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Abstract

Some non-singlet quasi-instabilities (QIs) cases that arise in the calculation of NMR-J parameters are analyzed within

response theory. The relationship between ‘very close to zero’ eigenvalues of the principal propagator and the rate of

convergency for specific coupling pathways is shown by a power series implemented to calculate the principal propagator

matrix. A natural criterion for the analysis of the stability problem emerges from that series. This is more general and accurate

compared with previous proposals. Its relationship with p-type molecular orbitals is given. We present an alternative scheme to

minimize the effects of non-singlet QIs in such a way that the NMR-J parameters become close to the best theoretical

calculations for H2CX (X ¼ CH2, NH and O).
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1. Introduction

The theoretical study of the NMR-J spectroscopic

parameter in compounds which are of interest for

organic and inorganic chemistry is many times

plagued with problems of instabilities or quasi-

instabilities (QI) when the calculations are done at

the random phase level of approach (RPA). If the

molecular system has a p-electronic framework, it is

very likely that it will produce at least QI problems

when calculations of J are done at that level [1,2].

There are also some other model compounds for

which J calculations cannot be done at RPA level

even when they are saturated [3]. Previous works have

shown that there are two general strategies to

overcome this problem: (i) by using post-RPA

schemes or (ii) applying a more crude approach.

This is equivalent to say that one should go in opposite

directions including more or less electron correlation

in the calculations. The first case is applied mainly on

ab initio methods and for that reason the size of model

compounds to which it could be worked on is reduced

to small molecules. The second alternative is used

with semiempirical methods but its results are in that

case much less accurate. Then it should be convenient

to explore a different strategy to overcome or

minimize QI problems.

It is important to point out that semiempirical

schemes are designed in such a way that they use

some empirical parameters to fit theoretical results
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with experiments. This means that electron corre-

lation is included in a suitable, though unsystematic,

way. This explain why semiempirical calculations of

NMR-J parameters fit at least in a qualitative (some

time semiquantitative) way with experimental results.

In a previous paper [4] called Part I throughout we

presented a new methodology to calculate the NMR-J

parameter within response theory. It was shown that at

RPA level of approach each matrix element of the

principal propagator matrix can be expressed as a

power series and have a different rate of convergency.

It depends on the molecular system being analyzed

and strongly on the molecular orbitals (MOs) (two

occupied and two vacants) involved in that particular

matrix element. They can be localized resembling

chemical functions like bonding, anti-bonding and

lone pairs.

The linear response calculations of nuclear mag-

netic coupling constant at RPA level is equivalent to

the finite perturbation theory (FPT) [5], and the self-

consistent perturbation theory (SCPT) [6,7]. In both

cases, a QI problem manifest itself as a very low rate

of convergence in the iterative procedure [8]. In the

case of the principal propagator matrix built up from

series each matrix element is written as a power series

with a proper rate of convergence. It means that there

should be an intrinsic relationship of these three

schemes. The last one gives a deeper insight in order

to analyze in more detail the effects of QI on

calculations of electron spin-dependent molecular

properties.

The main goal of this paper which is intended to

tackle non-singlet QIs, will focus on: (i) the specific

excitation of MOs involved, (ii) the most adequate

parameters that can be chosen in order to determine

‘when’ a calculation will be plagued with QI problems

before of doing it and (iii) whether there are more

efficient and cheaper alternatives to minimize QI

problems. Applying the scheme mentioned above, we

are able to identify which is (are) the specific matrix

element(s) which produce large disturbs in the

inversion process of the principal propagator matrix

when QI problems are present. We found an

alternative procedure to minimize QIs getting

reliable results for couplings which do not depend

much on the electronic framework which produce

that QIs. It is based on avoiding one of the integrals

ðajlbiÞ or ðabljiÞ in the problematic matrix element,

say {NE21}ia;jb (Section 2). We apply this proposal

on three unsaturated molecular models with extreme

non-singlet QIs, and on a saturated molecule with

moderate QI. Studying H2CyX molecular models we

show that we can obtain results that are close to the

best theoretical results calculated with ab initio

methods. In this manner our scheme can be applied

with confidence in larger molecular systems.

Previous works gave either the difference HOMO–

LUMO or the smallest eigenvalue of the principal

propagator matrix as the criteria to evaluate ‘when’ a

calculation could be affected by QI problems [9].

Another aim of this paper is to show that there is

another criterion which answers more accurately that

query.

