22Þ

In particular, these coefficients will be the same for Δ ¼
1
2
ðd�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4m2

p
Þ when these two solutions exist,

−d2=4 ≤ m2 < −d2=4þ 1. We then expect the logarithmic
coefficient c0 for d odd will be equal to the trace anomaly
(4.6) only for the conformal bulk case Δ ¼ ðd� 1Þ=2. For
other scaling dimensions a polynomial dependence on the
mass is expected.
On the other hand, terms with the parity of d − 2 appear

as local contributions associated to the geometry of the
boundary entangling surface. We have computed the first of
such terms in the last section above. Because short distance
in the boundary involves arbitrary long distances in the

bulk, these contributions are nonperturbative in the mass
and the bulk curvature. They also depend on the boundary
conditions. Then we expect the coefficients cd−2; cd−4; � � �
to be nonpolynomial functions of the mass. In particular the
leading term is proportional to Δ − d=2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4m2

p
.

As a conclusion, Eq. (4.20) violates the expected parity
structure of a CFT MI (4.19). This is not due to any
violation of the parity of the entropy between the inside and
outside of the region but rather the consequence of the
existence of divergent contributions that are not localized
on the entangling region from the point of view of the
d-dimensional theory. There is a double origin to the large
correlations that give place to divergent terms. While the
holographic description makes this structure quite trans-
parent, the new large correlations residing in the bulk of the
d-dimensional region are more difficult to grasp in terms of
the GFF itself.
The changes that occur for non spherical regions are then

simple to track. For example, the volume term has the same
structure, but now there is also a shape factor that takes into
account the shape of the bulk entangling surface. As such it
directly depends on the algebra choice. The area term
remains unchanged however and is still independent on the
algebra choice.

V. LONG DISTANCE MUTUAL INFORMATION

In this section we will consider the MI for two regions A
and B in the long distance limit. When the regions A, B are
double cones the leading long distance term is universal for
any CFTand applies as well to the case of a conformal GFF.
We review this result below. The holographic description of
the GFF for specific values of Δ gives a free conformal
bulk. This leads to interesting holographic relations for the
coefficients of the long distance MI for general CFT’s in
different dimensions. When the shape of A and B are not
spheres, the coefficients of the expansion depend on further
details of the theory. For the GFF, the long distance
coefficients depend on the chosen algebras for the regions.
We analyze particular “pinching” limit for the shapes of the
regions. These are a test of global properties of the theories:
causality and interacting versus free UV limits.

A. Two spheres

The MI between two distant regions can be computed
using an OPE expansion of the Renyi twist operators. The
leading term comes from the lowest primary operator of
dimension Δ in two replica copies [18]. Hence the fall off
power of the MI is L−4Δ. There is a closed formula for the
coefficient of this term in any CFT that depends on the
algebras attached to these two regions through the action of
the modular flow on the two point functions of the primary
operators [20]. If the regions are spheres the modular flow
in a CFT has a universal geometric expression which in
radial coordinates is independent of the spacetime8The coefficients for a ¼ b ¼ 0 are known [50].
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dimension [51,52]. The two point function only depends
on the spin and Δ. Therefore, the leading contribution of
the MI of spheres is universally given as a function of the
spin and Δ of the lowest dimensional primary, in a way
independent of the space-time dimension and other details
of the CFT [19,20]. In particular, these formulas must be
valid for conformal GFF too. While these GFF do not have
a stress tensor they are still CFT’s, and the modular flow
for spheres is still given by the usual one parameter group
of conformal transformations leaving the sphere fixed.
These conformal transformations are a symmetry of the
theory even if they do not have a local expression in terms
of the stress tensor [12].
When the lowest dimension primary is a scalar field the

result is [19]

IðA;BÞ∼ cðΔÞR
2Δ
A R2Δ

B

L4Δ ; cðΔÞ ¼
ffiffiffi
π

p
Γ½1þ 2Δ�

4Γ½3=2þ 2Δ� ; ð5:1Þ

where RA, RB are the radius of the two spheres and L the
separating distance.
One can also compute the long distance MI between

spheres for fields of higher spin. The spin will introduce a
dependence on the orientations of the double cones. We
parametrize the geometry as follows. The space-time
orientation of the double cones is given by the future
directed timelike unit vectors n̂A; n̂B pointing in the direc-
tion of the vectors joining the tips of the double cones. See
Fig. 5. We write the spacial vector separating the sphere
centers Ll̂. A useful parameter describing this relative
orientation is

coshðβÞ≡ 2ðn̂A · l̂Þðn̂B · l̂Þ − ðn̂A · n̂BÞ: ð5:2Þ

Then, the leading term for the MI dominated by a Dirac
spinor primary in d dimensions is [20]; see also [53]

IðA;BÞ ∼ 2bd2cþ1cðΔÞR
2Δ
A R2Δ

B

L4Δ coshðβÞ: ð5:3Þ

Further Lorentz representation of the primary field in
arbitrary dimensions are described by a Young diagram of
the symmetry of the tensor indices (for bosonic fields). For
odd dimensions d ¼ 2qþ 3, q ¼ 0; 1;…, the Young dia-
gram giving the representation of the Lorentz group is
determined by the lengths m1;…; mqþ1 of the rows, with
0 ≤ m1 ≤ m2 ≤ …mqþ1.

