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We investigate thermal properties of quantum correlations in the thermodynamic limit with ref-

erence to the XY -model and the ¯nite two-qubit Heisenberg model. Although this model has been

the subject of active entanglement-research, the bulk of the pertinent work refers to ¯nite instan-

tiations. As a consequence, the temperature cannot be properly de¯ned in such circumstances, a
problem that is overcome here. Our e®ort should be of interest because quantum discord notion.
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1. Introduction

1.1. Preliminaries

The tripod nonlocality-entanglement-quantum discord is of obvious interest and

possesses technological implications that have been described in much detail (see, for

instance, Ref. 1).

We investigate here the relation between quantum discord and entanglement in

an in¯nite system, namely, the XY -model (thermodynamic limit2) that, like the

celebrated Ising and Heisenberg models, is one of the paradigmatic systems in sta-

tistical mechanics. Although this model has been the subject of active entanglement-

research, the bulk of the pertinent work refers to ¯nite instantiations (for a very
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illustrative example see, for instance, Ref. 3). There is thus a gap in our thermal-

discord knowledge that we intend to overcome here. Although the notion of quantum

discord was proposed by Ollivier and Zurek4 (see also Ref. 5) 10 years ago and much

interesting work has been published in the ensuing decade, the concept remains

somewhat elusive in regards as just what are the correlations it describes. Thus,

studying the entanglement-discord correlations at high T may perhaps serve some

enlightening purpose.

1.2. Historic precedents

Since the formalization by Werner6 of the modern concept of quantum entanglement

it has become clear that there exist entangled states that comply with all Bell

inequalities (BI). This entails that nonlocality, associated to BI-violation, constitutes

a nonclassicality manifestation exhibited only by just a subset of the full set of states

endowed with quantum correlations. Later, exciting work by Zurek, Ollivier, Arne-

sen, Vedral, etc. (see for example, Refs. 4 and 5) established that not even entan-

glement captures all aspects of quantum correlations. A new information-theoretical

measure was introduced, quantum discord, that corresponds to a new facet of the

\quantumness" that arises even for nonentangled states. Indeed, it turned out that

the vast majority of quantum states exhibit a ¯nite amount of quantum discord.

In some cases, however, entangled states are useful to solve a problem if and only if

they violate a Bell inequality.7 Moreover, there are important instances of nonclassical

information tasks that are based directly upon nonlocality, with no explicit reference to

the quantum mechanical formalism or to the associated concept of entanglement.8�10

Last, but certainly not least, recent research indicates that quantum discord is also a

valuable resource for the implementation of nonclassical information processing pro-

tocols.11�15 On the light of these developments, it becomes imperative to conduct a

systematic exploration of the connections between the tripod members.

1.3. Our goal

It is thus our intention in this communication to study the interplay of entanglement

and quantum discord for theXY -model in the thermodynamic limit. To such an e®ect

we will consider, after giving some background in Sec. 2, the correlations existing

between a pair of qubits located at two given sites (Sec. 3). For comparison and insight-

gaining purposes we shall also discuss in Sec. 4 the correlations between pairs of qubits

in the ¯nite Heisenberg model. Finally, some conclusions are drawn in Sec. 5.

2. Background

The Hamiltonian of the anisotropic one-dimensional spin-12 XY -model in a transverse

magnetic ¯eld h (N particles) reads

H ¼
XN
j¼1
½ð1þ �ÞS j

xS
jþ1
x þ ð1� �ÞS j

yS
jþ1
y � � h

XN
j¼1

S j
z; ð1Þ
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where � j
u ¼ 2S j

u (u ¼ x; y; z) are the Pauli spin-12 operators on site j, � 2 ½0; 1� and
� jþN
u ¼ � j

u. The model (1) for N ¼ 1 is completely solved by applying a Jor-

dan�Wigner transformation,2,16,17 which maps the Pauli (spin 1/2) algebra into

canonical (spinless) fermions. The system (except for the isotropic case � ¼ 0)

undergoes a paramagnetic-to-ferromagnetic quantum phase transition (QPT)a ;18

driven by the parameter h at hc ¼ 1 and T ¼ 0. It is well known that near factori-

zation a characteristic length scale naturally emerges in the system, which is spe-

ci¯cally related with the entanglement properties and diverges at the critical point of

the fully isotropic model.19

2.1. Quantum discord

Quantum discord4,11 constitutes a quantitative measure of the \nonclassicality" of

bipartite correlations as given by the discrepancy between the quantum counterparts

of two classically equivalent expressions for the mutual information. More precisely,

quantum discord is de¯ned as the di®erence between two ways of expressing

(quantum mechanically) such an important entropic quanti¯er. Let � represent a

state of a bipartite quantum system consisting of two subsystems A and B. If Sð�Þ
stands for the von Neumann entropy of matrix � and �A and �B are the reduced