In Section 2 we give an outline of the theory

necessary for understanding QI problems and J

calculations using polarization propagator matrix

elements as a series. Results are given in Section 3

where we analyze ratios of convergence and propose a

small and specific modification to minimize QI.

Concluding remarks are given in Section 4.

2. Theory

The problem of the stability condition of the

restricted Hartree–Fock (RHF) electronic ground

state of a molecular system is closely related to

RPA [3]. The RHF ground state is not the most

general independent particle ground state owing to the

restrictions imposed on it, e.g. to be real and singlet

state. The condition that must be satisfied to ensure

that the energy remains a minimum when any of these

restrictions is relaxed is that the matrices ðmA ^ mBÞ

must be positive definite [3].

Non-singlet (or triplet) ‘instabilities’ correspond to

the case in which a triplet state has a lower energy

than the RHF ground state. In this case, at least one

eigenvalue of the triplet propagator ð3A 2 3BÞ matrix

is negative, and it is said that the whole system is non-

singlet unstable. In this case it is not possible to

calculate Fermi contact (FC) and spin dipolar (SD)

contributions to the coupling constant J. This is one of

the more frequent problems that affect the indirect

nuclear spin coupling constant calculations.

When all eigenvalues of the ð3A 2 3BÞ matrix are

positive, but at least one of them is ‘very close to zero’
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it is spoken of a ‘QI’ of the non-singlet type. This

situation produces an over-valuation of the triplet

contributions to the coupling constant, i.e. the FC and

SD terms. Thus, these exaggerated values forbids any

later analysis at all [9,10]. This phenomena is

commonly related to a p-electronic system.

The relationship between HF instabilities and

QIs, and a coupling constant calculation at RPA

level is straightforward. Following the theory devel-

oped in Part I of this work [4], the principal

propagator matrix is

mPia;jb ¼ ðmA ^ mBÞ21
ia;jb ð1Þ

where m ¼ 1ð3Þ for singlet (triplet) type property and

the þ (2 ) sign between 1Að3AÞ and 1Bð3BÞ is applied.

The matrix elements for A and B are:

1Aia;jb ¼ ð1a 2 1iÞdabdji þ 2kajlibl2 kajlbil;

3Aia;jb ¼ ð1a 2 1iÞdabdji 2 kajlbil;

1Bia;jb ¼ kabljil2 2kablijl; 3Bia;jb ¼ kabljil:

ð2Þ

The semiempirical scheme called C(L/C)OPPA

(contribution from localized/canonical orbital polar-

ization propagator approach) [11] was developed to

allow for the analysis of some linear response

molecular properties in terms of ‘local’ contributions,

meaning the contribution of individual coupling

pathways. They are defined from two occupied (i, j )

and two virtual (a, b ) MOs.

2.1. Elements of the principal propagator matrix

expressed as series

The singlet (1P) or triplet (3P) principal propagator

matrix can be calculated as a series [12],

ðmPSÞia;jb ¼ ½E21ðI2mNE21Þ21�ia;jb

¼E21
X1
i¼0

ððmNE21ÞiÞia;jb

< E21
Xp

n¼0

ðmNE21Þn

 !
ia;jb

¼ ðmPSÞia;jb;p ð3Þ

where p stand for the number of terms considered for

each series; E is the diagonal matrix built up from the

difference of MOs energies and mN means the two-

electronic integrals given in Eq. (2). From now on each

matrix element of the matrix obtained as a product

between mN and E21 will be written as

y ia;jb ¼ðmNE21Þia;jb ð4Þ

and the convergence of each series is ensured when

ly iajbl, 1: ð5Þ

The maximum value of all y ia,jb will be written as

ymax
ia;jb: The algorithm employed in our code to generate

the matrix P is based on the partial summation

Sn ¼
Xn

i¼0

Xn ð6Þ

X being the matrix that comes from mNE21; then

S1 ¼ IþX1I

S2 ¼ S1 þX2S1

S3 ¼ S2 þX4S2 ð7Þ

..

.

Sn ¼ Sn21 þX2n21Sn21 ð8Þ

..

.

In a similar way, it is also possible to generate the P
matrix by splitting it up in two parts, one diagonal,

named Pd and the other one non-diagonal, named Pn as

was done for the generation of the energy matrix El in

Ref. [4].

