
3.3

Article

Evolutionary Statistical System
Based on Novelty Search: A
Parallel Metaheuristic for
Uncertainty Reduction Applied to
Wildfire Spread Prediction

Jan Strappa, Paola Caymes-Scutari and Germán Bianchini

Special Issue
Parallel/Distributed Combinatorics and Optimization

Edited by

Dr. Grégoire Danoy and Prof. Dr. Didier El Baz

https://doi.org/10.3390/a15120478

https://www.mdpi.com/journal/algorithms
https://www.scopus.com/sourceid/21100199795
https://www.mdpi.com/journal/algorithms/stats
https://www.mdpi.com/journal/algorithms/special_issues/PDCO2022
https://www.mdpi.com
https://doi.org/10.3390/a15120478

Citation: Strappa, J.; Caymes-Scutari,

P.; Bianchini, G. Evolutionary

Statistical System Based on Novelty

Search: A Parallel Metaheuristic for

Uncertainty Reduction Applied to

Wildfire Spread Prediction.

Algorithms 2022, 15, 478. https://

doi.org/10.3390/a15120478

Academic Editors: Frank Werner and

Roberto Montemanni

Received: 14 October 2022

Accepted: 9 December 2022

Published: 15 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Evolutionary Statistical System Based on Novelty Search:
A Parallel Metaheuristic for Uncertainty Reduction Applied to
Wildfire Spread Prediction

Jan Strappa 1,2,* , Paola Caymes-Scutari 1,2 and Germán Bianchini 2

1 Consejo Nacional de Investigaciones Científicas y Técnicas—Centro Científico Tecnológico Mendoza

(CONICET, CCT-Mendoza), Mendoza 5500, Argentina
2 Laboratorio de Investigación en Cómputo Paralelo/Distribuido (LICPaD), Facultad Regional Mendoza,

Universidad Tecnológica Nacional, Mendoza 5500, Argentina

* Correspondence: jstrappa@frm.utn.edu.ar

Abstract: The problem of wildfire spread prediction presents a high degree of complexity due in

large part to the limitations for providing accurate input parameters in real time (e.g., wind speed,

temperature, moisture of the soil, etc.). This uncertainty in the environmental values has led to the

development of computational methods that search the space of possible combinations of parameters

(also called scenarios) in order to obtain better predictions. State-of-the-art methods are based on

parallel optimization strategies that use a fitness function to guide this search. Moreover, the resulting

predictions are based on a combination of multiple solutions from the space of scenarios. These

methods have improved the quality of classical predictions; however, they have some limitations,

such as premature convergence. In this work, we evaluate a new proposal for the optimization of

scenarios that follows the Novelty Search paradigm. Novelty-based algorithms replace the objective

function by a measure of the novelty of the solutions, which allows the search to generate solutions

that are novel (in their behavior space) with respect to previously evaluated solutions. This approach

avoids local optima and maximizes exploration. Our method, Evolutionary Statistical System based

on Novelty Search (ESS-NS), outperforms the quality obtained by its competitors in our experiments.

Execution times are faster than other methods for almost all cases. Lastly, several lines of future work

are provided in order to significantly improve these results.

Keywords: wildfire propagation prediction; evolutionary algorithms; novelty search; uncertainty

reduction

1. Introduction

The prediction of propagation of natural phenomena is a highly challenging task with
important applications, such as prevention and monitoring of the behavior of forest fires,
which affect millions of hectares worldwide every year, with devastating consequences on
flora and fauna, as well as human health, activities, and economy [1]. In most cases, forest
fires are human-caused, although there are also natural causes, such as lightning, droughts,
or heat waves. Additionally, climate change has effects, such as high temperatures or
extreme droughts, that exacerbate the risk of fires. The prevalence of these phenomena
makes it crucial to have methods that can aid with firefighting efforts, e.g., prevention
of fires and monitoring and analysis of fire spread on the ground. A basic tool for these
analyses are fire simulators, which use computational propagation models in order to
predict how the fire line progresses during a period of time. Examples of simulators are
BEHAVE [2], FARSITE [3], fireLib [4], BehavePlus [5], and FireStation [6]. Fire spread
prediction tasks can be performed either in real time or as a precautionary measure, for
example, in order to assess areas of higher risk, or for the development of contingency
plans that allocate resources according to predicted patterns of behavior.

Algorithms 2022, 15, 478. https://doi.org/10.3390/a15120478 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15120478
https://doi.org/10.3390/a15120478
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-3008-0905
https://orcid.org/0000-0002-6792-0472
https://orcid.org/0000-0003-3609-9076
https://doi.org/10.3390/a15120478
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15120478?type=check_update&version=2

Algorithms 2022, 15, 478 2 of 30

Unfortunately, the propagation models for fire spread prediction involve a high degree
of uncertainty. On the one hand, modelling natural phenomena involves the possibility
of errors due to characteristics inherent to the computational methods used. On the other
hand, the simulators require the definition of a number of environmental parameters, also
called a scenario, and although these values can greatly influence the results of a prediction,
they are often not known beforehand, cannot be provided in real time, or may be susceptible
to measuring errors. These difficulties result in predictions that may be far from the actual
spread, especially when using what we call a “classical prediction”, i.e., a single prediction
obtained by simulating the fire with only one set of parameters.

Nowadays, there are several frameworks that follow strategies for reducing this uncer-
tainty based on the combination of results from multiple simulations. There are solutions
categorized as Data-Driven Methods (DDMs), which perform a number of simulations taking
different scenarios as input. From these results, the system chooses the set of parameters
that obtained a better prediction in the past and uses it as input for the prediction of the
future behavior of the fire. Examples of this strategy are found in [7,8]. While there is an
improvement over the single-simulation strategy, these methods still use a single scenario
for the prediction. This can be a great limitation due to the uncertainty in the dynamic
conditions of the fire, and the possibility of errors; that is, a good scenario for a previous
step might not be as good for the next. For example, a scenario might have yielded good
results only by chance, or it may be an anomalous case that does not generalize well to the
fire progress.

Other approaches have set out to overcome this problem by combining results from
multiple simulations and using these combined results for producing a prediction. Such
methods are called Data-Driven Methods with Multiple Overlapping Solutions, or DDM-MOS.
We provide a summary of the taxonomy of several methods in Figure 1. Except for the
Classical Prediction, all methods shown in the figure belong in the DDM-MOS category.
One of these solutions is the Statistical System for Forest Fire Management, or S2F2M [9].
This system uses a factorial experiment of the values of variables for choosing scenarios to
evaluate, which consists of an exhaustive combination of values based on a discretization
of the environmental variables. This strategy presents the challenge of having to deal
with a large space of possible scenarios, which makes simulation prohibitive. In order
to produce acceptable results in a feasible time, other methods introduced the idea of
performing a search over this space in order to reduce the sample space considered for the
simulations. One of the frameworks that follow this strategy is the Evolutionary Statistical
System (ESS) [10], which embeds an evolutionary algorithm for the optimization of scenar-
ios in order to find the best candidates for predicting future propagation. Recently, other
proposals based on ESS have been developed: ESSIM-EA [11,12] and ESSIM-DE [13]. These
systems use Parallel Evolutionary Algorithms (PEAs) with an Island Model hierarchy:
a Genetic Algorithm [14,15], and Differential Evolution [16], respectively. The optimization
performed by these methods was able to outperform previous approaches, but it presented
several limitations. The three frameworks mentioned use evolutionary algorithms that
are based on a process that iteratively modifies a “population” of scenarios by evaluat-
ing them according to a fitness function. In this case, the fitness function compares the
simulation with the real fire progress. For problems with high degrees of uncertainty, the
fitness function may present features that hinder the search process and might prevent
the optimization from reaching the best solutions [17]. Another limitation that becomes
relevant in this work is that the state-of-the-art methods ESS, ESSIM-EA, and ESSIM-DE
use techniques that were designed with the objective of converging to a single solution,
which might negate the benefits of using multiple solutions if the results to be overlapped
are too similar to each other.