(\marginal") density matrices describing the two subsystems, the quantum mutual

information (QMI) Mq reads
4

Mqð�Þ ¼ Sð�AÞ þ Sð�BÞ � Sð�Þ: ð2Þ

This quantity is to be compared to another quantity ~Mqð�Þ, expressed using condi-

tional entropies, that classically coincides with the mutual information. To de¯ne
~Mqð�Þ we need ¯rst to consider the notion of conditional entropy. If a complete

projective measurement �B
j is performed on B and (i) pi stands for TrAB�

B
i � and

(ii) �Ajj�B
i
for ½�B

i ��
B
i =pi�, then the conditional entropy becomes

SðAjf�B
j gÞ ¼

X
i

piSð�Ajj�B
i
Þ ð3Þ

and ~Mqð�Þ adopts the appearance

~Mqð�Þf�B
j g ¼ Sð�AÞ � SðAjf�B

j gÞ: ð4Þ

Now, if we minimize over all possible �B
j the di®erenceMqð�Þ � ~Mqð�Þf�B

j g we obtain

the quantum discord �, that quanti¯es nonclassical correlations in a quantum sys-

tem, including those not captured by entanglement. The so-called classical correlation

between A and B is de¯ned as the di®erence between the mutual information IðA :

aRecall that a QPT is a qualitative change that occurs in the ground state of a many-body system due to

modi¯cations either in the interactions among its constituents or due to the e®ect of an external probe.

Discord-Entanglement Interplay in the Thermodynamic Limit

1350003-3

In
t. 

J.
 Q

ua
nt

um
 I

nf
or

m
. 2

01
3.

11
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 6

7.
19

3.
93

.1
43

 o
n 

01
/2

3/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



BÞ ¼ Sð�AÞ þ Sð�BÞ � Sð�Þ � 0 and the quantum discord �

CC ¼ IðA : BÞ ��; ð5Þ
the discord then measuring the quantum part of these correlations. One can note that

only states with zero � may exhibit strictly classical correlations (CC). Previous

remarkable work has been focused on systems in the thermodynamic limit and dis-

cord in spin chains (see Refs. 20�24). Our contribution aims at tackling these cor-

relations — including CC — both at zero and at ¯nite temperature, and compare

those features that can be properly de¯ned when one considers the meaning of

temperature in in¯nite and ¯nite systems. Among many valuable discord-related

works we too mention two at this point that are intimately related to the present one,

e.g. those of Galve et al.25 and Batle et al.26

3. Two Qubits in the In¯nite XY-Model

The general two-site density matrix is expressed as

�
ðRÞ
ij ¼

1

4
I þ

X
u;v

T ðRÞuv � i
u � � j

v

" #
: ð6Þ

R ¼ j� i is the distance between spins, fu; vg denote any index of f�0; �x; �y; �zg,
and T

ðRÞ
uv � h� i

u � � j
vi. Due to symmetry considerations, only fT ðRÞxx ;T

ðRÞ
yy ;T

ðRÞ
zz ;T

ðRÞ
xy g

do not vanish. Barouch et al.16,17 have provided exact expressions for two-point

quantum correlations, together with details of the dynamics associated with an ex-

ternal ¯eld hðtÞ. For the purposes of this paper, we will consider only systems which

