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Algebras with implication and fusion: a different
point of view

José Luis Castiglioni and Hernán Javier San Mart́ın

Abstract. This work uses well-known results on tensor products of lattices and
semilattices developed by Fraser and Grätzer et al., and the duality for bounded dis-
tributive lattices introduced by Cignoli et al., in order to develop dual categorical
equivalences involving bounded distributive lattices with fusion and implication, re-
spectively. We show that these equivalences are essentially those developed by Cabrer
and Celani as part of the PhD thesis of the former.

1. Introduction

In recent years, many varieties of algebras associated with many-valued log-
ics have been introduced. Most of these algebras are commutative, integral,
bounded distributive residuated lattices ([14]), as for example, the variety of
MV -algebras ([6]), the variety of MTL-algebras ([7]), the variety of ITML-
algebras ([10]), the variety of bounded implicative lattices ([16]), and the vari-
ety of WH -algebras ([5]). All these algebras are bounded distributive lattices
with two additional binary operations (a fusion and an implication) satisfying
special additional conditions.

During the decades of the 70s and 80s, many authors studied tensor prod-
ucts of join-semilattices with zero ([11, 12]; see also [13] and references therein).
In 1991, Cignoli et al. [8] proposed a representation theory for the category of
bounded distributive lattices and zero-preserving join-homomorphisms.

Independently of [8], Cabrer and Celani introduced in [4] and [3] a cate-
gorical duality for algebras with fusion and implications. In [2], the author
compares both dualities, looking at the latter as an extension of the former.

The aim of this paper is to develop the duality of Cabrer and Celani directly
from [8]. This will be done on the basis of the following known results:

(i) the tensor product of join-semilattices defines a monoidal structure on
the category of join-semilattices with zero;
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(ii) for any pair of bounded distributive lattices L and M , their tensor
product as join-semilattices with zero is a lattice isomorphic to the
coproduct of L and M in the category of bounded distributive lattices;

(iii) the duality introduced in [8] extends Priestley duality.

These facts can be summarized in the following diagram of categories and
functors;

(S0,⊗)

J
X ��

i1

��

Pop

D
��

D

i2

��

X ��
PSop.

D
��

i3

��

Functor i1 is the inclusion of the category of bounded distributive lattices
and zero-preserving join-homomorphisms into the category of join-semilattices
with zero; i2 is the inclusion of the category of bounded distributive lattices
into the category of bounded distributive lattices and zero-preserving join-
homomorphisms, and i3 is the inclusion of the category of Priestley spaces
into the category of spaces defined in [8]. Both i2 and i3 are surjective on
objects and i1 is full. Hence, a monoidal structure is inherited by J. Priestley
duality is clearly monoidal, when we consider coproduct in the category of
bounded distributive lattices and product in the category of Priestley spaces.
The main point to be observed is that the duality of Cignoli et al. is also
monoidal, when we consider the monoidal structure inherited by J and the
categorical product in P, as we shall show further on.

Since J is monoidal, fusions and implications can be seen as objects of
appropriate subcategories of the category of morphisms of J. Hence, they pass
through the duality of Cignoli et al. to certain relations on Priestley spaces.

The paper is structured as follows. In Section 2, we recall some basic results
and definitions about monoidal categories. In Section 3, the results from [8]
relevant for the present work are recalled. In Section 4, we recall from [11,
12, 13] the results about tensor product of semilattices we shall need further
on. In Section 5, appropriate subcategories of the category of morphisms of J

are introduced, in order to represent in J fusions and implications. In Section
6, we study the monoidal structure of the duality of [8]. In Section 7, we
see how fusions and implications pass through the duality. Section 8 is by
far the longest and most technical, and is devoted to the comparison of our
results with those of Cabrer and Celani. In the last section, we exemplify with
the properties of associativity and commutativity of fusion, how diagramatic
properties of the operations translate through the duality to certain conditions
on the associated relations.
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2. Monoidal categories

In this section, we shall recall from [15] the basic definitions and results on
monoidal categories used in this article.

A monoidal category M is one with a bifunctor � : M × M → M that is
associative up to natural isomorphisms α : a�(b�c) → (a�b)�c, and equipped
with an object e, which is a unit up to natural isomorphisms λ : e�a → a and
ρ : a�e → a. These arrows must also make the following diagrams commute:

a�(b�(c�d)) α ��

1�α

��

(a�b)�(c�d) α �� ((a�b)�c)�d

α�1
��

a�((b�c)�d) α �� (a�(b�c))�d ,

(2.1)

a�(e�b) α ��

1�λ �����������
(a�e)�b

ρ�1�����������

a�b

, e�e
λ ��

ρ
�� e . (2.2)

Note that the commutativity of the second diagram in (2.2) is equivalent
to equality of the morphisms ρ and λ.

A monoidal category (M,�, e) is said to be symmetric if there are natural
isomorphisms σ : a�b → b�a making appropriate diagrams commute.

The category of all vector spaces over a fixed field F with the usual tensor
product ⊗F as � and the one-dimensional vector space F as unit is a standard
example of a (symmetric) monoidal category. Other standard examples of
(symmetric) monoidal categories are given by any category C having finite
(co)products, with the categorical (co)product as � and the (initial) terminal
object as e.

A (strong) monoidal functor between monoidal categories M = (M,�, e)
and M′ = (M′,�′, e′) is a functor F : M → M′, together with natural isomor-
phisms η : F (a)�F (b) → F (a�b) and an isomorphism θ : e′ → F (e) in M′,
making the following diagrams in M′ commute:

F (a)�′(F (b)�′F (c)) α′
��

1�′η
��

(F (a)�′F (b))�′F (c)

η�′1
��

F (a)�′F (b�c)

η

��

F (a�b)�′F (c)

η

��
F ((a�b)�c)

F (α) �� F (a�(b�c)) ,

(2.3)
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F (a)�′e′
ρ′

��

1�′θ
��

F (a)

F (a)�′F (e)
η �� F (a�e) ,

F (ρ)

��
e′�′F (a) λ′

��

θ�′1
��

F (a)

F (e)�′F (a)
η �� F (e�a) .