Algorithms 2022, 15, 478 3 of 30

✸✼

✸✽

✸✾

✹✵

✹✶

✹✷

✹✸

Classical

Prediction
S F M ESS

ESSIM

ESSIM-EA

ESSIM-DE

ESS-NS

+ parallelism
+ statistics +PEA

+IM

+NS

1 simulation • M/W

• factorial

experiment

• M/W

• optimized #

of simulations

• genetic algorithm

• fitness-based

• M/W + IM

genetic

algorithm

differential

evolution

• M/W

• novelty-based

genetic algorithm

• best solutions

from the whole

search

2 2

✹✹

✹✺

✹✻

✹✼

✹✽

✹✾

✺✵

✺✶

✺✷

✺✸

✺✹

✺✺

✺✻

✺✼

✺✽

✺✾

✻✵

✻✶

✻✷

✻✸

✻✹

✻✺

✻✻

Figure 1. Taxonomy of wildfire spread prediction methods. S2F2M: Statistical System for Forest

Fire Management; ESS: Evolutionary Statistical System; ESSIM: ESS with Island Model; ESSIM-EA:

ESSIM based on evolutionary algorithms; ESSIM-DE: ESSIM based on Differential Evolution; ESS-

NS: ESS based on Novelty Search; M/W: Master/Worker parallelism; PEA: Parallel Evolutionary

Algorithm; IM: Island Model; NS: Novelty Search.

In this work, we propose and evaluate a new method for the optimization of scenarios.
Our method avoids the issues of previous works by using a different criterion for guiding
the search: the Novelty Search (NS) paradigm [18–20]. NS is an alternative approach that
ignores the objective as a guide for exploration and instead rewards candidate solutions
that exhibit novel (different from previously discovered) behaviors in order to maximize
exploration and avoid local optima and other issues related to objective-based algorithms.
In an early work [21], we presented the preliminary design of a new framework based
on ESS that incorporated the Novelty Search paradigm as the search strategy for the
optimization of scenarios. This article is an extended work whose main contributions are
the experimental results and their corresponding discussion. These results comprise two
sets of experiments: one for the calibration of our method and another for the comparison
of our method against other state-of-the-art methods. In addition, we have made some
corrections in the pseudocode, reflecting the final implementation that was evaluated in the
experiments. Our experimental results support the idea that the application of a novelty-
based metaheuristic to the fire propagation prediction problem can obtain comparable or
better results in quality with respect to existing methods. Furthermore, the execution times
of our method are better than its competitors in most cases. To the best of our knowledge,
this is the first application of NS as a parallel genetic algorithm and also the first application
of NS in the area of propagation phenomena.

In the next section, we guide the reader throughout previous works related to our
present contribution; firstly, in the area of DDM-MOS, with a detailed explanation of
existing systems (Sections 2.1 and 2.2), and secondly, in the field of NS (Section 2.3), where
we explain the paradigm and its contributions in general terms. Then, in Section 3, we
present a detailed description of the current contribution and provide a pseudocode of
the optimization algorithm. Section 4 presents the experimental methods, results, and
discussion. Finally, in Section 5, we detail our main conclusions and describe possible lines
of future work. In addition, Appendix A presents a static calibration experiment performed
on our method.

Algorithms 2022, 15, 478 4 of 30

2. Related Works

In this section, first we summarize the operation and previous results of the competitor
systems against which our new method was compared. These competitors are a subset
of the taxonomy presented in Section 1 (Figure 1). We begin in Section 2.1 with a general
outline of the system on which our novel method is based, i.e., ESS, and then, in Section 2.2,
we delve into the most recent proposals, i.e., ESSIM-EA and ESSIM-DE, which are also
based on ESS. Finally, in Section 2.3, we present the main concepts and related works in the
area of Novelty Search.

2.1. ESS Framework

The systems referred to in this paper fit into the DDM-MOS category, given that they
perform multiple simulations, each based on a different scenario, and rely on a number
of simulations in order to yield a fire spread prediction. Previous approaches showed
limitations, either caused by the use of a single simulation for the predictions or by the
complexity of considering a large space of possibilities, which includes redundant or
unfeasible scenarios. To overcome these limitations, the Evolutionary Statistical System (ESS)
was developed. Its core idea is to produce a reduced selection of results with the aid of an
evolutionary algorithm that searches over the space of all possible scenarios. The objective
is to reduce the complexity of the computations while considering a sample of scenarios
that may produce better prediction results. In order to understand the scheme of the
method proposed in this paper and of its other, more recent competitors, it is necessary to
have a general comprehension of how ESS works, since they all share a similar framework.

A general scheme of the operation of ESS can be seen in Figure 2 (reproduced and
modified with permission from [11]). ESS takes advantage of parallelization with the
objective of reducing computation times. This is achieved by implementing a Master/Worker
parallel hierarchy for carrying out the optimization of scenarios. During the fire, the whole
prediction process is repeated for different discrete time instants. These instants are called
prediction steps, and in each of them, four main stages take place: Optimization Stage
(divided into Master and Workers, respectively: OS-Master and OS-Worker), Statistical
Stage (SS), Calibration Stage (CS), and Prediction Stage (PS).

Figure 2. Evolutionary Statistical System. RFLi: real fire line of instant ti; OS-Master: Optimization

Stage in Master; OS-Worker{1...n}: Optimization Stage in Workers 1 to n; FS: fire simulator; PEA: Par-

allel Evolutionary Algorithms; PEAF: Parallel Evolutionary Algorithm (fitness evaluation); PV{1...n}:

parameter vectors (scenarios); CS: Calibration Stage; SS: Statistical Stage; SKign: Key Ignition Value

search; FF: fitness function; Kigni
: Key Ignition Value for ti; PS: Prediction Stage; PFLi+1: predicted

fire line of instant ti+1.

Algorithms 2022, 15, 478 5 of 30

At each prediction step, the process aims to estimate the growth of the fire line from
ti to ti+1. For every step, a new optimization starts with the OS. This involves a search
through the space of scenarios guided by a fitness function. The process is a classic
evolutionary algorithm that starts with the initialization of the population, performs the
evolution of the population (selection, reproduction, and replacement), and then finishes
when a termination condition is reached. This parallel evolutionary process is divided into
the Master and Workers, shown in Figure 2 as OS-Master and OS-Worker, respectively.
The OS-Master block involves the initialization and modification of the population of
scenarios, represented by a set of parameter vectors PV{1...n}. The Master distributes these
scenarios to the Workers processes (shown as PV1 to PVn).