at time t ¼ 0 are in thermal equilibrium at temperature T . We have then the ca-

nonical ensemble expression �ðt ¼ 0Þ ¼ exp½��H�, where � ¼ 1=kT and k is the

Boltzmann constant. Following,16,17 one obtains T
ð1Þ
xx ¼ G�1;T

ð1Þ
yy ¼ G1;T

ð1Þ
zz ¼ G2

0�
G1G�1 � S1S�1, and T

ð1Þ
xy ¼ S1, where

GR ¼
�

�

Z �

0

d� sinðR�Þ tanh½
1
2 ��ðh0Þ�

�ðh0Þ�2ðhfÞ
½� 2 sin2 �þ ðh0 � cos�Þðhf � cos�Þ

� ðh0 � hfÞðhf � cos�Þ cosð2�ðhfÞtÞ�

� 1

�

Z �

0

d� cosðR�Þ tanh½
1
2 ��ðh0Þ�

�ðh0Þ�2ðhfÞ
½f� 2 sin2 � þ ðh0 � cos�Þ

� ðhf � cos�Þgðcos�� hfÞ � ðh0 � hfÞ� 2 sin2 � cosð2�ðhfÞtÞ�; ð7Þ

SR ¼
�ðh0 � hfÞ

�

Z �

0

d� sinðR�Þ sin� sin½2�ðhfÞt�
�ðh0Þ�ðhfÞ

; ð8Þ

with �ðhÞ ¼ ½� 2 sin2 � þ ðh� cos�Þ2�1=2.GR is the two-point correlator appearing in

the pertinent Wick-calculations and Mz ¼ 1
2 G0. The two-spin correlation functions
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are given by16,17

h� i
x�

iþR
x i ¼

G�1 G�2 � � � G�R
G0 G�1 � � � G�Rþ1
..
. ..

. . .
. ..

.

GR�2 GR�3 � � � G�1

�����������

�����������
; ð9Þ

h� i
y�

iþR
y i ¼

G1 G0 � � � G�Rþ2
G2 G1 � � � G�Rþ3
..
. ..

. . .
. ..

.

GR GR�1 � � � G1

�����������

�����������
; ð10Þ

h� i
z�

iþR
z i ¼ 4h�zi2 �GRG�R; ð11Þ

where R ¼ j� i (distance between spins). In the case where more than two particles

are considered, the previous correlators no longer possess their previous Toeplitz

matrix structure.27

It will prove convenient to cast the two qubit states �
ðRÞ
ij (6) in the computational

basis fj00i; j01i; j10i; j11ig as

1

4

1þ 4Mz þ Tzz 0 0 Txx � Tyy � i2Txy

0 1� Tzz Txx þ Tyy 0

0 Txx þ Tyy 1� Tzz 0

Txx � Tyy þ i2Txy 0 0 1� 4Mz þ Tzz

0
BBB@

1
CCCA: ð12Þ

It turns out that states �
ðRÞ
ij in (12) are of such special aspect that the quantum

discord Qd turns out to be analytically given (see Ref. 28). Nevertheless, the con-

comitant Qd can be easily obtained, in di®erent fashion, as follows. The most general

parametrization of the local measurement that can be implemented on one qubit (let

us call it B) is of the form f�0 0
B ¼ IA � j0 0ih0 0j;�1 0

B ¼ IA � j1 0ih1 0jg. More speci¯cally

we have

j0 0i  cos�j0i þ e i�
0
sin�j1i

j1 0i  e�i� 0 sin�j0i � cos�j1i; ð13Þ

which is obviously a unitary transformation — rotation in the Bloch sphere de¯ned

by angles ð�; � 0Þ — for the B basis fj0i; j1ig in the range � 2 ½0; �� and � 0 2 ½0; 2�Þ.
After some cumbersome calculations, it turns out that the expression for a minimum

discord � of the introduction exhibits a positive and nonsingular Hessian, convex for

the relevant range of values of ð�; � 0Þ. Our expression possesses thus a unique global

minimum, that occurs when the concomitant partial derivatives vanish. This hap-

pens whenever we have ðsin� ¼
ffiffi
2
p
2 ; sin � 0 ¼ 0Þ.

Discord-Entanglement Interplay in the Thermodynamic Limit
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As far as entanglement is concerned, we shall employ the entanglement of for-

mation measure of a two qubit state �̂, which can be evaluated analytically by

recourse to Wootters' formula,29

E½�̂� ¼ h
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� C 2
p

2

 !
; ð14Þ

where

hðxÞ ¼ �x log2 x� ð1� xÞ log2ð1� xÞ ð15Þ
and the concurrence C is given by

C ¼ maxð0; �1 � �2 � �3 � �4Þ; ð16Þ
�i; ði ¼ 1; . . . ; 4Þ being the square roots, in decreasing order, of the eigenvalues of the

matrix �̂ ~�, with

~� ¼ ð�y � �yÞ��ð�y � �yÞ: ð17Þ

The above expression has to be evaluated by recourse to the matrix elements of �̂

computed with respect to the product basis.