F (λ)

��
(2.4)

The composition of monoidal functors is monoidal.
A monoid in a monoidal category M is an object m of M together with

two arrows μ : m�m → m and ν : e → m such that the following diagrams
commute:

m�(m�m) α ��

1�μ

��

(m�m)�m

μ�1
��

m�m
μ �� m m�m ,

μ��

e�m
ν�1 ��

λ ����������� m�m

μ

��

m�e
1�ν��

ρ
�����������

m

.

(2.5)
For example, a monoid in the category of F -vector spaces is an F -algebra, and
a monoid in the category of sets, with the cartesian product as �, is a monoid
(in the usual sense).

A morphism f : (m, μ, ν) → (m′, μ′, ν′) of monoids in M is given by an arrow
f : m → m′ in M such that fμ = μ′(f�f) : m�m → m and fν = ν′ : e′ → m′.
With these arrows, monoids in M constitute a category, MonM.

Similarly, we can define a comonoid in a monoidal category M as an object
c of M together with two arrows δ : c → c�c and ε : c → e such that the duals
of the diagrams (2.5) commute.

3. Categories J and P

Let us start by fixing some notation. We write D for the category of bounded
distributive lattices and PS for the category of Priestley spaces. We write X
and D for the functors

X : D � PSop : D

that realize Priestley duality. For L ∈ D and X ∈ PS, we write ϕL and εX for
the isomorphisms ϕL : L → D(X(L)) and εX : X → X(D(X)) given by the
duality.

Let L, M ∈ D. By a join-homomorphism from L into M we understand a
mapping j : L → M such that j(0) = 0 and j(a ∨ b) = j(a) ∨ j(b). The meet-
homomorphisms are defined dually. A map h : L → M is a homomorphism if
and only if it is both a join-homomorphism and a meet-homomorphism. The
category whose objects are bounded distributive lattices and whose morphisms
are join-homomorphisms will be denoted by J. Note that isomorphisms in D

and J are the same, the one-to-one and onto homomorphisms.
Given a relation R ⊆ X × Y , for each x ∈ X, R(x) will denote the image

of {x} by R, i.e., R(x) = {y ∈ Y : (x, y) ∈ R}.
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If X and Y are Priestley spaces, R ⊆ X × Y , and V is a subset of Y , we
define D(R)(V ) := {x ∈ X : R(x) ∩ V �= ∅}. A relation R is said to be a
Priestley relation provided the following conditions are satisfied:

(i) For every x ∈ X, R(x) is a closed and decreasing subset of Y .
(ii) For each U ∈ D(Y ), D(R)(U) ∈ D(X).

We write P for the category whose objects are Priestley spaces and whose
morphisms are Priestley relations. If j : L → M is a morphism in J, then
X(j) ⊆ X(M) × X(L), given by

(Q, P ) ∈ X(j) iff P ⊆ j−1(Q),

is a morphism in P. Conversely, if R ⊆ X × Y is a morphism in P then the
function D(R) : D(Y ) → D(X) is a morphism in J. It was proved in [8] that
there exists a dual categorical equivalence between J and P. We shall refer to
this equivalence as CLP duality. A Priestley relation is said to be functional
in the case that dom(R) = X and R(x) has a greatest element for each x ∈ X.
If h : X → Y is a continuous and monotone function between Priestley spaces,
then Rh = {(x, y) ∈ X × Y : y ≤ h(x)} is a functional Priestley relation. If
R ⊆ X ×Y is a functional Priestley relation, then we can define the morphism
of Priestley spaces hR : X → Y where hR(x) is the greatest element of R(x).
Moreover, we have that R = RhR

and h = hRh
([8, Remark 1.3(ii)]). Hence,

the category of Priestley spaces may be seen as a subcategory of P.
Since CLP duality extends Priestley’s, we shall use the same notation for

the former; i.e, we also write X : J � Pop : D for the functors that realize the
adjunction, and ϕ and ε for the corresponding isomorphisms.

4. Tensor product

Write S0 for the category of join-semilattices with zero. If A, B, and C

are objects in S0, a function f : A × B → C is said to be a bimorphism if
the functions ga : B → C and hb : A → C defined by ga(b) := f(a, b) and
hb(a) := f(a, b) are morphisms in S0 for all a ∈ A and b ∈ B. A join-
semilattice with zero T is a tensor product in S0 of A and B if there is a
bimorphism f : A×B → T such that for any join-semilattice with zero C and
any bimorphism g : A × B → C there is a unique morphism h : T → C in S0

satisfying g = hf . Note that T is generated by f(A×B). The tensor product
of A and B in the category S0 is often written as A⊗B and the image of (a, b)
under the canonical bimorphism f : A × B → A ⊗ B as a ⊗ b. Note that if
A, B ∈ D and h : A → B is a function, then h is a morphism in S0 iff h is a
morphism in J.

Let A and B be bounded distributive lattices. It is well known that in
this case, A⊗B is a bounded distributive lattice ([12, Lemma 3.15]) and it is
isomorphic as a lattice to the coproduct in D of A and B, A∗B. If F1 ∈ X(A)
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and F2 ∈ X(B), we write F1,2 for the set

{ n∨
i=1

ai ⊗ bi ∈ A ⊗ B :
n∨

i=1
ai ⊗ bi ≥ a ⊗ b, for some a ∈ F1 and b ∈ F2

}
.

Conversely, if F ∈ X(A ⊗ B) we define

F1 = {a ∈ A : a ⊗ b ∈ F for some b ∈ B},
F2 = {b ∈ B : a ⊗ b ∈ F for some a ∈ A}.

Similarly to the case of join-semilattices studied in [11] (see Theorem 3.5),
it can be seen that the following theorem holds.

Theorem 4.1. Let A, B ∈ D. Then η : X(A) × X(B) → X(A ⊗ B), given by
η(F1, F2) = F1,2, is an isomorphism of Priestley spaces and the function η−1

is given by η−1(F ) = (F1, F2).

The following lemma is a part of the folklore of Priestley spaces.

Lemma 4.2.

(i) Let X be a Priestley space, and let A be an open upset of X. If x /∈ A,
then there exists U ∈ D(X) such that x ∈ U and U ∩ Ac = ∅.

(ii) If X and Y are Priestley spaces, then for every A ∈ D(X × Y ),
there exist U1, . . . , Un ∈ D(X) and V1, . . . , Vn ∈ D(Y ) such that
A =

⋃n
i=1(Ui × Vi).