The Workers evaluate each scenario that they receive by sending it as input to a fire
behavior simulator FS. In the FS block, the information from the Real Fire Line at the
previous instant, RFLi−1, is used together with the scenario to produce a simulated map
for that scenario. Then, this simulated map and the information from RFLi are passed into
the block PEAF. As represented in the figure, two inputs from the fire line are needed at
the OS-Worker (i.e., RFLi−1 and RFLi): the first one to produce the simulations, and the
second one to evaluate the fitness of those simulations. Such evaluations are needed for
guiding the search and producing an adequate result for the next stage (the SS). Therefore,
the fitness is obtained by comparing the simulated map with the real state of the fire at the
last known instant of time. The Master process receives these evaluations (the simulated
maps with their fitness) and uses them to continue with the evolution, i.e., to perform
selection, reproduction, and replacement of the population.

Although not shown in the figure for clarity, it is important to note that the OS is
iterative in two ways. Firstly, the Master must divide all scenarios in the population
into a number of vectors according to the number of Worker processes; e.g., if there are
200 scenarios and 50 Workers, the Master must send a different PV (each containing
50 scenarios PV{1...50}) for evaluation four times in order to complete the 200 evaluations.
Secondly, the Master will repeat this process for each generation of the PEA until a stopping
condition is reached.

Once the OS-Master has finished, the following stages are CS and PS. These stages
involve the computation of the overlapped result. For the CS, the general idea is to use a
collection of simulated maps resulting from the evolutionary algorithm and produce as
output an aggregated map and a threshold value; then, for the PS, a final map is produced
as a matrix of burned and unburned cells, and this constitutes the prediction for tn+1.

In the case of ESS, the collection of simulated maps is equivalent to the evolved
population, and the complete CS is performed by the Master. This is represented by the
CS block in Figure 2, which involves several steps. The first step is the Statistical Stage
or SS. The purpose of this step is to take into consideration a number of solutions for the
prediction. For this, the Master aggregates the resulting maps obtained from the evolved
population, producing a matrix in which each cell is the sum of cells that are ignited
according to each simulated map from the input. These frequencies are interpreted as
probabilities of ignition. Although in this case the selection of maps is straightforward,
other criteria can be used to consider different simulations with different results regarding
the reduction of uncertainty.

After obtaining this probability matrix, it will be used for two purposes: on the one
hand, it is provided as input for the PS; on the other hand, it is used in the next step of the
CS: the search for the Key Ignition Value, or Kign. This is a simple search represented by the
block SKign. These two parts are interrelated: the PS at tn+1 depends on the output of the
CS at tn, which is Kignn

. Up to this point, we have a probability map, but the predicted fire
line PFL consists of cells that are marked as either burned or unburned. Then, we need a
threshold for establishing which cells of the probability map are going to be considered
as ignited. In other words, the threshold establishes how many simulated maps must
have each cell as ignited in order for that cell to appear as ignited in the final map. A
more detailed diagram of the first use of the matrix is illustrated in Figure 3 (reproduced,

Algorithms 2022, 15, 478 6 of 30

modified, and translated with permission from [22]). In the example from this figure, if
there are four simulated maps and Kign = 2, then for a cell to be predicted as burned in the
aggregated map, it must be present as such in at least two of the simulated maps. Note that
instead of being the result of one simulation, this final map, PFLn+1 (shown at the right
in Figure 3, after the PS), aggregates information from the collection of simulated maps
obtained as the output of the OS (simplified in the l.h.s. of the figure). In order to choose an
appropriate value of Kign, it is assumed that a value that was found to be a good predictor
for the current known fire line will still be a reasonable choice for the next step due to the
fact that propagation phenomena have certain regularities. Therefore, the search for this
value involves evaluating the fitness of different maps generated with different threshold
values. Going back to Figure 2, the fitness is computed between each of these maps and the
RFLi in the FF block. For the PS to take place at a given prediction step, the best Kign must
have been found at the previous iteration. This is represented by the arrows going from
the previous iteration into the PS (Kigni−1

) and from SKign towards the next iteration (Kigni
).

For instance, at step t2, the value Kign2
is chosen to be used within the PS of t3. The CS

begins in the second fire instant since it depends on the knowledge of the real fire line at
the first instant. Once the first result from the calibration has been obtained, that is, starting
from the third fire instant, then a prediction from the aggregated map can be obtained.

Figure 3. Generation of the prediction. sc.: scenario; FS: fire simulator,; SS: Statistical Stage; Kignn
:

Key Ignition Value computed for instant tn; PS: Prediction Stage; PFLn+1: predicted fire line for tn+1.

After each prediction step, and when the RFL is known for that step, the PFL can
be compared if needed. For this, one can once again use the fitness function, this time in
order to evaluate the final predictions (represented by the connection between RFLi+1 and
PFLi+1). In our experiments, this evaluation is performed statically after each complete
run, given that the cases under consideration are controlled fires for which the RFL is
known for all steps. A real-time evaluation could also be achieved by computing this
fitness iteratively after obtaining the RFL for the previous instant and after each prediction
map has been obtained.

2.2. ESSIM-EA and ESSIM-DE Frameworks

This section summarizes the operation of the more recently developed systems, ESSIM-
EA and ESSIM-DE, which are both based on ESS and are also included in our comparison
against our new method in Section 4.

ESSIM-EA stands for Evolutionary Statistical System with Island Model based on evolu-
tionary algorithms, while ESSIM-DE is ESSIM based on Differential Evolution. Both systems
fit into the category of DDM-MOS, since they employ a method for selecting multiple

Algorithms 2022, 15, 478 7 of 30

solutions from the space of possible scenarios and producing an overlapped result in order
to perform the prediction of fire propagation.

ESSIM-EA and ESSIM-DE are summarized in Figure 4, reproduced and modified
from [11] (Published under a Creative Commons Attribution-NonCommercial-No Deriva-
tives License (CC BY NC ND). See https://creativecommons.org/licenses/by-nc-nd/4.0/,
accessed on 13 October 2022). The four main stages in these systems are the same as in
ESS: Optimization Stage (OS), Statistical Stage (SS), Calibration Stage (CS), and Prediction
Stage (PS). Because both ESSIM systems use a hierarchical scheme of processes, these stages
are subdivided to carry out the different processes in the hierarchy. The Master/Worker
hierarchy of ESS is augmented with a more complex hierarchy that consists of one Monitor,
which handles multiple Masters, and, in turn, each Master manages a number of Workers.
Essentially, the system uses a number of islands where each island implements a Mas-
ter/Worker scheme; the Monitor then acts as the Master process for the Masters of the
islands. On each island, the Master/Worker process operates as described in Section 2.1 for
ESS: the Master distributes scenarios among the Workers for performing the simulations in
the OS.

Figure 4. Evolutionary Statistical System with Island Model. RFLi: Real Fire Line at time ti; PV{1...n}:

parameter vectors (scenarios); FS: fire simulator; PEAF: Parallel Evolutionary Algorithm (fitness eval-

uation); OS-Master{a,b,... }: Optimization Stage in Masters a, b, etc.; OS-Worker
{a,b,... }
{1...n}

: Optimization

Stage in Workers 1 to n belonging to one Master in {a, b, . . . }; PEA: Parallel Evolutionary Algorithm;

SS: Statistical Stage in Master; SK: Search for Kign; Kign: Key Ignition Value; FF: Fitness Function;

CS-Master: Calibration Stage in Master; CS-Monitor: Calibration Stage in Monitor; PS: Prediction

Stage; PFLi+1: Predicted Fire Line for instant ti+1; SSM: Statistical Stage in Monitor; pma: probability

map sent from Mastera to Monitor; {pm, K}: best probability map and associated Kign.

https://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithms 2022, 15, 478 8 of 30

The process begins with the Monitor, which sends the initial information to each island
to carry out the different stages. The Master process of each island performs the OS: it
controls the evolution of its population and the migration process. On each island during
each iteration of the evolutionary algorithm, the Master sends individuals to the Worker
processes, which are in charge of their evaluation. For more details on the operation of the
island model, see [11].