The present results correspond to pairwise entanglement and quantum discord for

the in¯nite XY -model at any temperature, including zero-one. This implies that one

does not really need to \solve" the model in the sense of su±ciently augmenting the

number of spins in the chain for the results to be thermally relevant. T here is an

actual, thermometer-measurable temperature, since we are tackling a \real" ther-

modynamic system. This is to be confronted to the vast XY -literature associated to

¯nite spin-numbers, where T is not, strictly speaking, well-de¯ned in the thermo-

dynamics sense.

A comparison between the discord Qd and the entanglement of formation E at

T ¼ 0 is displayed in Fig. 1 (from now on we shall take the Boltzmann constant

k ¼ 1). Qd and E are depicted versus the external magnetic ¯eld h (anisotropy � ¼ 1
2)

for the nearest neighbor con¯guration R ¼ 1. Remarkably enough, the Qd measure

exhibits a maximum in the vicinity of the factorizing ¯eld hf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� � 2

p
. Both Qd

and E seem to decay in the same fashion. CC for the same con¯guration are depicted

in the inset of Fig. 1. Notice that all quantities here considered, i.e. Qd, E, or CC, are

ultimately described in terms of several GRs for all con¯gurations, so that they all

diverge at the QPT (for h ¼ 1) in the same way.

As an illustration consider the magnetization given by MzðhÞ ¼ 1
2 G0 ¼ @

@h

1
2�

R �
0
d�½� 2 sin2 � þ ðh� cos�Þ2�1=2. For � ¼ 1 we have MzðhÞ ¼ @

@h ð2ðhþ1Þ2� E½2
ffiffi
h
p
hþ1�Þ ¼

1
2� ½h�1h Kð2

ffiffi
h
p
hþ1Þ þ hþ1

h Eð2
ffiffi
h
p
hþ1Þ�, where KðEÞ is the complete elliptic integral of the ¯rst

(second) kind. Since d
dh Mz diverges in logarithmic way at h ¼ 1, as also do the

divergence of K and the ¯rst derivatives of E, Qd, and CC. In other words, they all

J. Batle et al.
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signal the presence of a h ¼ 1�QPT at zero temperature (except for the isotropic

case � ¼ 0). In fact, the possibility of detecting a QPT at ¯nite T by using Qd has

been recently considered by Werlang et al.30 They perfom an interesting analysis of

the role of the temperature and Qd in several quantum systems. We remember that a

di®erent concept such as nonlocality— as measured by the maximum violation of the

well-known Clauser�Horne�Shimony�Holt Bell inequality — was also considered

as a QPT in Ref. 27 (also in the context of the XY -model). In the present work we do

not focus attention on this particular issue of QPTs, but study instead the com-

parison between entanglement and quantum discord for ¯nite and in¯nite systems at

nonzero temperature.

Figure 2 depicts the same quantities as Fig. 1 for several con¯gurations. As we

increase the relative distance from R ¼ 1 to 2, 3, and 1, the corresponding Qd's

diminishes and also decays in faster and faster fashion with h. Notice that while

entanglement (not shown here) globally diminishes, Qd only tends to vanish for

h > 1 and R ¼ 1. The inset here depicts the CC for the same con¯gurations. They

decrease in the same fashion. While E tends to zero, both Qd and CC remain nonzero,

regardless of the distance between spins along the in¯nite chain.

As soon as we introduce a nonzero temperature things drastically change. In Fig. 3

we display several quantities at di®erent temperatures (T ¼ 0:01; 0:1; 0:3; 0:5; 1):R ¼
1 and � ¼ 1

2. Figure 3(a) depicts the entanglement of formation E for states �
ðRÞ
ij (6)

versus the magnetic ¯eld h as we increase the temperature. T lowers and broadens

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Q
d,

 E

h

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
C

C
h

Fig. 1. (Color online) Plot of quantum discord Qd (upper solid curve) and entanglement of formation E

(lower dashed curve) versus the external magnetic ¯eld h for two neighboring qubits in in¯nite the

XY -model (¯rst nearest neighbors), with anisotropy � ¼ 1
2 at T ¼ 0. The region around the factorizing ¯eld

hf concentrates maximum Qd. Inset depicts the corresponding classical correlations CC versus h. Our

results coincide with the ones in Refs. 20 and 21. See text for details.
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the region of null entanglement from a point at the factorizing ¯eld hf (T ¼ 0) to