3. Results and discussion

The geometries of all model compounds studied in

this work were optimized within the MNDO [13] or

AM1 [14] schemes. Calculated values were obtained

by applying CLOPPA-(MNDO/AM1) – RPA

methods.

3.1. Convergence of each serie

As explained in Part I each element of the series

belonging to the inverse matrix of Eq. (3) has a

different rate of convergence. This fact depends on

how close to one is its corresponding y ia;jb: The
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convergence of the matrix elements corresponding to
mymax

ia;jb ðm ¼ 1; 3Þ for the unsaturated compounds

CH2NH and CH2CH2, are shown in Figs. 1 and 2. It

is observed that the singlet-type propagator elements

converge to their RPA values quite fast, i.e. for p less

than 10 in Eq. (3) the series is converged for both

compounds: CH2NH with a value of 2.812 (2.836) and

C2H4 with a value of 2.766 (2.774) for the series

(RPA). This means that the highest element of that

matrix, i.e. 1ymax
ia;jb; has a value which is by far within

the convergence criterion given in Eq. (5). It

corresponds to 0.362 for CH2NH and 0.371 for C2H4.

On the other side the triplet-type principal

propagator counterparts do need a lot more terms to

reach their corresponding RPA values, i.e. more than

30 terms for CH2NH to reach a value of 19.063

(19.748); and close to 500 terms for C2H4 to reach a

value of 146.149 (146.191) for the series (RPA). This

slow rate of convergence is due to the fact that the

highest matrix element is much closer to 1 than in the

previous cases. They are 0.885 for CH2NH and 0.964

for C2H4.

3.2. Criteria of convergence vs QIs

In some previous works QI problems were related

to the difference HOMO–LUMO [3]. In Fig. 3 the

highest element 3ymax
ia;jb as well as the corresponding

HOMO–LUMO differences as a function of the

smallest eigenvalue of the principal propagator matrix

is given for different kind of model compounds, some

are saturated and others are unsaturated. Their

nomenclature and 3ymax
ia;jb values are given in Table 1.

In Ref. [9] it was shown that when the smallest

eigenvalue is smaller than 0.11 there appears a QI.

There is no straightforward relationship between both

parameters. On the other side when considering 3ymax
ia;jb

it is easy to find out one minimum value for this

parameter that ensure the lower limit for a calculation

to be QI for unsaturated compounds. On the left of the

dotted line in Fig. 3 all compounds with QI are

included. From their values it appears that when

unsaturated model compounds have 3ymax
ia;jb less than

0.75 they will not be affected by QI problems, at

least for model compounds which have one pair of

p-electrons.

According to the convergence criterion of the

power series mentioned in Section 2, each series is

convergent when the absolute value of the matrix

elements is less than one, i.e.

l1;3{NE21}ia;jbl , 1:

This is an alternative ‘mathematical’ criterion to

determine the threshold for the occurrence of

instabilities, e.g. a matrix element with an absolute

value equal or larger than 1 will produce instability.

Furthermore, from Fig. 3, it is seen that 3ymax
ia;jb for

the D and E calculations are less than 0.75. They give

J values that are over-valued compared with Me3-

PbPbH3 model compounds. It seems that this model

compound have a different pattern of eigenvalues that

need more studies to be understood. Thus, we propose

Fig. 1. Triplet and singlet principal propagator behavior for the compound CH2NH.
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Fig. 2. Triplet and singlet principal propagator behavior for the compound H2CCH2.

Fig. 3. HOMO–LUMO and the relationship 3nmax
ia;jb for different compounds.
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as a threshold for the occurrence of QI the arbitrary

value of 0.75 for the highest y ia,jb matrix element,

when the model compounds are unsaturated and have

one p-electronic framework.

3.3. Minimizing QI effects

The absolute value of y ia,jb can be divided in

two parts, i.e. {kajlbil=ð1a 2 1iÞC}ia;jb and {kabljil=
ð1a 2 1iÞC}ia;jb; where C has a value different than

one for localized MOs.

This separation of the matrix elements into two

terms is quite convenient in order to decide how to

minimize the effects of QIs. Three examples of non-

singlet QIs, and the way that they are removed are

given in Tables 2–4, where only FC contributions are

considered. The three molecules analyzed are unsa-

turated compounds where the highest propagator

matrix element corresponds to the localized coupling

pathway pppppp. All intramolecular couplings are

shown and also compared with their corresponding

SOPPA(CCSD) values [15].