Finally the following result will be central in what follows.

Theorem 4.3. Let X and Y be Priestley spaces.
The function j : D(X) ⊗ D(Y ) → D(X × Y ) given by

j(
n∨

i=1
Ui ⊗ Vi) =

n⋃
i=1

(Ui × Vi)

is an isomorphism in D.

Proof. First note that j ∈ J. We define k : D(X × Y ) → D(X) ⊗ D(Y ) by
k(

⋃n
i=1 Ui × Vi) =

∨n
i=1(Ui ⊗ Vi) (correctness of the definition follows from

item (ii) of Lemma 4.2), so k ∈ J. Moreover, kj = IdD(X)⊗D(Y ) and jk =
IdD(X×Y ), so j and k are isomorphisms in J. Thus, they are isomorphisms
in D. �

The universal property of the tensor product [13] allows us to claim that
(S0,⊗, 2) is monoidal. Here, 2 is the total order in two elements. Since J is a
full subcategory of S0 and A⊗B is in J whenever A and B are, J inherits the
monoidal structure from S0. Hence, (J,⊗, 2) is monoidal (in fact, symmetric
monoidal).
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5. Some categories of interest

Let us start this section by characterizing the monoids in J.
Recall from [4] that a bounded distributive lattice with fusion (or DLF for

short) is an algebra (L,∧,∨, ◦, 0, 1), where (L,∧,∨, 0, 1) is a bounded distribu-
tive lattice, ◦ is a binary operation on L, and the following conditions hold:

(a) a ◦ 0 = 0 ◦ a = 0,
(b) a ◦ (b ∨ c) = (a ◦ b) ∨ (a ◦ c),
(c) (a ∨ b) ◦ c = (a ◦ c) ∨ (a ◦ c).

Lemma 5.1. Let L ∈ J and let ◦ be a binary operation. The following are
equivalent:

(i) (L, ◦) is a DLF.
(ii) There is a unique morphism f : L⊗L → L in J such that f(a⊗b) = a◦b.

Proof. Suppose that (L, ◦) is a DLF and let f : L × L → L be the function
given by f(a, b) = a ◦ b.

Since (a �→ a ◦ b) : L → L and (b �→ a ◦ b) : L → L are join-homomorphisms,
by (a), (b) and (c) above, f is a bimorphism. Hence, by the universal property
of the tensor product, there exists an unique morphism f̄ : L ⊗ L → L in J

such that f̄(a ⊗ b) = a ◦ b.
Conversely, suppose there is a morphism f : L ⊗ L → L in J and define

a ◦ b := f(a ⊗ b) for any a, b ∈ L. Then, straightforward computations show
that ◦ satisfies (a), (b) and (c) in the definition of a DLF. �

Let f : L ⊗ L → L be a morphism in J. The proof of the above lemma
shows that we can associate a DLF with f by defining on L a binary operation
a ◦ b := f(a⊗ b). What properties must have ◦ in order to get a monoid in J?

The commutativity of the first diagram in (2.5) reads as

f(1 ⊗ f) = f(f ⊗ 1)α : L ⊗ (L ⊗ L) → L.

Applying both sides of this equality to a basic tensor a ⊗ (b ⊗ c), we get
f(a ⊗ f(b ⊗ c)) = f(f(a ⊗ b) ⊗ c). Writing it in terms of ◦, we have that

a ◦ (b ◦ c) = (a ◦ b) ◦ c.

Hence, the commutativity of this diagram just says that ◦ is associative.
For the second diagram in (2.5), note that a map ν : 2 → L in J is completely

determined by ν(1) ∈ L. Then we can think of ν as a constant e = ν(1) ∈ L.
Hence, the commutativity of the second diagram in (2.5) said that for every
a ∈ L,

e ◦ a = a = a ◦ e.

It follows that we have proved the following result.

Proposition 5.2. A triple (L, f, ν) is a monoid in J if and only if the algebra
(L,∨,∧, ◦, 0, 1, e) is a DLF in which the binary operation ◦, defined as above,
and the constant e = ν(1) satisfy
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244 J. L. Castiglioni and H. J. San Martín Algebra Univers.

(d) a ◦ (b ◦ c) = (a ◦ b) ◦ c, and
(e) e ◦ a = a = a ◦ e.

Although MonJ is an interesting category, it is not general enough for the
purpose of representing most algebras of interest in non-classical logic. In this
work, we shall consider the following categories.

We write DB for the category whose objects are the morphisms of J of the
form f : L ⊗ M → N , for L, M and N in J, and is such that

h ∈ MorDB(f : L ⊗ M → N, g : L′ ⊗ M ′ → N ′)

is a triple h = (h1, h2, h3) of arrows in D that makes the following diagram
commute,

L ⊗ M
f ��

h1⊗h2

��

N

h3

��
L′ ⊗ M ′ g �� N ′ .

(5.1)

Remark 5.3. Let A, B and C be categories, and let F : A → C and G : B → C

be functors. Let us recall from [1] the definition of the comma category F ↓ G.
This is defined as the category whose objects are triples (A, f,B), with A ∈ A,
B ∈ B, and f : FA → GB ∈ C, and whose morphisms from (A, f,B) to
(A′.f ′, B′) are pairs (a, b) ∈ MorA(A, A′)×MorB(B, B′) such that the square

FA
f ��

Fa

��

GB

Gb

��
FA′ f ′

�� GB′

(5.2)

commutes. Composition is defined componentwise.
Note that DB could also be presented as the comma category (−⊗− ↓ i2),

where − ⊗ − : D × D → J is the semilattice tensor product and i2 : D → J is
the embedding of the category of distributive lattices in J.

We write DF for the full subcategory of DB whose objects are of the form
f : L ⊗ L → L, for L ∈ J.

It follows from Lemma 5.1 that category DF is categorically equivalent to
the category of DLFs; so in the future, we shall identify both categories.

Remark 5.4. Let us observe that since every object L in J is a lattice, we
implicitly have for every L, a monoid (L, inf, 1) in J given on basic tensors by
inf(a ⊗ b) = a ∧ b.

We write DI for the full subcategory of DB whose objects are of the form
i : L ⊗ Lop → Lop, for L ∈ J.