¯nite intervals centered at hf . Eventually, E becomes ¯nite at higher values of h. This

temperature-generated entanglement is depicted quantitatively in Fig. 3(b), where

the region of zero entanglement extends from a point at zero T to a ¯nite-sized region

as T grows. The aforementioned region ceases to be ¯nite beyond a critical tem-

perature that depends on the particular R's and �'s involved therein. We discern

some resemblance with a phase diagram: within the area encompassed by the two

curves of Fig. 3(b) no entanglement is detected. It is surprising that, for the whole

region, Qd globally diminishes and tends to be concentrated in the null-E region, as

can be seen in Fig. 3(c). These facts allow one to readily appreciate how di®erent is

the behavior of entanglement vis-a-vis that of Qd. The role of CC can be observed in

Fig. 3(d). For the same set of temperatures employed above CC decreases (i) as we

augment T and (ii) for increasing values of h, a behavior di®erent from that of

entanglement: while CC never vanishes, it is larger wherever E ¼ 0. Both E and CC

coexist for high values of h. We are dealing with a system for which, as we increase the

temperature, entanglement survives — although barely — for high values of h. This

fact clearly a®ects the existence of ¯nite discord- or CC-values. Recall that this was

the case already at T ¼ 0. The role of the factoring ¯eld hf in de¯ning higher or lower

values of Qd becomes crucial. To further analyze the nontrivial relation between

entanglement E and quantum discord Qd at ¯nite T it would be enlightening to

consider a physical system for which E would increase with the temperature. Such is

0
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h

Fig. 2. (Color online) Plot of Qd for the same settings as in Fig. 1 for di®erent relative distances R ¼ 1 to

2, 3 and1 between spins. The further they are separated, the more they collapse into a single curve, which

is zero for h > 1. Notice that E rapidly tends to zero for all h in the limit R!1, while the corresponding
Qd remain ¯nite. A similar behavior occurs for CC as depicted in the inset. Our results coincide with the

ones in Refs. 20 and 21. See text for details.
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the Heisenberg model's scenario, also a statistical mechanical model used in the study

of critical points and phase transitions of magnetic systems.5,31

4. Two Qubits in the (Finite) Heisenberg Model

First of all note that because of its ¯nitude the system is not immersed in an in¯nite

thermal bath. Thus, we cannot stricto-sensu speak of a \temperature". However, the

results to be presented are illustrative of the intricacies of entanglement and quantum

discord. Following the interesting work of Arnesen et al.,5 we concern ourselves with

the issue of thermal entanglement but extend the discussion so as to encompass

thermal discord. The Hamiltonian for the 1D Heisenberg spin chain with a magnetic

¯eld of intensity B along the z-axis reads

H ¼
XN
i¼1
ðB� i

z þ JH~�
i~� iþ1Þ; ð18Þ

where � i
x;y;z stand for the Pauli matrices associated to the spin i. Periodic boundary

conditions are imposed (�Nþ1
	 ¼ �1

	). JH is the strength of the spin�spin repulsive
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(a)

0
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0.4
0.6
0.8

1
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1.4
1.6
1.8

0 0.1 0.2 0.3 0.4 0.5

h

T

(b)

0
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0.04
0.06
0.08
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0 1 2 3 4 5

Qd

h

(c)

0
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0.6
0.7
0.8
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(d)

Fig. 3. (Color online) (a) Value for E versus h for ¯nite temperatures T ¼ 0:01; 0:1; 0:3; 0:5; 1 (from top to

bottom) for R ¼ 1 and � ¼ 1
2. Notice how the region of null entanglement spreads from a point (at the

factorizing ¯eld hf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� � 2

p
) to a region. (b) Plot of the aforementioned region of zero entanglement.

The upper and lower curves de¯ne de limits of h for a given T where null E is found. This ¯gure resembles a

phase diagram-like plot where the regions of zero and nonzero entanglement are de¯ned. (c) Qd exhibits a

particular behavior as T increases which tend to be maximum within the limits of zero E. (d) CC versus h

plot for the same temperatures. An overall decreasing tendency is apparent. See text for details.
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interaction (only the antiferromagnetic (JH > 0) instance is discussed). If we limit

ourselves to the case N ¼ 2, we deal with two spinors, i.e. with a two-qubits system.