9 Defining the matrices,

Aj ¼
�ðms þ s − 1=2Þ2p−1

ð2p − 1Þ!
�

s¼1;…;ĵ;…;qþ1

p¼1;…;q
; ðfor d ¼ 3; q ¼ 0; A1 ¼ f1gÞ; ð5:4Þ

where ĵ means the index j is to be omitted, we have for the leading term of the MI dominated by a primary with this
representation,

IðA; BÞ ∼ cðΔÞ
�
RARB

L2

�
2Δ
 Pqþ1

j¼1 ð−1Þjþqþ1 sinhð2βðmj þ j − 1=2ÞÞ detðAjÞ
sinhðβÞðcoshð2βÞ − 1Þq

!
: ð5:5Þ

For even d ¼ 2qþ 2, q ¼ 1; 2;… we have instead

Aj ¼
�ðms þ s − 1Þ2p

ð2pÞ!
�

s¼1;…;ĵ;…;qþ1

p¼0;…;q−1
; ð5:6Þ

FIG. 5. Setup of two boosted spheres of radius RA, RB and
orientation n̂A; n̂B. Their separation is given by the vector L⃗ ¼ Ll̂
with L ≫ RA; RB.

9If the number of rows in the Young diagram is less than qþ 1 we have to complete the sequence with zeros.
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IðA;BÞ ∼ cðΔÞ
�
RARB

L2

�
2Δ
�Pqþ1

j¼1 ð−1Þjþqþ1 coshð2βðmj þ j − 1ÞÞ detðAjÞ
ðcoshð2βÞ − 1Þq

�
: ð5:7Þ

For even dimensions, if m1 ≠ 0, we have two dual
representations with the same tensor structure. If both
components are present we have to multiply (5.7) by 2.
As mentioned, formulas (5.1), (5.3), (5.5), and (5.7) also

give the leading long distance MI between spheres for
conformal GFF of any conformal dimension and spin.
These are defined as Gaussian fields with the two point
function given by the unique conformal two point function
of a primary field with the conformal dimension Δ and
given Young diagram.
The fact that the formula for the scalar contribution

(5.1) depends on Δ and not on the dimension d is
important to the consistency of the holographic descrip-
tion [19]. This is because the computation for GFF can be
done independently both in the bulk and the boundary.
When the regions A and B are far apart they can be
considered near boundary regions in AdS. Therefore,
there is an agreement between the bulk and boundary
falloff of two point functions. On the other hand, the
geometric action of the boundary modular flow for
spheres coincide with the one of the bulk modular flow
for semispheres attached to the boundary, essentially by
symmetry reasons. As mentioned above, the long distance
contribution depends only on these elements, the two
point function and the modular flow, and this gives the
agreement of the boundary and bulk calculations for the
GFF MI.
Here we want to highlight interesting consistency rela-

tions for these general formulas for the mutual information
that arise through GFF holographic descriptions in a like
manner. Note that for fields with spin, given a specific
Young diagram, the MI for boosted spheres does depend on
the space-time dimension through the various terms in the
spin structure.
We will take a GFF with specific conformal dimension

such as it is dual to a free conformally coupled field in AdS.
Then we can eliminate the AdS metric by a Weyl rescaling.
This gives us an equation between the MI of the GFF in
dimension d and a free massless dual field in dþ 1

Minkowski space. We have to take into account that the
regions in the bulk are now half-spheres instead of spheres,
and there is a conformal boundary condition at the
boundary. This boundary condition can only change the
multiplicity of degrees of freedom because it does not
change the modular flow.
For example, there must be an equality between the MI of

a massless free fermion field in Rdþ1, having Δ ¼ d=2, and
a GFF spinorial field in Rd with the same dimension,
because they are holographic dual to each other. The fermion
contribution (5.3) has the dimension dependent factor 2bd2cþ1.