Considering the three unsaturated model com-

pounds: C2H4, CH2NH and CH2O which have 3ymax
ia;jb

values in the upper and lower extreme of the range of

values that produce QI, it is seen that the 3ymax
pppppp for

ethylene is by far the largest. When any of the MO

integrals, kabljil or kajlbil is removed the matrix

elements that correspond to 3ymax
pppppp diminish

drastically.

For ethylene 3ymax
pppppp change two orders of

magnitude when we neglect any or both of Coulomb

or exchange two-electronic integrals corresponding to

the pppppp coupling pathway. In Table 2 it is shown

that all couplings are over-valued for the complete

RPA calculation. Neglecting any or both integrals

Table 1

The total value of ymax
ia;jb and its contributions for different molecular models

Molecule Method # {kajlbilE21}iajb {kabljilE21}iajb ymax
ia;jb

C2H4 MNDO A 0.618 0.346 0.964

C2H2 MNDO B 0.547 0.296 0.843

CH2NH MNDO C 0.565 0.320 0.885

Pb2H6 MNDO D 0.453 0.241 0.694

Pb2H6 AM1 E 0.456 0.245 0.701

Si2H6 AM1 F 0.475 0.300 0.775

CH2O MNDO G 0.512 0.283 0.795

Sn2H6 MNDO H 0.442 0.239 0.681

Sn2H6 AM1 I 0.449 0.244 0.683

Si2H6 MNDO J 0.404 0.214 0.618

Me3Pb–PbH3 MNDO K 0.406 0.158 0.564

C2H6 MNDO L 0.333 0.150 0.483

Table 2

The FC contribution to J and ymax
pppppp in H2CCH2 for different approximations

(3P )pppppp
1JC – C

1JC – H
2JC – H

2JH – H cis- 3JH – H trans-3JH – H

a 146.191 226.040 321.430 2154.332 2131.430 120.294 142.655

b 6.531 34.297 178.051 210.896 224.131 12.995 35.356

c 3.734 30.457 175.178 28.024 221.983 10.846 33.983

d 2.415 28.646 173.823 26.669 220.969 9.833 32.194

SOPPA(CCSD)a 76.254 156.288 21.488 0.399 12.168 18.506

(a) Every term is taken as such. (b) The kabljil integral is removed from the problematic matrix element. (c) The kajlbil integral is removed

from the problematic matrix element. (d) Both integrals are removed from the problematic matrix element.
a Ref. [13].
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mentioned above it reduce the couplings in such a way

that most of them becomes closer to a SOPPA(CCSD)

calculation. There are still three cases where the new

values do not become as close to SOPPA(CCSD)

values as the others: the one-bond C–C, the geminal

C–H and the vicinal trans H–H couplings, which

could mean that in these cases ppp excitation is very

important.

As shown in Tables 3 and 4 the situation is less

dramatic. The 3ymax
pppppp is not very high as in the

previous case. When we neglect any of Coulomb or

exchange two-electronic integrals all RPA coupling

values are modified in such a way that they become

close to SOPPA(CCSD) values with the exception of

one-bond C–N, the geminal H–H coupling in CH2O

and the vicinal trans H–H couplings. For the model

compound CH2NH the vicinal cis H–H coupling is

very well reproduced as is also observed for ethylene.

Geminal couplings are modified giving values with a

difference of 2 Hz or less for CH2NH.

The use of option c with respect to b makes a

difference that is almost twice the modification

between options d and c, as seen from Tables 2–4.

The value of 3ymax
pppppp is such that it obeys the

following relationship

H2CCH2 . CH2NH . CH2O:

In this way the one-bond C–X coupling is slightly

modified for X ¼ O and largely modified for

X ¼ CH2 when options b–d are applied. Three points

corresponding to saturated model compounds are at

the left of Fig. 3. The AM1 calculation for H3SiSiH3

gives an attenuated QI: its 3ymax
ia;jb is close to 0.75.

When Coulomb or exchange integrals are removed

from that term the J(Si–Si) becomes closer to its

MNDO value, which is stable as shown in Table 5.

The indirect nuclear spin coupling for the H3PbPbH3

molecule do need more analysis in order to understand

its behavior.