After the evolutionary process, the SS takes place in which the Master performs the
computation of the probability matrix that is required for the CS and PS. In this new
scheme, the SS is carried out by the Master, the CS is performed by both the Master and
the Monitor, and the PS is handled only by the Monitor. The CS starts with the CS-Master

block, where each Master generates a probability matrix and provides its Kign value. The
block CS-Monitor represents the final part of the calibration in which the Monitor receives
all matrices sent by the Masters and then selects the best candidate based on their fitness
(these fitness values have already been computed by the Masters). The matrix selected by
the Monitor is used for producing the current step prediction.

Experimentally, when ESSIM-EA was introduced, it was shown to be able to reach
predictions of similar or higher quality than ESS but with a higher cost in execution times.
Later, ESSIM-DE was developed, and it significantly reduced response times, but the
quality did not improve in general. Subsequent works have improved the performance
of the ESSIM-DE method by embedding tuning strategies into the process [23]. Tuning
strategies are methods for improving the performance of an application by calibrating
critical aspects. Application tuning can be automatic (when the techniques are transparently
incorporated in the application) and/or dynamic (adjustments occur during execution) [24].
For ESSIM-DE, there are two automatic and dynamic tuning metrics which have been
shown to mitigate the issues of premature convergence and population stagnation present
in the case of application of the algorithm. One metric is a population restart operator
[13], and the other involves the analysis of the IQR factor of the population throughout
generations [25]. The results showed that ESSIM-DE enhanced with these metrics achieved
better quality and response times with respect to the same method without tuning.

Even though the two approaches described provide improvements over ESS, they are
still limited in several fundamental aspects. The first aspect has to do with the design of
the metaheuristics that were adapted for use in the OS of the ESSIM systems. These are
population-based algorithms that are traditionally used with the objective of selecting a sin-
gle solution: the best individual from the final population, obtained from the last iteration
of the evolution process. Instead, the adaptations implemented use the final population
to select a set of solutions for the CS and PS. Since evolutionary metaheuristics tend to
converge to a population of similar genotypes, that is, of individuals which are similar in
their representation, the population evolved for each prediction step may consist of a set of
scenarios that are similar to each other and therefore produce similar simulations. This may
be a limiting factor for the uncertainty reduction objective. To understand this, it must be
noted that complex problems do not usually have a smooth fitness landscape, which may
imply that individuals that are genotypically far apart in the search space may still have
acceptable fitness values and could be valuable solutions. Thus, the metaheuristics imple-
mented in the ESSIM systems may leave out these promising candidates. The second aspect
is that in the case of ESSIM-DE, the baseline version performs worse than ESS and ESSIM-
EA with respect to quality, which led to the design of the previously mentioned tuning
mechanisms. These variants produced better results in quality than the original version of
ESSIM-DE but did not significantly outperform ESSIM-EA. Such findings seem to support
the idea that this particular application problem could benefit from a greater exploration
power, combined with a strategy that could take better advantage of the solutions found
during the search. From this reasoning, we arrived at the idea of applying a paradigm that
maximizes exploration, while keeping solutions in a way that is compatible by design with
a DDM-MOS, that is, a system that is based on multiple overlapped solutions.

Algorithms 2022, 15, 478 9 of 30

2.3. Novelty Search: Paradigm and Applications

The limitations observed in existing systems led us to consider the selection of other
search approaches that may yield improvements in the quality of predictions. Given the
particular problems observed in the experimental results of previous works, we determined
that a promising approach for this problem could be the Novelty Search (NS) paradigm. In
this section, we explain the main ideas and describe related works behind this approach.

Metaheuristic search algorithms reward the degree of progress toward a solution,
measured by an objective function, usually referred to as a score or fitness function depending
on the type of algorithm. This function, together with the neighborhood operators of a
particular method, produces what is known as the fitness landscape [26]. By changing the
algorithm, the fitness function, or both, a given problem may become easier or more difficult
to solve, depending on the shape and features of the landscape that they generate. In highly
complex problems, the fitness landscape often has features that make the objective function
inefficient in guiding the search or may even lead the search away from good solutions [17].
This has led to the creation of alternative strategies that address the limitations inherent
to objective-based methods [27]. One of these strategies is NS, introduced in [19]. In this
paradigm, the search is driven by a characterization of the behavior of individuals that
rewards the dissimilarity of new solutions with respect to other solutions found before. As a
consequence, the search process never converges but rather explores many different regions
of the space of solutions, which allows the algorithms to discover high fitness solutions
that may not be reachable by traditional methods. This exploration power differs from
metaheuristic approaches in that it is not driven by randomness, but rather by explicitly
searching for novel behaviors. NS has been applied with good results to multiple problems
from diverse fields [18,19,28–31].

Initially, the main area of interest for applications of NS consisted of open-ended
problems. In this area, the objective is to generate increasingly complex, novel, or creative
behaviors; there is no fixed, predetermined solution to be reached. Interestingly, NS has
also been proven useful for optimization problems in general, finding global optima in
many cases and outperforming traditional metaheuristics when the problems have the
quality of being deceptive, that is, when the combination of solutions of high fitness leads to
solutions of lower fitness and vice versa [31].

In order to guide the search by novelty, all algorithms following this paradigm need
to implement a function to evaluate the novelty score of the solutions. Therefore, a novelty
measure of the solutions must be defined in the space of behaviors of the solutions. This
measure, usually called dist in the literature, is problem-dependent; an example can be the
difference between values of the fitness function of two individuals.

A frequently used novelty score function is the one presented by [19], which, for an
individual x, computes the average distance to its k closest neighbors:

ρ(x) =
1

k

k−1

∑
i=0

dist(x, µi), (1)

where µi is the i-th nearest neighbor of the individual x according to the distance function
dist. In the literature, the parameter k is usually selected experimentally, but the entire
population can also be used [18,32].

To perform this evaluation, it is not sufficient to select close individuals by considering
only the current population; it is also necessary to consider the set of individuals that
have been novel in past iterations. To this end, the search incorporates an archive of novel
solutions that allows it to keep track of the most novel solutions discovered so far and uses
it to compute the novelty score. The novelty values obtained are used to guide the search,
replacing the traditional fitness-based score. This design allows the search to be unaffected
by the fitness function landscape, directly preventing problems such as those found in the
systems described in the previous section.

Algorithms 2022, 15, 478 10 of 30

When using conventional metaheuristics, due to the randomness involved in the
algorithms, it is possible that some high fitness solutions may be lost in intermediate
iterations with no record of them remaining in the final population. In contrast, NS can
avoid this issue because when applied to optimization problems it makes use of a memory
of the best performing solution(s), as measured, for example, by the fitness function. In this
way, even though NS never converges to populations of high fitness, it is possible to keep
track of the best solutions (with respect to the fitness function or any characterization of the
behavior of the solutions) found throughout the search.