Recall from [4] that a bounded distributive lattice with implication (or DLI
for short) is an algebra (L,∧,∨,→, 0, 1) where (L,∧,∨, 0, 1) is a bounded dis-
tributive lattice, → is a binary operation on L, and the following conditions
hold:
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(a) a → 1 = 0 → a = 1,
(b) a → (b ∧ c) = (a → b) ∧ (a → c),
(c) (a ∨ b) → c = (a → c) ∧ (b → c).

It can be seen that the category DI is categorically equivalent to the cate-
gory of DLIs; so in the future, we shall identify both categories.

Remark 5.5. To be more general, we could have taken categories whose
objects are the operations of the form f : Lε1

1 ⊗ · · · ⊗ Lεn
n → Lε0

0 , where Lεi
i

represents either Lop
i or Li. This allows us to represent operations on L of the

sort studied in [17].
For the sake of simplicity, in this article, we restrict ourselves to the cate-

gories DF and DI.

6. CLP duality

Let us consider the adjoint pair X : J � Pop : D that realizes CLP duality.
Write {∗} for the space in P with just one point and 2 for the total order on
two elements {0 < 1}. Straightforward computations show that D({∗}) = 2
and X(2) = {∗}.

By Theorems 4.1 and 4.3, we also have isomorphisms

η : X(A) × X(B) → X(A ⊗ B) and j : D(X) ⊗ D(Y ) → D(X × Y ).

Strictly speaking, we have written η : X(A) × X(B) → X(A ⊗ B) to indicate
a relation η ⊆ (X(A) × X(B)) × X(A ⊗ B) since it is an arrow of P. When
no confusion can arise, we shall write R : X → Y to indicate a relation R ⊆
X × Y . To be consistent with this notation, we write SR for the composition
of relations R : X → Y and S : Y → Z. Note that SR ⊆ X × Z.

The facts that X : J � Pop : D acts on objects as Priestley duality does and
that there is an isomorphism between A⊗B and A∗B imply the commutativity
of diagrams (2.3) and (2.4). Hence, CLP is a monoidal dual equivalence; i.e,
the monoidal structures of J and P are preserved by D and X. In what follows,
we shall take advantage of this fact to develop representation theories for the
operations on lattices introduced in Section 5.

7. Dualizing operations

Let f : L ⊗ M → N be an object of DB. Then f goes through X to a
relation X(f) ⊆ X(N) × X(L ⊗ M). Let η : X(L) × X(M) → X(L ⊗ M)
be the map given in Theorem 4.1. Composing with the natural isomorphism
η−1 ∈ P, we get the relation X(f) ⊆ X(N) × (X(L) × X(M)), which is also
in P. Note that for P ∈ X(N) and Q ∈ X(L) × X(M), we have that

(P,Q) ∈ X(f) iff (P, η(Q)) ∈ X(f). (7.1)
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On the other hand, h = (h1, h2, h3) : (f : L⊗M → N) → (g : L′⊗M ′ → N ′)
is a morphism in DB if and only if diagram (5.1) in J commutes, and this
happens if and only if the following diagram in P commutes:

X(N ′)
X(h3) ��

X(g)
��

X(N)

X(f)
��

X(L′ ⊗ N ′)
X(h1⊗h2) �� X(L ⊗ M) .

(7.2)

Since X is monoidal, diagram (7.2) commutes if and only if the following
diagram does:

X(N ′)
X(h3) ��

X(g)

��

X(N)

X(f)

��
X(L′) × X(N ′)

X(h1)×X(h2) �� X(L) × X(M) .

(7.3)

The above observation suggests the following definition.

Definition 7.1. We write PB for the category whose object are relations
R ⊆ X × (Y × Z) ∈ P, and whose morphisms from R ⊆ X × (Y × Z) to S ⊆
X ′ × (Y ′ ×Z ′) are the triples of Priestley spaces morphisms α := (α1, α2, α3),
with α1 : X → X ′, α2 : Y → Y ′, and α3 : Z → Z ′, making the following
diagram commute in P:

X
α1 ��

R

��

X ′

S

��
Y × Z

α2×α3�� Y ′ × Z ′.

(7.4)

Note that PB could also be presented as the comma category (iP ↓ −×−),
where −×− : P×P → P is the product in P, seen as a functor, and iP : P → P

is the identity functor.
The commutativity of diagram (7.4) can be also stated as in the following

remark.

Remark 7.2. For every x ∈ X ′, U ∈ D(Y ), and V ∈ D(Z),

R(x) ∩ (α−1
2 (U) × α−1

3 (V )) �= ∅ iff S(α1(x)) ∩ (U × V ) �= ∅. (7.5)

Indeed, straightforward computations show that condition (7.5) is equivalent
to the commutativity of the following diagram in J:

D(Y ′ × Z ′)
D(α2×α3) ��

D(S)
��

D(Y × Z)

D(R)
��

D(X ′)
D(α1) �� D(X) .
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On the other hand, the commutativity of previous diagram is equivalent to
the commutativity of diagram (7.4).

The following result is immediate from the definition of PB.

Theorem 7.3. There is a dual categorical equivalence between categories DB

and PB.

We shall still use the letters X and D to denote the functors that realize
the duality of Theorem 7.3.

We have already mentioned that since each object L of J is a lattice, also
the dual lattice Lop is an object of J. Then both X(L) and X(Lop) are objects
of P. Straightforward computations show that as ordered topological spaces,
X(Lop) ∼= X(L)op, where X(L)op and X(L) are equal as topological spaces,
but the order of X(L)op is the dual (or opposite) to the order of X(L). Let
us write β : X(L)op → X(Lop) for the morphism of Priestley spaces given by
β(F ) := F c, the set theoretical complement of F .

Now we shall define two subcategories of PB.

Definition 7.4. We write PF for the subcategory of PB whose object are
relations R ⊆ X × (X × X) ∈ P, and whose morphisms are of the form
α := (α, α, α).

We write PI for the subcategory of PB whose object are relations R ⊆
Xop × (X × Xop) ∈ P, and whose morphisms are of the form α := (α, α, α).

Note that the duality of Theorem 7.3 restricts to dualities between cate-
gories DF and PF and between categories DI and PI.

Also observe that, associated with any object R ⊆ X × (X × X) ∈ PF,
we have a relational Priestley space (X, R), in the sense of [17], and similarly,
to any R ⊆ Xop × (X × Xop) ∈ PI. We call relational spaces with fusion
(RSF for short) and relational spaces with implication (RSI for short) the just
mentioned ordered topological spaces associated with the objects of PF and
PI, respectively.