This factor implies that for even d, the mutual information of
the spinor in Rdþ1 matches the result for the GFF spinorial
field in Rd, whilst an extra factor of 2 appears for odd d. A
naive counting of degrees of freedom reveals that the natural
result is actually the mismatch for odd d: massless Dirac
spinors inRdþ1 have double the degrees of freedom of Dirac
spinors in AdSdþ1, because the chiralities couple at the
conformal boundary of AdS. Thus, it is actually the even d
result which needs and explanation for a missing factor of 2
in the MI. This is directly linked to the dimensions of the γ
matrices and, in turn, in the way boundary fermions couple
to bulk fermions via holography. For even d, Dirac AdSdþ1

couple to CFTd Weyl spinors [54], so in order to correctly
compare Dirac GFF fermions inRd to Dirac free fermions in
Rdþ1 one should double the holographic result, providing
the missing factor of 2.
We can also consider other spin representations of the

Lorentz group. Here the holographic identity will also
involve a factor 2 in the MI due to boundary condition.
However, the identity is more interesting since it relates
fields in different Young tableaux representations for
boundary and bulk. In order to relate CFT’s in the two
different dimensions we need to find free conformal
primary fields in dþ 1 dimensions. It is known that in
addition to scalar and Dirac fermions there are free
primaries only in even dimensions [55,56]. This implies
dþ 1 even and then odd d. The free primaries in dþ 1
dimensions have a Young tableau structure given by a
rectangular diagram with ðdþ 1Þ=2 rows and m columns.
Hence there is a free primary for each m. It has dimension
Δ ¼ ðdþ 2m − 2Þ=2. For example in dþ 1 ¼ 4 these are

The first corresponds to a Maxwell Fμν field, the second
to the curvature of a free graviton RðμνÞðαβÞ, an so on. The
label m turns out to be the helicity of the particles. The MI
in the long distance limit (5.7) is given by

IðA;BÞ ∼ 2cðΔÞR
2Δ
A R2Δ

B

L4Δ

�
coshð2βðmþ 1ÞÞ − coshð2βmÞ

coshð2βÞ − 1

�
:

ð5:8Þ

These fields are dual to fields in d dimensions with the
same Δ and Yang tableaux that are obtained by taking
out one of the rows. For example if d ¼ 3 we get
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For m ¼ 1 this is a current (Δ ¼ 2), for m ¼ 2 the stress
tensor (Δ ¼ 3), and higher conserved currents for larger m.
The MI in the long distance limit (5.5) writes in this case,

IðA;BÞ ∼ cðΔÞR
2Δ
1 R2Δ

2

L4Δ

�
sinhðβð2mþ 1ÞÞ

sinhðβÞ
�
: ð5:9Þ

It is not difficult to show that (5.9) and (5.8) are in fact
the same functions, except for the global factor 2 appearing
in (5.8). This difference appears because only half of the
degrees of freedom of the free field in the larger dimension
survive due to the boundary condition.
It can be checked the same holds true if we consider any

odd d. It is interesting to observe that, though there is
nothing intrinsically holographic in the general formulas
for the leading term in the MI, these relations for different
Young diagrams would have been difficult to spot without
holography. However, the relation does not hold any more
for even d, and this is because even if the dþ 1 dual free
fields exist, they are not conformal primaries, and then we
cannot arrive to relations between contributions for CFT’s.
Another commentary is that even if we have deduced
that (5.9) and (5.8) should be proportional for the specific
Δ of a free dþ 1 field, the relation between the MI
contributions is still valid for any Δ. However, in this case
it is not obvious that it is expressing some form of
holographic identity.

B. Long distance MI under pinching

When the regions are not spherical the modular flow for
a CFT is not universal and geometrical. In consequence
details of the theory that go beyond the lowest primary spin
and dimension are revealed in the long distance MI. In
particular, for the GFF, the choice of algebra becomes
relevant.
We start from a similar setup as in Fig. 5 but with two

spheres in the same Cauchy slice (i.e., unboosted) of radii
RA, RB. We will leave one of the spheres untouched, say B.
Instead of a sphere Awe take a causal region with boundary
described by a curve γðΩÞ on the future horizon of the
double cone A. Ω are the angle variables describing the
directions on the cone, and γðΩÞ is the radial (or temporal)

coordinate of the boundary. For a sphere of radius RA, the
curve γðΩÞ is constant γ ¼ RA. We choose γðΩÞ to be a
curve determined by two positive parameters fζ; αg that
essentially removes a piece of the horizon of the double
cone along some of the null generators as shown in Fig. 6.
We define ζ as the shortest distance between the apex of the
cone and γðΩÞ. The other parameter α represents the width
of the region where γðΩÞ differs appreciably from RA. The
limit α → 0 corresponds to a very narrow subtraction,
whilst ζ → 0 corresponds to removing up to the tip of the
cone. The particular way in which this curve is para-
metrized is not essential for our purposes, but these two
parameters play an important role in diagnosing important
properties of the algebras assigned to the regions. We refer
to this geometric deformation as “pinching” the original
double cone.
The limits of interest are α, ζ → 0 but the order of the