Different metaheuristics have already been implemented using the NS paradigm, such
as a Genetic Algorithm [33] and Particle Swarm Optimization [34]. Additionally, multiple
hybrid approaches that combine fitness and novelty exist in the literature and have been
shown to be effective in solving practical problems. Among some of the approaches
used, there are weighted sums between fitness and novelty-based goals [35], different
goals in a multi-objective search [36], and independent searches with some type of mutual
interaction [29], among others [19,28,30,37–39].

Metaheuristics can generally be parallelized in different ways and at different levels.
For example, one can run an instance of an algorithm that parallelizes the computation
of the fitness function, or one can have a process that manages many instances of the
whole algorithm in parallel. The advantages of parallelization are better execution times,
more efficient use of resources, and/or improvements in the performance of the algorithm.
Just as NS can be implemented by adapting existing metaheuristics to the NS paradigm,
existing parallel metaheuristics can also be used as a template for new parallel novelty-
based approaches. However, it must be considered that novelty-based criteria, together
with the archive mechanism, may warrant additional efforts in order to design an adequate
solution. In the particular case of NS, parallelization can be a way to enhance the search,
giving it a greater exploration capacity without excessively affecting the execution time.
Examples of parallel algorithms containing an NS component can be found in [40,41].

3. Novelty-Based Approach for the Optimization Stage in a Wildfire Prediction System

In this section, we present the new approach in two parts. First, we explain the
operation of the general scheme for the new prediction system and how it differs from
its predecessors. Second, we describe in detail the novel evolutionary algorithm that is
embedded as part of the Optimization Stage in this system.

3.1. New Framework: ESS-NS

The framework that has been implemented for the new method is called Evolutionary
Statistical System based on Novelty Search, or ESS-NS. Its general scheme is illustrated by
Figure 5. There are several aspects that are analogous with respect to ESS (compare to
Figure 2), such as the Master/Worker hierarchy, where Workers carry out the simulations
and fitness evaluations while the Master handles the steps of the evolutionary algorithm;
stages other than the Optimization Stage remain unchanged. However, the optimization
component has important modifications, particularly in the Master process, and these
are highlighted in the figure. As its predecessors, this framework consists of a prediction
process with the same stages from Figure 2 (Section 2.1): Optimization Stage (OS), Statistical
Stage (SS), Calibration Stage (CS), and Prediction Stage (PS).

We have used the same propagation simulator, called fireSim [4], which is implemented
in an open-source and portable library, fireLib. This simulator takes the following parame-
ters as input: a terrain ignition map and the set of parameters concerning the environmental
conditions and terrain topography. These parameters are described in Table 1. The first row
contains the name of the Rothermel Fuel Model, which is a taxonomy describing 13 models
of fire propagation commonly used by a number of simulators, including fireSim. The
remaining rows represent environmental aspects, such as wind conditions, humidity, slope,
etc. For more information on the parameters modeled by this library, see [42]. The output
of this simulator is a map that indicates in each cell the estimated time instant of ignition of

Algorithms 2022, 15, 478 11 of 30

each cell. If, according to the simulation, the cell is never reached by the fire, it is set to zero.
The order and functioning of the Statistical, Calibration, and Prediction stages, in addition
to their assignment to Master and Workers, are the same as those presented in Section 2.1.

Figure 5. Evolutionary Statistical System based on Novelty Search. RFLi: real fire line of instant ti;

OS-Master: Optimization Stage in Master; OS-Worker{1...n}: Optimization Stage in Workers 1 to

n; PEA: Parallel Evolutionary Algorithm; NS-based GA: Novelty Search-based Genetic Algorithm;

ρ(x): novelty score function from Equation (1); PV{1...n}: parameter vectors (scenarios); FS: fire

simulator; PEAF: Parallel Evolutionary Algorithm (fitness evaluation); CS: Calibration Stage; SS:

Statistical Stage; FF: fitness function; PFLi: predicted fire line of instant ti; Kigni
: Key Ignition Value

for ti; SKign: Key Ignition Value search; PS: Prediction Stage.

Table 1. Parameters used by the fireLib library.

Parameter Description Range Unit of Measurement

Model Rothermel fuel model 1–13 fuel model
WindSpd Wind speed 0–80 miles/hour
WindDir Wind direction 0–360 degrees clockwise from North
M1 Dead fuel moisture in 1 h since start

of fire
1-60 percent

M10 Dead fuel moisture in 10 h 1–60 percent
M100 Dead fuel moisture in 100 h 1–60 percent
Mherb Live herbaceous fuel moisture 30–300 percent
Slope Surface slope 0–81 degrees
Aspect Direction of the surface faces 0–360 degrees clockwise from north

As for the Optimization Stage, there are two crucial differences from ESS. First, the
metaheuristic contained in this stage is also an evolutionary algorithm, but its behavior
in this case follows the NS paradigm: the strategy implemented is novelty-based with a
genetic algorithm, as shown in the shaded block inside the Master (PEA: NS-based GA)
in Figure 5. We defer the details of this algorithm to the following section; however, it is
important to note here that this novelty-based method requires an additional computation
of a score, that is, the novelty score, represented by the function ρ(x) from Equation (1). The
second difference is that the output of the optimization algorithm is not the final evolved
population, as in previous methods; rather, it is a collection of high fitness individuals which
were accumulated during the search, which we call bestSet. Although the need for this
structure originates from an apparent limitation of NS, that is, its lack of convergence, this
mechanism is in fact an advantage of this method, and it is more suitable to this application
problem than the previous methods, which are based on single-solution metaheuristics. The
difference lies in that our NS design has the ability to record individuals from completely
different areas of the search space and include them in the final aggregated matrix. As

Algorithms 2022, 15, 478 12 of 30

discussed in Section 2.2, fitness-based evolutionary algorithms converge to a population of
similar individuals, which are redundant, and the evolved population will almost inevitably
include some random or not-so-fit individuals (that were generated and selected during
the last iteration) that do not contribute to the solution. Since this collection is used for the
purposes of reducing uncertainty in the SS, we considered that the advantages of this new
design could be an appropriate match for said stage.

It is important to note that ESS-NS differs from the most recent approaches in that
it uses the simpler model of Master/Worker (with no islands and only one population).
Although the novelty-based strategy performs more steps than the original ESS, the Master
process only delegates the simulation and evaluation of individuals to the Workers since this
is the most demanding part of the prediction process. Even so, this has not been a problem
in our experimentation since the additional steps, such as novelty score computation and
updating of sets, do not add significant delays to the execution. The simplification of
the parallel hierarchy is motivated by the need to have a baseline algorithm for future
comparisons and to be able to analyze the impact of NS alone on the quality of results.
Considering that NS uses a strategy that was designed not only to keep diversity and
emphasize exploration but to actively seek them, it serves as an alternative route to solve
the problem that originally made it necessary to resort to mechanisms such as the island
model. Additionally, such a design would require additional mechanisms, for example, for
handling the migrations, and these can directly affect both the quality and the efficiency of
the method, making it harder to assess the performance of the method. At the moment,
these considerations and possible variants are left as future work.