So as to speak of \thermal equilibrium" we consider the thermal state5

�ðT Þ ¼
expð� H

kBT
Þ

ZðT Þ ; ð19Þ

with ZðT Þ the partition function. Expressing both H and �ðT Þ in the computational

basis j00i; j01i; j10i; j11i we obtain

H ¼
2JH þ 2B 0 0 0

0 �2JH 4JH 0

0 4JH �2JH 0

0 0 0 2JH � 2B

0
BB@

1
CCA: ð20Þ

After de¯ning, for convenience's sake,

ewmy ¼ expð�2w� 2yÞ;
ewp ¼ expð�2wÞ þ expð6wÞ;
ewm ¼ expð�2wÞ � expð6wÞ;
ewpy ¼ expð�2wþ 2yÞ;

with w ¼ JH=kBT and y ¼ B=kBT , we also get

�ðT Þ ¼ 1

ZðT Þ

ewmy 0 0 0

0 ewp=2 ewm=2 0

0 ewm=2 ewp=2 0

0 0 0 ewpy

0
BBB@

1
CCCA: ð21Þ

In this case, the concurrence of �ðT Þ reads5

C ¼ 0; for T � Tc;

C ¼ e8w � 3

1þ e�2y þ e2y þ e8w
; for T < Tc:

ð22Þ

Recall that there is no entanglement beyond a certain critical temperature

Tc ¼ 8JH=ðkB ln 3Þ,5 as can be seen from the previous C -computation. Also, there is a

change in the structure of the ground state of hamiltonian (18) when the magnetic

¯eld reaches the critical value Bc ¼ 4JH . In the limit of zero temperature, the ground

state of the system may be represented by three di®erent pure states: (i) for B < Bc

(nondegenerate), the thermal state reduces to the singlet state j��ih��j, (ii) at

B ¼ Bc (two-fold degenerate) 1
2j��ih��j þ 1

2j11ih11j, (iii) whereas for B < Bc

(nondegenerate) we have j11ih11j. The previous B-distinctions are crucial in order to

understand how the concomitant thermal state will respond to T -changes. We expect

accompanying behaviors from E and Qd whenever the initial state is pure (both

J. Batle et al.
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quantities coincide in such case). Di®erences should emerge for B > Bc whenever we

study the unexpected behavior of increasing E versus T as far as Qd is concerned.

The computation of Qd is in the present case analytic and corresponds to sin� ¼
ffiffi
2
p
2

for any �. The pertinent scenario is the subject of Fig. 4 (let us assume JH ¼ 1, so

that Bc ¼ 4). For the B-range of values that are smaller than the critical value Bc,

entanglement, discord and CC all diminish as the T increases, as shown in Fig. 4(a).

This behavior also occurs at B ¼ Bc and is depicted in Fig. 4(b). Notice in both cases

the sudden death of entanglement, whereas the other quantities \survive" in indef-

inite fashion. Figure 4(c) plots the same quantities for a magnetic ¯eld B > Bc.

Remarkably enough, in this case entanglement as well as the quantum discord

augment as T increases. In this case, again, E suddenly vanishes while the persistence

of the quantum discord and CC [see Fig. 4(d)] stresses the fact that for B signi¯cantly

di®ering from Bc, E is minimal for all T while the quantum discord survives.

Overall, entanglement and quantum discord display similar behaviors— although

with clear di®erences — for a ¯nite quantum system [two spins in the Heisenberg

model] but become radically di®erent from each other when we consider a system in

the thermodynamic limit (such as the XY -model).
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T

(b)
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(c)
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B=25
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(d)

Fig. 4. (Color online) (a) E (solid line), Qd (long-dashed line) and CC (short-dashed line) versus T plots
for the thermal state of two qubits in the Heisenberg model at the magnetic ¯eld B ¼ 1 (B < Bc).

(b) Identical plot for B ¼ Bc ¼ 4. (c) Identical plot for B ¼ 8 (B > Bc). (d) Plot of the previous quantities

for a high value of B (B ¼ 25). See text for details.
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5. Conclusions

We have compared entanglement E and quantum discord Qd for magnetic systems

at ¯nite temperatures, comparing their behavior with that of CC as well. It is clear

that, some similarities notwithstanding, E and Qd behave in quite di®erent fashion in

the thermodynamic limit. The distinction we are trying to establish here is blurred in

the case of ¯nite systems. However, we must bear in mind that we have considered

two di®erent systems, one being in¯nite and the other being ¯nite (the ¯nite system

considered is the two qubit Heisenberg model). We conclude that for realistic systems

E and Qd should both be studied in independent fashion (at least in the cases

exposed), as they re°ect on di®erent aspects of the quantum world.
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