8. Relation with other representation theories

In this section, we shall give explicit descriptions of the ternary relations
that appeared in the previous section, and compare the equivalences mentioned
before with those developed in [2], [4], and [3].

Let L ∈ J; let R ⊆ X(Lop)×X(L⊗Lop) be a morphism in P, and let R be
defined as in (7.1).

Define the function

σ : X(L)op × (X(L) × X(L)op) → X(Lop) × (X(L) × X(Lop))

by the condition σ(O, (P,Q)) = (Oc, (P,Qc)), and consider the relation R ⊆
(X(L)op × (X(L) × X(L)op) defined in the following way:

(O, (P,Q)) ∈ R iff σ(O, (P,Q)) ∈ R iff (Oc, (P,Qc)) ∈ R.
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Observe that if R is a morphism in P, then R is a morphism in P.
Let R ⊆ Xop × (X × Xop) ∈ P. We write R̃ : D(X) ⊗ D(Xop) → D(Xop)

for the morphism in J given by

R̃(
n∨

i=1
Ui ⊗ Vi) = D(R)(j(

n∨
i=1

Ui ⊗ Vi)).

Finally, define ζR : D(X) ⊗ D(X)op → D(X)op by

ζR(
n∨

i=1
Ui ⊗ Vi) = (R̃(

n∨
i=1

Ui ⊗ V c
i ))c.

A direct computation proves that ζR is a morphism in J. For U, V ∈ D(X),
consider the binary relation in D(X): (U ⇒R V ) := ζR(U ⊗V ). By definition
of ⇒R, we have that

(U ⇒R V ) = {x ∈ X : R(x) ∩ (U × V c) = ∅}.
The following result can then be checked.

Proposition 8.1. If (X, R) is an RSI, then (D(X),⇒R) is a DLI.

Another equivalence for the category of DLIs was introduced in [2] and [4].
We shall recall, for completeness, the basic definitions and relevant results of
the mentioned articles.

Let (L,→) be a DLI. If F and G are filters of L, we define

F → G = {x ∈ L : (∃(f, g) ∈ F × G : f ≤ g → x)}.
Let TL ⊆ X(L) × X(L) × X(L) be the ternary relation defined as

(P,Q, D) ∈ TL iff P → Q ⊆ D.

Definition 8.2. If X is a Priestley space, T is a ternary relation in X, and
U, V ∈ D(X), then we define the set

U →T V = {x ∈ X : ∀y∀z((x, y, z) ∈ T, y ∈ U) ⇒ z ∈ V }.
Let X be a Priestley space, and let T be a ternary relation in X. A structure

(X, T ) is a DLI-space provided that the following conditions hold.

(I) For every U, V ∈ D(X), U →T V ∈ D(X).
(II) For every x, y, z ∈ X, if εX(x) →T εX(y) ⊆ εX(z), then (x, y, z) ∈ T .

Note that U ∈ εX(x) →T εX(y) iff there exists (V,W ) ∈ (εX(x)× εX(y)) such
that V ⊆ W →T U .

An i-morphism between the DLI-spaces (X1,≤, T1) and (X2,≤, T2) is a
function g : X1 → X2 that satisfies the following conditions:

(i1) g is continuous and monotone.
(i2) If (x, y, z) ∈ T1, then (g(x), g(y), g(z)) ∈ T2.
(i3) If (g(x), y′, z′) ∈ T2, then there exist y, z ∈ X1 such that (x, y, z) ∈ T1,

y′ ≤ g(y), and g(z) ≤ z′.

We write DLI for the above-mentioned category.
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There is a dual categorical equivalence between this category and the cat-
egory of DLIs. Since PI is also dually equivalent to the category of DLIs, it
follows that DLI and PI are equivalent. Let us make this equivalence explicit.

Let X be a Priestley space. If R ⊆ Xop × (X × Xop), we define R′ ⊆
X × X × X by (x, y, z) ∈ R′ if and only if (x, (y, z)) ∈ R. Conversely, if
R′ ⊆ X × X × X, we define R ⊆ Xop × (X × Xop) in the same way.

Let us now state some useful technical lemmata.

Lemma 8.3. Let R be an object of PB, and let

η : X(D(Y )) × X(D(Z)) → X(D(Y ) ⊗ D(Z))

be the map given in Theorem 4.1. Then the following conditions hold:

(i)
∨n

i=1(Ui ⊗ Vi) ∈ η(εY (y), εZ(z)) iff
⋃n

i=1(Ui × Vi) ∈ εY ×Z(y, z);
(ii) εX(x)(X(R̃)(εY (y), εZ(z)) iff εX(x)XD(R)εY ×Z(y, z);

(iii) εX(x)X(R̃)(εY (y), εZ(z)) iff xR(y, z).

Proof. (i): We have that
∨n

i=1(Ui⊗Vi) ∈ η(εY (y), εZ(z)) iff there exists k, with
1 ≤ k ≤ n, such that Uk ⊗ Vk ∈ η(εY (y), εZ(z)). This happens iff Uk ∈ εY (y)
and Vk ∈ εZ(z), which is equivalent to Uk × Vk ∈ εY ×Z(y, z). The latter is
equivalent to

⋃n
i=1(Ui × Vi) ∈ εY ×Z(y, z).

(ii): We have εX(x)D(R̃)(εY (y), εZ(z)) iff εX(x1)DX(R̃)η(εY (y), εZ(z)),

which is equivalent to η(εY (y), εZ(z)) ⊆ [R̃]−1(εX(x)), which is equivalent to∨n
i=1(Ui⊗Vi) ∈ η(εY (y), εZ(z)) (with Ui, Vi ∈ D(X) for i = 1, . . . , n) implying

that R̃(
∨n

i=1(Ui ⊗ Vi)) ∈ εX(x). By item (i), this is equivalent to the state-
ment that if

⋃n
i=1(Ui × Vi) ∈ εY ×Z(y, z), then D(R)(

⋃n
i=1(Ui × Vi)) ∈ εX(x),

which is equivalent to εY ×Z(y, z) ⊆ (D(R))−1(εX), which is equivalent to
εX(x)XD(R)εY ×Z(y, z).