3.2. Novelty-Based Genetic Algorithm with Multiple Solutions

Our proposal consists of applying a novelty-based evolutionary metaheuristic as part
of the Optimization Stage of a wildfire prediction system. We have selected a classical
genetic algorithm (GA) as the metaheuristic, which has been adapted to the NS paradigm.
This choice was made for two reasons: on the one hand, for simplicity of implementation
and, on the other hand, for comparative purposes, since existing systems are also based
on variants of evolutionary algorithms, and two of them (ESS and ESSIM-DE) use a GA as
their optimization method.

The novelty measure selected is computed as in Equation (1). In this context, x is
a scenario, and we define dist as the difference between the fitness values of each pair
of scenarios:

dist(x, µi) = | f itness(x)− f itness(µi)|. (2)

For computing this difference, we used the same fitness function as the one used in
the ESS system and its successors: the Jaccard Index [43]. It considers the map of the field
as a matrix of square cells (which is the representation used by the simulator):

f itness(A, B) =
|A ∩ B|

|A ∪ B|
, (3)

where A represents the set of cells in the real map without the subset of burned cells before
starting the simulations, and B represents the set of cells in the simulation map without
the subset of burned cells before starting the simulation. (Previously burned cells, which
correspond to the initial state of the wildfire in each prediction step, are not considered in
order to avoid skewed results.) This formula measures the similarity between prediction
and reality and is equal to one when there is a perfect prediction, while a value of zero
indicates the worst prediction possible.

An example of the computation of this index for ignition maps is represented in
Figure 6. Note that the definition of dist in Equation (2) is trivially a metric in the space of
fitness, but it does not provide the same formal guarantees when considering the relation-
ship between these fitness differences and the corresponding scenarios that produced the
fitness values. For example, it is possible that two scenarios with the same fitness value

Algorithms 2022, 15, 478 13 of 30

(and a distance of 0) are not equal to each other. This is because the similarity between
scenarios cannot be measured precisely and because it depends to a great extent on the
chosen fire simulator.

Figure 6. Example of the fitness computation with Equation (3). We have that |A ∪ B| = 8, and

|A ∩ B| = 4; then f itness(A, B) = 4/8 = 0.5.

We present the pseudocode of ESS-NS in Algorithm 1. In previous work [21], we
presented the idea of ESS-NS, including the pseudocode for its novelty-based metaheuristic.
The present contribution preserves the same general idea with only minor changes to the
pseudocode and extends previous work with experiments based on an implementation of
such an algorithm. Although the high-level procedure is partially inspired by the algorithm
in [33], our version has an important difference, which is the introduction of a collection
of solutions, bestSet. This collection is updated at each iteration of the GA so that at the
conclusion of the main loop of the algorithm the resulting set contains the solutions of
highest fitness found during the entire search. It should be noted that this set is used as the
result set instead of the evolved population set which is used by the previous evolutionary-
based systems for both the CS and PS. In addition, this algorithm uses two stopping
conditions (line 6): by number of generations and by a threshold of fitness (both present
in ESSIM-EA and ESSIM-DE), and also specifies conventional GA parameters, such as
a mutation probability and tournament probability. Mutation works as in classic GAs,
while the tournament probability is used for selection, where the algorithm performs a
tournament strategy. These parameters are specified as input to the algorithm (the values
we used for our experiments are specified in Section 4.1). Another difference is that the
archive of novel solutions (archive) is managed with replacement based on novelty only
as opposed to the pseudocode in [33], which uses a randomized approach. These features
correspond to a “classical” implementation of the NS paradigm: an optimization guided
exclusively by the novelty criterion, and a set of results based on the best values obtained
using the fitness function. These criteria allow us to establish a baseline against which it
will be possible to perform comparisons among future variants of the algorithm. In this
first version, parallelism has been implemented in the evaluation of the scenarios, i.e., in
the simulation process and subsequent computation of the fitness function. The novelty
score computation and other steps are not parallelized in this version.

Algorithms 2022, 15, 478 14 of 30

Algorithm 1 Novelty-based Genetic Algorithm with Multiple Solutions.

Input: population size N, number of offspring m, tournament probability tour_prob, muta-
tion rate mut_prob, crossover rate cr, maximum number of generations maxGen, fitness
threshold f Threshold, number of neighbors for novelty score k

Output: the set bestSet of individuals of highest fitness found during the search
1: population←− initializePopulation(N)
2: archive←− ∅

3: bestSet←− ∅

4: generations←− 0
5: maxFitness←− 0
6: while generations < maxGen and maxFitness < f Threshold do
7: offspring←− generateOffspring(population, m, tour_prob, mut_prob, cr)
8: for each individual ind ∈ (population ∪ offspring) do
9: ind. fitness←− evaluateFitness(ind)

10: end for
11: noveltySet←− (population ∪ offspring ∪ archive)
12: for each individual ind ∈ (population ∪ offspring) do
13: ind.novelty←− evaluateNovelty(ind, noveltySet, k)
14: end for
15: archive←− updateArchive(archive, offspring)
16: population←− replaceByNovelty(population, offspring, N)
17: bestSet←− updateBest(bestSet, offspring)
18: maxFitness←− getMaxFitness(bestSet)
19: generations←− generations + 1
20: end while
21: return bestSet

We now provide a detailed description of Algorithm 1, specifying parameters in italics
and functions in typewriter face. The input parameters of the algorithm include:
the typical GA parameters (N, m, tour_prob, mut_prob, cr), the two stopping conditions
(maxGen and f Threshold), and one NS parameter: k, which is the number of neighbors
to be considered for the computation of the novelty score in Equation (1). The algorithm
begins by initializing some variables; notably, the evolution process starts with the function
initializePopulation (line 1), which generates N scenarios with random values for the
unknown variables in a given range; such range has been determined beforehand for
each variable. Afterwards, each iteration of the main loop (lines 6 to 20) corresponds to
a generation of the GA. At the beginning of each generation, the algorithm performs the
selection and reproduction steps, abstracted in generateOffspring; that is, it generates m
offspring based on the current N individuals of the population. Our chosen GA population
selection strategy is by tournament. For the tournament phase, a set of individuals is
chosen to enter the mating pool, where a percentage of these are the ones with the highest
novelty, while the rest are randomly chosen. This proportion is set by the tournament
probability, tour_prob. The crossover rate is determined by cr; this is the probability that
two individuals from the current population are combined. In the current version, we have
set this value to one, but it can be anywhere in the range [0, 1]. Then, a proportion of the
offspring is mutated according to mut_prob.

The next step is the fitness computation represented by lines 8 to 10. Each individual
computation is performed in evaluateFitness by the Worker processes, and the distribu-
tion of individuals to each Worker is managed by the Master. The fitness is calculated for
all individuals in two steps: first, a simulation is carried out by the fire simulator; then, the
fitness is computed with Equation (3). The fitness values are needed both for recording the
best solutions in bestSet and for the computation of each individual’s novelty score from
Equation (1). Since the fitness scores of multiple neighboring scenarios are required for
the computation of the novelty score, a second loop is needed (lines 12 to 14). Internally,
evaluateNovelty compares the individual ind with each of the individuals in the reference

Algorithms 2022, 15, 478 15 of 30

set noveltySet using the measure dist and then takes the k nearest neighbors, i.e., those
individuals ind′ ∈ noveltySet for which the smallest values of dist(ind, ind′) are obtained,
and uses them to evaluate the novelty function according to Equation (1), where dist is
computed by Equation (2).