limits is important. The case where the limit ζ → 0 is taken
first was introduced in [20]. In this case a narrow strip is
removed from the cone all the way to the apex, resulting in
a system defined by a null surface; i.e., the causal develop-
ment of the pinched surface has zero spacetime volume. In
this limit, the mutual information will drop to zero unless
the theory contains ordinary free fields in the algebra,
satisfying a linear equation of motion (as opposed to other
GFF). The reason is that smearing fields only on a null
surface is not enough to produce an operator in the Hilbert
space, unless the operator is free, and its scaling dimension
saturates the unitarity bound [57–59]. So this pinching limit
eliminates the algebra and leads to zero mutual information
in the nonfree case. That is, we expect

lim
α→0

lim
ζ→0

IðγðΩÞ; BÞ
�¼ 0 interacting CFT

> 0 CFT contains a ðdecoupledÞ ordinary free field
: ð5:10Þ

FIG. 6. Curve γðΩÞ defining the pinching over the future
horizon of the double cone. The curve is described by two
parameters: α which is related to the thickness of the region
removed from the null cone and ζ with its height.
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Notice that this defines the conformal GFF as interacting
since the correlator for Δ > ðd − 2Þ=2 is too singular to
allow operators localized on the null surfaces.10 In this case
the conformal symmetry fixes the leading contribution of
the mutual information to vanish with a power law given by
a pinching exponent λ as

IðγðΩÞ; BÞ ∼
�
ζ

α

�
λ

; λ > 0; α; ζ → 0; α ≫ ζ: ð5:11Þ

However, notice that this way of discriminating free from
interacting theories cannot be used for d ¼ 2 where there is
always a nontrivial algebra in null intervals.
Taking the limit α → 0 first corresponds to removing a

single null segment from the null cone. This might be seen
as containing no information (we are essentially removing
a region of measure zero) on the smeared fields algebra,
and thus the result should be exactly the same as for the
sphere. However, the limit α → 0 of the causal region
determined by γðΩÞ is not the causal region determined by
the sphere, i.e., the double cone, but a smaller space-time
region. This limit is then not a causal region, see Fig. 7
below. Its causal completion coincides with the double
cone however. Theories (or algebra assignations) satisfy-
ing primitive causality11 will in principle not notice the
difference, because in that case the limit of the algebras
should converge to double cone algebra. Then, we expect

lim
ζ→0

lim
α→0

IðγðΩÞ;BÞ
�¼ IðA;BÞ causal theory

<IðA;BÞ noncausal theory
: ð5:12Þ

By “causal” in this context we mean that given the initial
data of a subsystem one should be able to recover the
complete causal diamond, even if we remove any number
of zero-measure regions.12 As we will see, the GFF
behaves as causal or noncausal in this sense depending
on the algebra choice.
Once again, we will study the GFF system via holog-

raphy. To have a well-defined problem we must choose the
net of algebras associated to each region in the CFT. As
explained before, this maps via holography to choosing a
bulk wedge dual to the CFT subsystem. For a single
region, the smallest consistent bulk region is the causal
wedge and the biggest one is the complementary region’s
causal wedge. An intermediate choice that can be made

consistent for all regions at the same time corresponds to
the entanglement wedge coming from the HRT prescrip-
tion. In this section, we will explore the behavior of (5.10)
and (5.12) both for the causal wedge and for the entangle-
ment wedge. We will see that both MI computations allow
us to clearly distinguish the algebras. Mathematically,
while the causal wedge relies on a causal geometric
construction, the entanglement wedge arises as a solution
to a differential equation. This amounts to the former being
more sensitive to some deformations (e.g. removing the tip
of the cone or not) than the latter which is more stable upon
continuous deformations.
For quantitative analysis we consider the simplest case of

a scalar free field in the AdS4 with Δ ¼ 1. In this case we
are in the conformal bulk case, and we can map the problem
from AdS4 to R4 with conformal Neumann boundary
conditions at z ¼ 0. This is performed by means of a
Weyl transformation in a similar fashion as in previous
sections, leaving the MI invariant.
There is another reason for choosing the conformal case

and take the region γ with boundary on the null cone. In
general, the coefficient of the long distance MI for arbitrary
regions would be hard to compute, even for free fields.
However, closed expressions are known for free primary
fields when the region has boundary in a null cone [20]. In
the present case it turns out that both the casual wedge and
the entanglement wedge corresponding to γ have bounda-
ries that lie on the bulk null cone that corresponds to the
boundary one. The reason for the simplification of the
coefficient in this case is that the modular flow of regions in
the null cone is local on the different null generators. In the
free case this gives an expression for the coefficient that is a
local integral on the region boundary [20]. The existence
of a conformal boundary condition does not change
these features. For a scalar this is proportional to the area
of the boundary,

FIG. 7. Ellipse at the boundary of the causal set obtained by
subtracting from the double cone on the CFT3 the past of a single
point p at a distance ζ from the tip.