(iii): This follows from item (ii) and item (iv) of [8, Lemma 1.5]. �

Similarly, we can get the following result.

Lemma 8.4. Let (X, R) be an RSI. Then for every x, y, z ∈ X, we have that
εX(x)X(ζR)(εX(y), εX(z)) if and only if xR(y, z).

Lemma 8.5. If R is an object of PI and εX(x) →R′ εX(y) ⊆ εX(z), then

(εX(x), (εX(y), εX(z))) ∈ (X(ζR)).

Proof. Note that for every x, y, z ∈ X, we have that (εX(x), (εX(y), εX(z))) ∈
(X(ζR)) if and only if for every

⋃n
i=1(Ai × Bc

i ) ∈ D(X × Xop) with Ai, Bi ∈
D(X) for i = 1, . . . , n, we have that if (y, z) ∈ ⋃n

i=1(Ai × Bc
i ), then x ∈

D(R)(
⋃n

i=1 Ai × Bc
i ).

Let (y, z) ∈ ∨n
i=1(Ai × Bc

i ), so there exists k, 1 ≤ k ≤ n, such that y ∈ Ak

and z ∈ Bc
k. Suppose that x /∈ D(R)(

∨n
i=1 Ai×Bc

i ), so R(x)∩(
⋃n

i=1 Ai×Bc
i ) =

∅. In particular, we have that R′(x) ∩ (Ak × Bc
k) = ∅. Then x ∈ Ak →R′ Bk.

Thus, x ∈ Ak →R′ Bk ⊆ Ak →R′ Bk and y ∈ Ak. So, Bk ∈ εX(x) →R′ εX(y),
and by hypothesis, we conclude that z ∈ Bk, which is a contradiction. The
first observation of this proof then implies the desired result. �
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We can now state one of the main results of this section.

Theorem 8.6. Let X be a Priestley space. Then R ⊆ X × (X × X) is in PI

if and only if (X, R′) is a DLI-space.

Proof. For the necessity, take U, V ∈ D(X). An easy computation proves that

(U →R′ V )c = {x ∈ X : ∀y∀z((x, y, z) ∈ R, y ∈ U) ⇒ z ∈ V }c = (U ⇒R V )c.

Since R ∈ PI, we have, using Proposition 8.1, that U ⇒R V ∈ D(X), and
then U →R′ V ∈ D(X).

Let x, y, z ∈ X such that εX(x) →R′ εX(y) ⊆ εX(z). By Lemma 8.5,
we have that (εX(x), (εX(y), εX(z))) ∈ X(ζR). By Lemma 8.4, we have that
(x, (y, z)) ∈ R, so (x, y, z) ∈ R′.

To show sufficiency, we have to see that R is a morphism in the category P.
Let U, V ∈ D(X). Then (U ⇒R V ) = U →R′ V ∈ D(X). It is enough to show
that for every x ∈ X, R(x) is a closed downset. Take (y, z) ∈ R(x) and (a, b) ≤
(y, z). Hence, a ≤ y and z ≤ b. Suppose that (a, b) /∈ R(x), so (x, a, b) /∈ R′.
Thus, by hypothesis, we conclude that εX(x) →R′ εX(a) � εX(b), and as a
consequence, there exists U ∈ D(X) such that U ∈ εX(x) →R′ εX(a) and
b /∈ U . Then there exist V,W ∈ D(X) such that V ⊆ W →R′ U , x ∈ V ,
and a ∈ W . In particular, x ∈ W →R′ U and R′(x) ∩ (W × U c) = ∅; but
(a, b) ∈ R′(x) ∩ (W × U c), which is a contradiction. Thus, R(x) is a downset.

Let us now see that R(x) is closed. Take (y, z) /∈ R(x). Hence, (x, y, z) /∈ R′.
Thus, we have, by hypothesis, that εX(x) →R′ εX(y) � εX(z). Then there
exists U ∈ D(X) such that U ∈ εX(x) →R′ εX(y) and z /∈ U . There exits
V,W ∈ D(X) such that V ⊆ W →R′ U , x ∈ V , and y ∈ W .

Let us prove that (y, z) ∈ W × U c ⊆ R′(x)c. Take (a, b) ∈ W × U c. Since
x ∈ V , we have that x ∈ W →R′ U and, therefore, R′(x)∩(W×U c) = ∅. Using
that (a, b) ∈ W ×U c, we conclude that (a, b) /∈ R′(x). Therefore, R(x) = R′(x)
is closed since R′(x)c is open. �

For the proof of the following proposition, the characterization of morphisms
in PB given in Remark 7.2 will be useful.

Proposition 8.7. Let g : X → Y be a morphism of Priestley spaces. Then
there exist relations R and S such that g : (X,R) → (Y, S) is a morphism in
PI if and only if there exist relations R′ and S′ such that g : (X, R′) → (Y, S′)
is an i-morphism.

Proof. For the necessity, take (x, y, z) ∈ R′, and hence (y, z) ∈ R(x). Suppose
that (g(x), g(y), g(z)) /∈ S′, and hence (g(y), g(z)) /∈ S(g(x)). By (i) and (ii)
of Lemma 4.2, there exist U, V ∈ D(Y ) such that (g(y), g(z)) ∈ U × V c with
(U × V c) ∩ S(g(x)) = ∅. Since g ∈ PI, we have (g−1(U) × g−1(V c)) ∩ R(x) =
∅. Since (y, z) ∈ (g−1(U) × g−1(V c)) ∩ R(x), we get a contradiction. Then
condition (i2) in the definition of i-morphism holds.

Now take (g(x), y′, z′) ∈ S′, and hence (y′, z′) ∈ S(g(x)). For every U, V ∈
D(X) with (y′, z′) ∈ U × V c, we have (U × V c)∩S(g(x)) �= ∅. Then for every
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U, V ∈ D(X) with (y′, z′) ∈ U × V c, we have (g−1(U)× g−1(V c))∩R(x) �= ∅.
Consider the family

F = {(g−1(U) × g−1(V c)) ∩ R(x) : U, V ∈ D(X), (y′, z′) ∈ U × V c}.
This is a family of closed subsets of X × Xop.