After the novelty computation loop, the next two lines are the ones that define the
search to be driven by the novelty score. In line 15, updateArchive modifies the archive
of novel solutions so that it is updated with the descendants that have higher novelty
values. In other words, the replacement strategy is elitist based on the whole population: it
considers the union of the sets offspring and archive, and the N individuals with the highest
novelty in this union are assigned to the archive. Population replacement is performed
in replaceByNovelty (line 16), also using the elitist novelty criterion. Then, the function
updateBest in line 17 modifies bestSet in order to incorporate the solutions in offspring that
have obtained better fitness values. In this case, the strategy is also elitist but based on
fitness. In the first iteration, we start with an empty archive and bestSet, and therefore,
in lines 15 and 17, we begin by assigning the complete offspring set to both sets. For the
first version, we have implemented a fixed size archive and solution set, but these sizes
can potentially be parameterized or even designed to dynamically change size during
the search.

Lastly, the algorithm ends the current generation by updating the values for verifying
the stopping conditions. In line 18, getMaxFitness returns the maximum value of fitness
from the set passed as argument; this value corresponds to the maximum fitness that has
been found during the search until the current moment. Line 19 updates the evolutionary
generation number. These two values will be verified in line 6 during the next iteration.
Once one of these conditions is met, the algorithm will return bestSet, a collection of the
best solutions obtained throughout the search.

4. Experimentation and Results

In this section, we present the experimental methodology and results for five appli-
cation cases, performed in order to assess the quality and execution times of ESS-NS in
comparison with ESS, ESSIM-EA, and ESSIM-DE. Section 4.1 describes the application
cases and methodology for the experimentation, while Section 4.2 presents the results.
Finally, in Section 4.3, we provide interpretations and implications of these findings.

4.1. Experimental Setup

The application cases consist of controlled fires in different lands in Serra da Lousã,
Gestosa, Portugal, as part of the SPREAD project [44]. The terrain and environmental char-
acteristics of each controlled fire are shown in Table 2 [22,45]. For each case, the fire progress
has been divided into s discrete time intervals ti (for more details, see ([9] Section 5)). The
terrain is encoded by a matrix, where the advance of the fire from start to finish is repre-
sented by a number in each cell, indicating the discrete time step at which that cell was
reached by the fire. From this matrix of the whole fire, we obtained the map that is consid-
ered the real fire line at each time step ti (RFLi) by taking into account only the cells that
have been burned at times tj, j ≤ i. In these experiments, the methods have to perform s− 1
simulation steps, where each simulation step occurs after one step of the fire, taking into
account the real fire line at the previous instant. It should be noted that for each application
case there are s− 1 simulation steps and s− 2 prediction steps because all methods use the
first simulation for the calibration of input parameters for the next iteration.

After the execution of the complete simulation process, we evaluated the quality of
prediction by comparing the produced prediction map for each time step with the real
fire line at that instant. That is, for 1 ≤ i ≤ s, the resulting map is produced by using
RFLi−1 and RFLi as input in order to obtain the prediction PFLi+1; later, this result is
compared against RFLi+1. The metric used for the assessment of predictions is the fitness
function from Equation (3). As we mentioned before, the input for the initial time step
is needed to perform the first evaluation; the prediction steps start at the second time

Algorithms 2022, 15, 478 16 of 30

step. For this reason, the initial times in Table 2 are not zero. In addition to the quality
evaluation, we measured and compared the execution times for the complete process. For
all methods, each run was repeated 30 times with different seeds for random number
generation; e.g., ESS-NS uses the seed for the generation of the initial population and for
generating probabilities during the mutation and selection steps. For a particular method,
using the same seed always produces the same numbers and, therefore, the same results
for that method. Using a set of different seeds provides more robust results by taking into
account the variability caused by the non-deterministic behavior of the methods when
changing seeds.

Table 2. Characteristics of the controlled fires. Each case is identified by a number in the first column.

Fire Width
(m)

Length
(m)

Slope
(deg)

Initial Time
(min)

End Time
(min)

Increment
(min)

Ignition
Type

520 89 109 21 2.0 14.0 2.0 linear
533 95 123 21 2.0 12.0 2.0 centroid
751 60 90 6 2.0 10.0 2.0 linear
519 89 91 21 2.5 12.5 2.5 linear
534 75 126 19 3.0 9.0 1.0 centroid

The parameters of the method ESS-NS and its competitors are shown in Table 3.
In previous works, several of the parameters for the competitors have been calibrated
in order to improve performance by choosing configuration parameters that are well
suited for the application problem [22,46]. For a better comparison, we performed a static
calibration experiment for the two main parameters of ESS-NS: tournament probability
and probability of mutation. The calibration experiment and results are described in
Appendix A. Considering that all competitors share some characteristics, other parameters,
such as population size or fitness threshold, have been established equal to the ones in the
other methods in order to simplify the calibration of ESS-NS.

Table 3. Parameters used for each method in the experimentation.

Parameter ESS-NS ESS ESSIM-EA ESSIM-DE

Population size 200 200 200 200
Fitness threshold 0.7 0.7 0.7 0.7
Mutation rate 0.4 0.5 0.5 -
Tournament probability 0.8 - - -
Number of neighbors 199 - - -
Number of islands - - 5 5
Number of workers 40 40 7 per island 7 per island
Cr (crossover probability) 1 0.2–0.6 0.2–0.6 0.3
F (scale factor) - - - 0.9
Migration frequency - - every iteration every iteration
Immigrants - - best individual 20% of population
Immigr. replacement type - - elitist semi-elitist
Communication topology - - ring ring

Data from previous results were provided by M. Laura Tardivo, and the corresponding
plots with these results can be found in [22,45]. These results correspond to an experiment
performed using the parameters provided in Table 3. The parameters for ESSIM-DE and
some parameters of ESS and ESSIM-EA are reproduced from [45]. Other parameters
for ESS and ESSIM-EA (mutation and crossover rate) are the same as published in [46]
(Chapters 4 and 5).

In addition, the experiment that produced these results was performed on the same
cluster as the execution of the new ESS-NS method, which makes the runtimes comparable.
All experiments were executed on a cluster with Intel 64 bits Q9550 Quad Core CPUs of

Algorithms 2022, 15, 478 17 of 30

2.83GHz, and with 4GB RAM (DDR3, 1333MHz). The nodes are connected via Gigabit
Ethernet and a Linksys SLM2048 switch of 1 Gb. The operating system is Debian Lenny
(64-bit), and we used the library MPICH [47] for message passing among the nodes.

We have published the experimental results in an online report at https://jstrappa.
quarto.pub/ess-ns-experimentation/, accessed on 13 October 2022. In addition, the source
code for the visualization of results is available at https://github.com/jstrappa/ess-ns-
supplementary.git, accessed on 13 October 2022. The results from previous experiments are
also published with permission from their author.