Table 3

The FC contribution to J and ymax
pppppp in H2CNH for different approximations

(3P )pppppp
1JC – N

1JC – H1

1JC – H2

2JN – H1

2JN – H2

2JC – H3

2JH – H cis-3JH – H trans- 3JH – H

a 19.748 1.157 208.855 192.963 6.157 24.149 222.297 1.466 33.155 56.845

b 4.795 6.926 195.258 179.870 2.012 28.454 212.416 11.236 26.054 49.471

c 3.039 7.604 193.661 178.332 1.525 28.961 211.255 12.384 25.220 48.605

d 2.054 7.984 192.765 177.469 1.252 29.244 210.604 13.028 24.752 48.119

SOPPA(CCSD)a 210.140 170.457 160.720 3.456 210.629 210.356 16.880 25.007 18.358

(a) Every term is taken as such. (b) The kabljil integral is removed from the problematic matrix element. (c) The kajlbil integral is removed

from the problematic matrix element. (d) Both integrals are removed from the problematic matrix element.
a Ref. [13].

Table 5

The FC contribution to J and ymax
sspssp in Si2H6 for different

approximations

Si2H6

(3P )sspss p
1JSi– Si

1JSi – H
2JSi– H

2JH – H
3JH – H

a 11.084 314.959 2438.807 61.378 294.301 31.864

b 4.634 125.854 2405.594 28.195 288.461 26.012

c 3.407 89.890 2399.277 21.918 287.350 24.897

d 2.386 59.954 2394.019 16.654 286.426 23.971

(a) Every term is taken as such. (b) The kabljil integral is

removed from the problematic matrix element. (c) The kajlbil
integral is removed from the problematic matrix element. (d) Both

integrals are removed from the problematic matrix element.

Table 4

The FC contribution to J and ymax
pppppp in H2CO for different

approximations

(3P )pppppp
1JC – O

1JC – O
2JH – H

2JO – H3

a 9.202 15.265 194.826 67.787 0.212

b 3.774 16.720 190.882 70.440 20.767

c 2.553 17.047 189.995 71.037 20.987

d 1.824 17.242 189.466 71.393 21.118

SOPPA(CCSD)a 11.173 175.361 41.137 25.604

(a) Every term is taken as such. (b) The kabljil integral is

removed from the problematic matrix element. (c) The kajlbil
integral is removed from the problematic matrix element. (d) Both

integrals are removed from the problematic matrix element.
a Ref. [13].
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4. Concluding remarks

Making use of few mathematical basic concepts we

are able to tackle one of the most frequent problems

encountered in calculations of some molecular

properties like the indirect nuclear spin–spin coupling

constant at RPA level, i.e. instabilities and QIs.

Analyzing the highest matrix element 3y ia;jb; it is

possible to know beforehand in which situation the

compound is; for instance: stable, quasi-instable or

instable. In cases where the molecular ground state

wavefunction presents non-singlet Hartree–Fock QIs

we should expect a much slower convergence for each

series corresponding to each element of the principal

propagator though at different rate depending on the

coupling pathway.

For some saturated model compounds we found

also QIs like, for instance H3XXH3, X ¼ Si calculated

with AM1 wavefunction and X ¼ Pb calculated with

both semiempirical wavefunctions. The other similar

model compounds with X ¼ C and Sn do not have QI

problems. In case of H3PbPbH3 the localized bond

Pb–Pb have a different electronic density structure

with respect to the other H3XXH3 model compounds.

Their electronic density obtained from MNDO and

AM1 semiempirical schemes is lower in the middle of

the bond than in the region close to the Pb atoms.

We have shown that our previous criterion used to

establish when a QI problem should appear (i.e. when

the lowest eigenvalue of the principal propagator is

lower than 0.11) is equivalent to that given here, i.e.

the 3ymax
ia;jb should be larger than 0.75.

Our scheme for obtaining the principal propagator

matrix as a series gives us the opportunity to find out

‘where’ exactly the problem is generated within the

matrix. As a corollary to the previous statement, this

scheme gives us enough information about how a

certain coupling pathway is influencing or disturbing

each coupling constant for the molecule studied.

Hence, for the unsaturated compounds analyzed here

we found that the QI is due to the pppppp coupling

pathway. In order to avoid that QI problems one needs

to neglect the Coulomb or exchange integrals from

that specific element of the principal propagator

matrix. Minimizing the origin of the QI problems is

then possible to closely predict the best theoretical

results for couplings other than those mainly influ-

enced by the ppp excitation. This gives the way to

work with CLOPPA scheme on large molecules

which contain p-like bonds. Work on this line is

being done in our Lab.
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