To see F has the finite intersection property, let (g−1(Ui)×g−1(V c
i ))∩R(x) ∈

F for i = 1, . . . , n; then using that
n⋂

i=1
((Ui × V c

i ) ∩ S(g(x))) = (
n⋂

i=1
Ui ×

n⋂
i=1

V c
i ) ∩ S(g(x)) �= ∅,

we conclude that (
⋂n

i=1(g
−1(Ui)× g−1(Vi)))∩R(x) �= ∅. Using that X ×Xop

is compact, we conclude that
⋂

F∈F F �= ∅. Therefore, there exist y, z ∈ X

such (x, y, z) ∈ R′, g(y) ∈ U for every U ∈ D(X) such that y′ ∈ U , whereas
g(z) ∈ V c for every V ∈ D(X) such that z′ ∈ V c.

Suppose now that y′ � g(y). Thus, there exists U ∈ D(X) such that y′ ∈ U

and g(y) /∈ U ; which is a contradiction. Then y′ ≤ g(y). Similarly, we prove
that g(z) ≤ z′.

To show sufficiency, take U, V ∈ D(X) such that R(x)∩(g−1(U)×g−1(V c))
�= ∅. Then there exist y, z ∈ X such that (x, y, z) ∈ R′, f(y) ∈ U and g(z) ∈
V c. Since g is an i-morphism, (g(x), g(y), g(z)) ∈ S′, and hence S(g(x)) ∩
(U × V c) �= ∅.

Conversely, let S(g(x)) ∩ (U × V c) �= ∅. Thus, there exist y′, z′ ∈ Y such
that (g(x), y′, z′) ∈ S′ with (y′, z′) ∈ U × V c. Since g is an i-morphism, there
exist y, z ∈ X such that y′ ≤ g(y) and f(z) ≤ z′. Hence, (g(y), g(z)) ∈
U × V c and as a consequence, (y, z) ∈ R(x) ∩ (g−1(U) × g−1(V c)). Thus,
R(x) ∩ (g−1(U) × g−1(V c)) �= ∅. �

We have already studied implications. Let us now study fusions. Let (L, ◦)
be a DLF. If F and G are filters of L, we define

F ◦ G = {x ∈ L : ∃(f, g) ∈ F × G, f ◦ g ≤ x}.
Let RL ⊆ X(L) × X(L) × X(L) be the ternary relation defined as

(P,Q, D) ∈ RL iff P ◦ Q ⊆ D.

If X is a Priestley space, T is a ternary relation in X, and U, V ∈ D(X),
then we define the set

U ◦T V = {x ∈ X : ∃(y, z) ∈ U × V, (x, y, z) ∈ T}.
Definition 8.8. Let X be a Priestley space, and let T be a ternary relation
in X. A structure (X,T ) is a DLF -space if the following conditions hold:

(I) For every U, V ∈ D(X), U ◦T V ∈ D(X).
(II) For every x, y, z ∈ X, if εX(x) ◦T εX(y) ⊆ εX(z), then (x, y, z) ∈ T .

Note that U ∈ εX(x) ◦T εX(y) iff there exists (V,W ) ∈ (εX(x) × εX(y)) such
that V ◦T W ⊆ U .
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An f -morphism between the DLF -spaces (X1,≤, T1) and (X2,≤, T2) is a
function g : X1 → X2 that satisfies the following conditions:

(f1) g is continuous and monotone.
(f2) If (x, y, z) ∈ T1, then (g(x), g(y), g(z)) ∈ T2.
(f3) If (x′, y′, g(z)) ∈ T2, then there exist x, y ∈ X1 such that (x, y, z) ∈ T1,

x′ ≤ g(x), and y′ ≤ g(y).

The above-mentioned category will be denoted DLF.

Since PF is also dually equivalent to the category of DLFs, it follows that
DLF and PF are equivalent. Let us make this equivalence explicit.

Let X be a Priestley space. If R ⊆ X×(X×X), we define R+ ⊆ X×X×X

by (x, (y, z)) ∈ R if and only if (y, z, x) ∈ R+. Conversely, if R ⊆ X ×X ×X,
we define R− ⊆ X × (X × X) by (x, (y, z)) ∈ R− if and only if (y, z, x) ∈ R.

Lemma 8.9. If R is in PF and εX(x) ◦R+ εX(y) ⊆ εX(z), then

(εX(z), (εX(x), εX(y))) ∈ X(D(R) ).

Proof. This is similar to the proof of Lemma 8.5. �

Proposition 8.10. Let X be a Priestley space.

(i) If R is in PF, then (X, R+) is a DLF -space.
(ii) If (X, R) is a DLF -space, then R− is in PF.

Proof. This is similar to the proof of Proposition 8.6, using Lemmas 8.9 and
8.3 (iii). �

Proposition 8.11. Let g : X → Y be a morphism of Priestley spaces.

(i) If g : R → S ∈ PF, then g : (X, R+) → (Y, S+) is an f-morphism.
(ii) If g : (X, R) → (Y, S) is an f-morphism, then g : R− → S− ∈ PF.

Proof. This is similar to the proof of Proposition 8.7, using Proposition 8.10
and Lemma 4.2. �

In this section, we have shown that the representation theories for DLFs
and DLIs developed in this work are essentially those introduced in [2, 4, 3],
where the authors compare their theories with other theories existing in the
literature. We refer the interested reader to [2, 4, 3] and the references therein.

9. Some final remarks

By Lemma 5.1, a fusion ◦ on a bounded distributive lattice L can be seen
as a function f : L ⊗ L → L such that f(a ⊗ b) = a ◦ b for any basic tensor
a ⊗ b ∈ L ⊗ L.

Since CLP is a monoidal duality, properties characterized by the commuta-
tivity of certain diagrams (both in J and P) and the monoidal bifunctor may
be translated from one category to the other by the duality in question.
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For example, it follows that a fusion f on L is associative if and only if the
following diagram commutes:

L ⊗ (L ⊗ L) α ��

1L⊗f

��

(L ⊗ L) ⊗ L

f⊗1L

��
L ⊗ L

f �� L L ⊗ L ,
f��

(9.1)

i.e., when we have the equality f(1L ⊗ f) = f(f ⊗ 1L). Employing the adjunc-
tion, diagram (9.1) becomes:

X(L) × (X(L) × X(L)) α �� (X(L) × X(L)) × X(L)

X(L) × X(L)

1X(L)×X(f)

��

X(L)
X(f)

��
X(f)

�� X(L) × X(L) .