10We emphasize that in the comparison with large N holo-
graphic models, the mutual information turning zero in our
computation does not mean that I ∼OðN0Þ. This is always true in
the present setup of long distance between the two regions but
rather a strict limit I ¼ 0 between the systems.

11Primitive causality assets that the algebra of a timelike
cylinder is equal to the one of its causal completion.

12A related property has been called strong additivity [60].
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IðA;BÞ ¼ Cð1ÞCACB

L4
; CA;B ¼ 1

2π

Z
ΣA;B

dσA;B; ð5:13Þ

where Cð1Þ ¼ 4=15, and Σ is the boundary of the region in
the bulk corresponding to the curve γ. For CB we consider a
perfect hemisphere and therefore obtain CB ¼ R2

B.

1. Pinching the entanglement wedge in AdS4=CFT3

For calculation convenience we will introduce first a
region with boundary in the null plane, and then we will
map it to the null cone. Consider coordinates x̃� ¼ x̃0 � x̃1

and ỹ ¼ x̃2 in d ¼ 3. The curve γ on the null plane x̃− ¼ 0
is defined by

x̃− ¼ 0; x̃þ ¼ γ̃ðỹÞ; ỹ ∈ R: ð5:14Þ

We choose a simple Lorentzian curve to study the pinching
limit,

γ̃ðỹÞ ¼ RA
ðRA − ζÞ

ζ

�
α2

α2 þ ỹ2

�
: ð5:15Þ

The parameter α is related to the thickness or the region
removed from the null cone and ζ to the height. At ζ → 0
the pinching is complete, and α → 0 is the thin limit.
Now, we can compute the corresponding two-

dimensional HRT surface Σ̃ in the bulk using light cone
coordinates ds2 ¼ z̃−2ð−dx̃þdx̃− þ dỹ2 þ dz̃2Þ. The solu-
tion lies in the x̃− ¼ 0 null plane in the bulk. The surface
obeys a differential equation that can be solved by Fourier
transformation [61]. We get

x̃−ðỹ; z̃Þ ¼ 0; x̃þðỹ; z̃Þ ¼
Z

∞

−∞
dkakeikỹejkjz̃ð1 − jkjz̃Þ;

ð5:16Þ

where the weights ak are given by the conditions imposed
over the boundary surface x̃þðỹ; z̃ ¼ 0Þ ¼ γ̃ðỹÞ as

ak ¼
Z

∞

−∞

dỹ
2π

e−ikỹγ̃ðỹÞ ¼ αRA
ðRA − ζÞ

2ζ
e−αjkj: ð5:17Þ

The surface in the bulk parametrized by y and z can be
obtained replacing (5.17) in (5.16),

x̃þðỹ; z̃Þ¼RA
ðRA−ζÞ

ζ

�
ỹ2α2þðz̃þαÞ2ð2z̃þαÞα

ðỹ2þðz̃þαÞ2Þ2
�
: ð5:18Þ

The conformal map between the null plane to the null cone
extends to an isometry of AdS from coordinates x̃μ ≡
ðt̃; x̃; ỹ; z̃Þ to the ones xμ ≡ ðt; x; y; zÞ. This is explicitly
given by

xμ ¼ 2ðx̃μ þ ðx̃ · x̃ÞCμÞ
1þ 2ðx̃ · CÞ þ ðx̃ · x̃ÞðC · CÞ −Dμ; ð5:19Þ

where the dot · is the usual Minkowski scalar product and
the parameters are

Cμ ¼ ð0; 1=RA; 0; 0Þ; Dμ ¼ ðRA; RA; 0; 0Þ: ð5:20Þ

Taking the limit to the boundary as z → 0 or z̃ → 0 requires
us to subtract a global factor,

ds2 ¼ −dt2 þ dx2 þ dy2 ¼ Ω2
Aðt̃; x̃; ỹÞð−dt̃2 þ dx̃2 þ dỹ2Þ;

ð5:21Þ

ΩAðt̃; x̃; ỹÞ ¼
2R2

A

−t̃2 þ ðx̃þ RAÞ2 þ ỹ2
: ð5:22Þ

This implies that the transformation (5.19) is a conformal
transformation over Minkowski space in the boundary
theory. It maps the curve (5.14) on the null plane to the
one on the null cone. Then, we can compute the minimal
surface Σ bounding the entanglement wedge for γ on the
null cone by applying the corresponding isometry (5.19) to
the bulk surface Σ̃ determined by

x̃− ¼ 0; x̃þ ¼ x̃þðỹ; z̃Þ; ỹ ∈ R; z̃ ∈ Rþ
0 : ð5:23Þ

In radial coordinates defined by r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
� t,

we obtain the parametrization for the HRT surface to be

8>>>>>><
>>>>>>:

rþðỹ; z̃Þ ¼ 0

r−ðỹ; z̃Þ ¼ ϒAðỹ; z̃Þ
�
RA þ ỹ2þz̃2

RA

�
yðỹ; z̃Þ ¼ ϒAðỹ; z̃Þỹ
zðỹ; z̃Þ ¼ ϒAðỹ; z̃Þz̃

; ð5:24Þ

where ϒAðỹ; z̃Þ is given by

ϒAðỹ; z̃Þ ¼
2R2

A

R2
A þ RAx̃þðỹ; z̃Þ þ ỹ2 þ z̃2

: ð5:25Þ

Note that rþðỹ; z̃Þ ¼ 0 is expected as the surface is on the
past null cone. Additionally, all the curves pass through the
point xμ ¼ ð−RA; RA; 0; 0Þ which corresponds to z → ∞. A
plot of these surfaces is shown on the left panel of Fig. 8.
The coefficient CA for the mutual information can be

computed as in (5.13). This yields the final result for the
MI as
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IEWGFFðγ; BÞ ¼
�

1

2πR2
A

Z
Σ
dσA

�
I0ðA;BÞ

¼
�

1

2πR2
A

Z
Σ̃
dỹdz̃ϒ2

Aðỹ; z̃Þ
�
I0ðA;BÞ; ð5:26Þ

where I0ðA; BÞ ¼ 4R2
AR

2
B=15L

4 is the mutual information
between the full spheres. We now compute the MI using
this formula for the limits of interest. For small ζ we get

IEWGFFðγ; BÞ∼ cI0ðA;BÞ
�
ζ

α

�1
3

→ 0; α; ζ → 0; α≫ ζ;

ð5:27Þ

where c ¼ 0.3675… is a constant that can be computed
numerically. The limit of small α is instead

IEWGFFðγ; BÞ ∼ I0ðA;BÞ
�
1 −

α

ζ

�
→ I0ðA; BÞ;

α; ζ → 0; α ≪ ζ: ð5:28Þ

According to (5.10) and (5.12) these results indicate that
the theory is interacting and that the choice of algebras is
causal. This is reassuring since the mutual information for
the GFF with the entanglement wedge coincides with the
one of a large N limit of strongly interacting theory with
stress tensor, respecting causality.

2. Pinching the causal wedge in AdS4=CFT3

For the analysis of the causal wedge we proceed as
follows. The causal wedge is the bulk shadow of the

boundary region. It is not difficult to realize that for fixed
ζ ≠ 0 and small α the causal region in the boundary does
not change drastically between α ≪ 1 and the limit α ¼ 0.
Then the same happens for the causal wedge in the bulk.
Thus, for this case we can approximate the regime of
interest by taking α ¼ 0 and studying the ζ → 0 limit.
The α ¼ 0 limit amounts essentially to remove a single

null segment from the future cone up to a distance ζ from
the tip and consider the resulting bulk causal shadow of the
region. This will differ in spacetime volume from the
double cone even if the difference on the null Cauchy
surface is of measure zero. The resulting causal set is
obtained by subtracting from the double cone the past
J−ðpÞ of a single point p at a distance ζ from the tip. The
intersection between J−ðpÞ and the past horizon of the
double cone is given by the ellipse,

8>><
>>:

tðθÞ ¼ −ðRA þ ζ
2
Þ þ ζ

2
cosðθÞ;

xðθÞ ¼ ζ
2
þ ðRA − ζ

2
Þ cosðθÞ

yðθÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RAðRA − ζÞp

sinðθÞ
θ ∈ ð−π; πÞ; ð5:29Þ

where θ is the angle that parametrizes the ellipse as in
Fig. 7. The origin of the time coordinate was put on the
cone apex. Now, the causal wedge boundary is defined as
the intersection between light-rays traveling into the bulk
from the apex and from this ellipse. This problem can be
solved for finite ζ, giving a two-dimensional surface where
ft; x; zg is parametrized as a function of θ and a new
angular variable ϕ. The full expression is not very illumi-
nating. The leading order for ζ ∼ 0 is

FIG. 8. Entanglement wedge for α ¼ 0.01 (left) and causal wedge for α ¼ 0 (right) on the y ¼ 0 plane. The values of ζ for the pinching
curves are given by 0.03 (red), 0.4 (blue) and 0.8 (green).
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8>>>>>>>><
>>>>>>>>:

rþðθ;ϕÞ ¼ 0

r−ðθ;ϕÞ ¼ 2RA sinðϕÞ þ 2ζ

�
1 − sinðϕÞ

�
1 − cosðθÞ

2

��
;

yðθ;ϕÞ ¼ RA sin θ sinϕ

zðθ;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RAζsin2ðθÞ sinðϕÞð1−sinðϕÞÞ

1þcosðθÞ
q

:

θ ∈ ð−π; πÞ;ϕ ∈ ð0; π=2Þ: ð5:30Þ

A plot of these curves is shown on the right panel of
Fig. 8 for some values of ζ. This gives the holographic
surface ΣðΩÞ.
The computation of CA, Eq. (5.13) yields

ICWGFFðγ; BÞ ∼
I0ðA; BÞ

2

�
ζ

RA

�1
2

; ζ ≪ 1: ð5:31Þ

We conclude that the MI of the causal wedge ICWGFFðγ; BÞ
vanish as (5.31) for ζ small, disregarding the value of α. In
the limit of α → 0 with ζ small we have a finite limit (5.31)
that is smaller than I0ðA; BÞ. This limit vanish if we further
take ζ → 0. Therefore, the causal wedge describes a CFT
algebra that has no free field sectors, and it is not causal in
the sense defined above. The first is expected since for
Δ ≥ ðd − 2Þ=2 no algebra can be localized in a null surface.
The second statement is also reassuring in the sense that,
the GFF not having a Tμν, its local algebra associated to a
subsystem in a Cauchy slice may not be able to rebuild the
causal diamond. This computation checks that this is the
case in terms of the mutual information.

3. Comparing the entanglement and causal
wedges under pinching

We now summarize by comparing the IEWGFFðγ; BÞ and
ICWGFFðγ; BÞ results. Let us focus first on the α, ζ → 0, α ≫ ζ
regime, (5.27) and (5.31). The MI vanish in both of these
computations.Geometrically this is because the bulk surface
collapses to the AdS null boundary in the limit. This is
consistent with the fact that the theory does not have any free
field sectors. An extra constraint arises in the comparison,
since it is known that the entanglement wedge algebra
always contains the causal wedge one, and this must be
reflected in our computation by monotonicity of MI. This is
reflected as an ordering in the pinching exponents,

ICWGFFðγ;RBÞ∼ζ
1
2 < ζ

1
3∼ IEWGFFðγ;BÞ; ζ≪ α≪RA: ð5:32Þ

In the opposite regime α, ζ → 0, α ≪ ζ, both quantities
behave very differently,

ICWGFFðγ;BÞ∼ ζ
1
2; IEWGFFðγ;BÞ∼ I0ðA;BÞ; α≪ ζ ≪ 1:

ð5:33Þ

This checks that the causal wedge alone does not contain the
necessary operator content to reproduce the full double cone
in the pinching limit whilst the entanglement wedge does.
Asmentioned this is a necessary feature of the entanglement
wedge to match the MI of a complete theory with stress
tensor.

VI. FINAL REMARKS

GFF are quantum field theories with unusual properties.
In this paper we have studied the manifestation of these
unusual features in the MI. The most salient feature is a
volume term in the MI instead of the usual area term. This
does not happen for other theories associated to dimen-
sional reduction such as Kaluza Klein models. In these
models, the MI either has an area term if the interior space
is of finite volume, or there is no split property and the MI
diverges if the interior space has infinite volume.
It is clear that the GFF show a form of bilocality, in the

sense that large correlations between complementary
regions are obtained near the boundary but also in the
bulk of the region. These later are due to certain nonlocal
linear combination of fields in the causal region which
holographically represent bulk fields living near the bulk
entangling surface. This same combinations of fields must
have also large correlations for other theories. The differ-
ence is that for ordinary theories, instead of being fresh
new correlations, these field combinations in space-time
can be written in a common Cauchy surface, and the large
correlations should be in fact already counted by the area
terms in the entropy. This points to an heuristic under-
standing of the origin of the large entropy of GFF as due to
the existence of too many independent operators distrib-
uted for different times. In fact, for nearly complementary
regions with a finite time span the GFF has only an area
term in the MI, as can be easily seen holographically. For
an ordinary QFT these operators at different times are
assimilated to the same operators on the Cauchy surface by
using the equations of motion.
Holographic models avoid having a volume term by the

existence of a phase transition well before the short distance
limit of the GFF MI is achieved. The large flexibility of
algebra choices of the GFF is important for their holo-
graphic role since it allows to fake causality by the
entanglement wedge algebra choice.