X(f)×1X(L)

��

Hence, we get that a Priestley relation R ⊆ X × (X × X) represents an
associative fusion if and only if the following diagram commutes:

X × (X × X) α �� (X × X) × X

X × X

ΔX×R

��

X
R ��R�� X × X ,

R×ΔX

��

i.e., when the equality of relations (ΔX ×R)R = (R×ΔX)R holds. Here, ΔX

is the identity relation for X in P, which is given by (x, y) ∈ ΔX iff x ≤ y.
As another example, we can give a condition on a Priestley relation R so

that D(R) becomes a commutative fusion.
Recall that a fusion f : L ⊗ L → L is commutative if and only if fτ = f ,

where τ : L ⊗ L → L ⊗ L is given by

τ(
n∨

i=1
(ai ⊗ bi)) =

n∨
i=1

(bi ⊗ ai).

Note that the definition of τ together with Theorem 2.6 of [11] implies that
it is a morphism of D. Thus, its associated Priestley relation is functional [8,
Example 1.3 (ii)].

As a consequence, fτ = f if and only if X(f) = X(fτ) = X(τ)X(f), which
is equivalent to the identity

X(f) = X(τ)X(f) = η−1X(τ)X(f) = (η−1X(τ)η)(η−1X(f)) = τ∗X(f),

where τ∗ = η−1X(τ)η.
Hence, a Priestley relation R ⊆ X×(X×X) would represent a commutative

fusion on D(X) if and only if
R = τ∗R. (9.2)

Here, τ∗ ⊆ (X×X)×(X×X) is the relation in P such that ((x, y), (z, w)) ∈ τ∗

iff x ≤ w and y ≤ z.
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The following lemma is useful in determining whether two given Priestley
relations are equal. The proof of this lemma makes use of the Prime Filter
Theorem. For the convenience of the reader, we recall this theorem (see [9,
p. 9] for the dual of this theorem), before the statement of the lemma.

Theorem 9.1 (Prime Filter Theorem). Let L be a distributive lattice, let F

be a filter in L, and let I be an ideal in L that is disjoint from F . Then there
is a prime filter containing F and not intersecting I.

Lemma 9.2. Let g, h : L → M be a morphisms in J. Then g(x) ≤ h(x) for
every x ∈ L if and only if X(g) ⊆ X(h).

Proof. Easy computations show the necessity.
To show sufficiency, suppose that there is x ∈ L such that g(x) � h(x).

Then by the Prime Filter Theorem, there exists Q ∈ X(M) such that g(x) ∈ Q

and h(x) /∈ Q. It is clear that g−1(Qc) is an ideal, and that if F (〈x〉) is the
filter generated by {x}, then F (〈x〉) ∩ g−1(Qc) = ∅, so by the Prime Filter
Theorem again there exists P ∈ X(L) such that x ∈ P and P ∩ g−1(Qc) = ∅.
Thus, P ⊆ g−1(Q). On the other hand, we have that X(g) ⊆ X(h), so
P ⊆ h−1(Q). Thus, using that x ∈ P , we conclude that h(x) ∈ Q, which is a
contradiction. �

The following results follow directly from Lemma 9.2 and from equation
(9.2), respectively.

Lemma 9.3.

(a) If g, h : L ⊗ L → L ∈ J, then X(g) ⊆ X(h) iff X(g) ⊆ X(h).
(b) (P, (Q, Z)) ∈ X(fτ) iff (P, (Z, Q)) ∈ X(f).

Hence, the usual characterization arises [2]:

Proposition 9.4. The following conditions are equivalent:

(i) For every a, b ∈ L, a ◦ b ≤ b ◦ a.
(ii) X(f) ⊆ X(fτ).
(iii) X(f) = X(fτ).

Proof. By Lemma 9.2, we have that equation a ◦ b ≤ b ◦ a holds if and only if
for every x ∈ L⊗L, f(x) ≤ fτ(x). By Lemma 9.3, X(f) ⊆ X(fτ) if and only
if X(f) ⊆ X(fτ). �

10. Conclusions

We have developed directly from [8] the duality of [2, 4, 3]. This was done
on the basis of the following well-known results:

(i) The tensor product of join-semilattices defines a monoidal structure
on the category of join-semilattices with zero, see Section 4.
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(ii) For any pair of bounded distributive lattices L and M , their tensor
product as join-semilattices with zero is a lattice isomorphic to the
coproduct of L and M in the category of bounded distributive lattices,
see Section 4.

(iii) The duality introduced in [8] extends Priestley duality, see Section 6.

More precisely, let DB be the comma category (−⊗− ↓ i2), where we have
that − ⊗ − : D × D → J is the semilattice tensor product and i2 : D → J is
the embedding of the category of distributive lattices in J. Let PB be the the
comma category (iP ↓ − × −), where −×− : P × P → P is the product in P,
seen as a functor, and iP : P → P is the identity functor. We have proved in
Theorem 7.3 that there is a dual categorical equivalence between DB and PB.
Write PF for the subcategory of PB whose objects are relations R ⊆ X×(X×
X) ∈ P, and whose morphisms are of the form α := (α, α, α). Write PI for the
subcategory of PB whose objects are relations R ⊆ Xop× (X ×Xop) ∈ P, and
whose morphisms are of the form α := (α, α, α). The duality of Theorem 7.3
restricts to dualities between categories DF and PF and between categories
DI and PI.

Associated with any object R ⊆ X × (X × X) ∈ PF we have a relational
Priestley space (X, R) in the sense of [17], and similarly, with any R ⊆ Xop ×
(X×Xop) ∈ PI. This allows us to give, in Section 8, an alternative description
of the representation theory studied in [2].

Since the duality CLP is monoidal, properties characterized by the com-
mutativity of certain diagrams in J involving the monoidal bifunctor can be
translated to commutative diagrams in P. We do this in Section 9.

Some questions still remain open. For example, it would be interesting to
know if other Priestley type dualities are monoidal; and if so, try to adapt the
formalism of this work to these dualities. It would also be interesting to know
if the duality used in this article, and studied in [8], is natural in the sense
of [9]; and if it is so, if our representation can be piggybacked from it. This
last question was suggested to us by the anonymous referee, but we have no
answer for it at the present.
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