BENEDETTI, CASINI, and MARTINEZ PHYS. REV. D 107, 046003 (2023)

046003-18



As a consequences of the volume term, the usual
irreversibility inequalities for the entropy fail for the GFF.
For example, the d ¼ 2 entropic c-theorem [62] requires
ðrS0ðrÞÞ0 ≤ 0. This is clearly not the case for and entropy
growing as the size of the interval S ∝ r. The reason is clear.
The irreversibility theorems are a consequence of causality
and Lorentz invariance, combinedwith strong subadditivity,
and the derivation does not hold for noncausal GFF.
We have focused on conformal GFF. Other GFF can be

studied holographically as well using asymptotically AdS
space-times. An interesting question is what is the set of
GFF that can be produced in this way. The positivity of the
spectral density appears to be related to the bulk null energy
condition [63], but it is unclear what is the class of spectral
densities that follow from solutions of differential equations
in an asymptotically AdS space.
The assignations of algebras and the entropies for these

holographic but nonconformal GFF could be studied with

the techniques of this paper. It is not difficult to see that for
space-times with an IR AdS fix point we still have a volume
term, with the same coefficient. However, for a gapped
boundary theory the bulk ends at a certain distance from the
boundary, and we expect to recover an area term as in the
Kaluza Klein models with an internal space of finite
volume. This points to an IR origin of the volume term
in the holographic description for the gapless case that is at
the same time an UV divergent term because of its
dependence on ϵ.
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[63] H. Casini, E. Testé, and G. Torroba, Holographic RG flows,
entanglement entropy and the sum rule, J. High Energy
Phys. 03 (2016) 033.

BENEDETTI, CASINI, and MARTINEZ PHYS. REV. D 107, 046003 (2023)

046003-20

https://doi.org/10.1088/1126-6708/2007/07/062
https://doi.org/10.1088/0264-9381/31/22/225007
https://arXiv.org/abs/2211.12439
https://doi.org/10.1007/JHEP07(2017)151
https://doi.org/10.1007/JHEP09(2014)118
https://doi.org/10.1007/JHEP09(2014)118
https://doi.org/10.1007/JHEP11(2013)074
https://doi.org/10.1007/JHEP11(2013)074
https://doi.org/10.1088/1742-5468/2005/12/P12012
https://doi.org/10.1088/1742-5468/2005/12/P12012
https://arXiv.org/abs/2209.14379
https://doi.org/10.1007/JHEP10(2012)106
https://doi.org/10.1103/PhysRevD.79.024015
https://doi.org/10.1103/PhysRevD.79.024015
https://doi.org/10.1007/JHEP01(2019)039
https://doi.org/10.1007/JHEP01(2019)039
https://doi.org/10.1103/PhysRevD.93.084021
https://doi.org/10.1103/PhysRevLett.122.241602
https://doi.org/10.1103/PhysRevLett.122.241602
https://doi.org/10.1016/j.physletb.2015.11.036
https://doi.org/10.1016/j.nuclphysb.2016.07.029
https://doi.org/10.1103/PhysRevB.99.165113
https://doi.org/10.1007/JHEP06(2012)066
https://doi.org/10.1007/JHEP06(2012)066
https://doi.org/10.1103/PhysRevLett.116.091601
https://doi.org/10.1103/PhysRevLett.116.091601
https://doi.org/10.1007/JHEP10(2015)003
https://doi.org/10.1007/JHEP10(2015)003
https://doi.org/10.1007/JHEP04(2013)162
https://doi.org/10.1007/JHEP04(2013)162
https://doi.org/10.1103/PhysRevB.84.195120
https://doi.org/10.1103/PhysRevD.91.104035
https://doi.org/10.1007/BF01208372
https://doi.org/10.1007/JHEP05(2011)036
https://doi.org/10.1007/JHEP05(2011)036
https://doi.org/10.1007/JHEP06(2017)096
https://doi.org/10.1007/JHEP06(2017)096
https://www.collectionscanada.gc.ca/obj/s4/f2/dsk1/tape9/PQDD_0025/NQ51904.pdf
https://www.collectionscanada.gc.ca/obj/s4/f2/dsk1/tape9/PQDD_0025/NQ51904.pdf
https://www.collectionscanada.gc.ca/obj/s4/f2/dsk1/tape9/PQDD_0025/NQ51904.pdf
https://www.collectionscanada.gc.ca/obj/s4/f2/dsk1/tape9/PQDD_0025/NQ51904.pdf
https://www.collectionscanada.gc.ca/obj/s4/f2/dsk1/tape9/PQDD_0025/NQ51904.pdf
https://www.collectionscanada.gc.ca/obj/s4/f2/dsk1/tape9/PQDD_0025/NQ51904.pdf
https://doi.org/10.1142/S0217751X89000819
https://doi.org/10.4310/ATMP.1998.v2.n4.a4
https://doi.org/10.4310/ATMP.1998.v2.n4.a4
https://doi.org/10.1007/BF01877587
https://doi.org/10.1103/PhysRevD.85.104049
https://doi.org/10.1103/PhysRevD.85.104049
https://doi.org/10.1103/PhysRevD.87.069904
https://doi.org/10.1103/PhysRevD.91.084030
https://doi.org/10.1007/PL00005565
https://doi.org/10.1007/JHEP05(2018)005
https://doi.org/10.1016/j.physletb.2004.08.072
https://doi.org/10.1007/JHEP03(2016)033
https://doi.org/10.1007/JHEP03(2016)033