4.2. Results

The results of the quality assessment are presented in Figures 7–11. For each of the five
maps, a set of three related figures is presented. In each set of figures, a graphical representation
of the fires at different time instants appears for reference (Figures 7a, 8a, 9a, 10a and 11a). The
x- and y-axes represent the terrain in meters, while the colors show which areas are reached
by the fire at different time steps. Below each map (in Figures 7b, 8b, 9b, 10b and 11b), the
average fitness prediction values (over 30 repetitions) are shown for each prediction step for
the respective fire. The x-axis shows the prediction steps (where the first prediction step corre-
sponds to the third time step of the fire), and the y-axis shows the average fitness values. Each
method is shown in a different color and shape. At any given step, a higher average fitness rep-
resents a better prediction for that step. Lastly, the box plots in Figures 7c, 8c, 9c, 10c and 11c
show the distribution of fitness values over the 30 repetitions for each method. In each of
these box plot figures, the subplots titled with numbers correspond to individual prediction
steps for the fire identified by the main title. Each box shows the fitness distribution over
30 repetitions for one method at that step. For example, the leftmost boxes (in black) show the
distribution for ESS-NS.

In order to assess the time efficiency of the new method, we computed the average
execution times of the 30 seeds for each case, which are shown in Table 4.

Table 4. Average execution times (hh:mm:ss).

Map ESS-NS ESS ESSIM-EA ESSIM-DE

520 00:52:56 00:50:15 00:57:20 00:37:48
533 00:38:04 00:55:28 01:01:15 00:49:05
751 00:17:28 00:48:19 00:50:10 00:27:49
519 00:32:29 00:58:35 01:18:08 00:43:42
534 00:28:18 01:18:06 02:11:38 00:41:20

4.3. Discussion

In general, the fitness averages (Figures 7b, 8b, 9b, 10b and 11b) show that ESS-NS is
the best method for most steps in all cases; in particular, it outperforms all other methods
in Cases 520, 751, and 519 (Figures 7, 9 and 10). For Case 534 (Figure 11), ESS-NS gives a
slightly lower average compared only to one method, ESSIM-EA. However, this situation
happens only at one particular step, which is why this difference might be considered as
not significant. Case 533 (Figure 8) has some peculiarities that have been pointed out in
previous works [9,48]. For this fire, ESSIM-DE was shown to provide better predictions
than all other methods in the first two steps, but the tendencies are inverted in the next two
steps, with methods ESSIM-EA and ESS yielding lower predictions first and improving later.
In addition, the fitness averages for these two methods have similar values throughout all
steps, while the values for ESSIM-DE are more variable. Regarding ESS-NS, it seems to
follow the same tendency as ESSIM-EA and ESS but with higher fitness values compared
to both in all prediction steps.

https://jstrappa.quarto.pub/ess-ns-experimentation/
https://jstrappa.quarto.pub/ess-ns-experimentation/
https://github.com/jstrappa/ess-ns-supplementary.git
https://github.com/jstrappa/ess-ns-supplementary.git

Algorithms 2022, 15, 478 18 of 30

20

40

60

80

20 40 60 80

Meters

M
e
te
r
s

5

10

Minutes

520

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5

Prediction step

A
v
e
ra

g
e
 f
it
n
e
s
s

Method

ESS-NS

ESSIM-EA

ESSIM-DE

ESS

520

(b)

1 2 3 4 5

E
S
S
-N
S

E
S
S
IM
-E
A

E
S
S
IM
-D
E
E
S
S

E
S
S
-N
S

E
S
S
IM
-E
A

E
S
S
IM
-D
E
E
S
S

E
S
S
-N
S

E
S
S
IM
-E
A

E
S
S
IM
-D
E
E
S
S

E
S
S
-N
S

E
S
S
IM
-E
A

E
S
S
IM
-D
E
E
S
S

E
S
S
-N
S

E
S
S
IM
-E
A

E
S
S
IM
-D
E
E
S
S

0.25

0.50

0.75

1.00

Method

F
it
n
e
s
s

520

(c)

Figure 7. Case 520: (a) map of the real fire spread; (b) fitness averages; and (c) fitness distributions.

Algorithms 2022, 15, 478 19 of 30

20

40

60

80

20 40 60 80

Meters

M
e
te
r
s

2

4

6

8

10

12

Minutes

533

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4

Prediction step

A
v
e
ra

g
e
 f
it
n
e
s
s

Method

ESS-NS

ESSIM-EA

ESSIM-DE

ESS

533

(b)

1 2 3 4

E
S
S
-N
S

E
S
S
IM
-E
A

E
S
S
IM
-D
E

E
S
S

E
S
S
-N
S

E
S
S
IM
-E
A

E
S
S
IM
-D
E

E
S
S

E
S
S
-N
S

E
S
S
IM
-E
A

E
S
S
IM
-D
E

E
S
S

E
S
S
-N
S

E
S
S
IM
-E
A

E
S
S
IM
-D
E

E
S
S

0.25

0.50

0.75

Method

F
it
n
e
s
s

533

(c)

Figure 8. Case 533: (a) map of the real fire spread; (b) fitness averages; and (c) fitness distributions.

Algorithms 2022, 15, 478 20 of 30

20

40

60

20 40 60

Meters

M
e
te
r
s

2.5

5.0

7.5

10.0

Minutes

751

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3

Prediction step

A
v
e
ra

g
e
 f
it
n
e
s
s

Method

ESS-NS

ESSIM-EA

ESSIM-DE

ESS

751

(b)

1 2 3

E
S
S
-N
S

E
S
S
IM
-E
A

E
S
S
IM
-D
E

E
S
S

E
S
S
-N
S

E
S
S
IM
-E
A

E
S
S
IM
-D
E

E
S
S

E
S
S
-N
S

E
S
S
IM
-E
A

E
S
S
IM
-D
E

E
S
S

0.25

0.50

0.75

1.00

Method

F
it
n
e
s
s

751

(c)

Figure 9. Case 751: (a) map of the real fire spread; (b) fitness averages; and (c) fitness distributions.

Algorithms 2022, 15, 478 21 of 30

20

40

60

80

20 40 60 80

Meters

M
e
te
r
s

2.5

5.0

7.5

10.0

12.5

Minutes

519

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3

Prediction step

A
v
e
ra

g
e
 f
it
n
e
s
s

Method

ESS-NS

ESSIM-EA

ESSIM-DE

ESS

519

(b)

1 2 3

E
S
S
-N
S

E
S
S
IM
-E
A

E
S
S
IM
-D
E

E
S
S

E
S
S
-N
S

E
S
S
IM
-E
A

E
S
S
IM
-D
E

E
S
S

E
S
S
-N
S

E
S
S
IM
-E
A

E
S
S
IM
-D
E

E
S
S

0.00

0.25

0.50

0.75

1.00

Method

F
it
n
e
s
s

519

(c)

Figure 10. Case 519: (a) map of the real fire spread; (b) fitness averages; and (c) fitness distributions.

Algorithms 2022, 15, 478 22 of 30

20

40

60

20 40 60

Meters

M
e
te
r
s

2

4

6

8

Minutes

534

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5

Prediction step

A
v
e
ra

g
e
 f
it
n
e
s
s

Method

ESS-NS

ESSIM-EA

ESSIM-DE

ESS

534

(b)

1 2 3 4 5

E
S
S
-N
S

E
S
S
IM
-E
A

E
S
S
IM
-D
E
E
S
S

E
S
S
-N
S

E
S
S
IM
-E
A

E
S
S
IM
-D
E
E
S
S

E
S
S
-N
S

E
S
S
IM
-E
A

E
S
S
IM
-D
E
E
S
S

E
S
S
-N
S

E
S
S
IM
-E
A

E
S
S
IM
-D
E
E
S
S

E
S
S
-N
S

E
S
S
IM
-E
A

E
S
S
IM
-D
E
E
S
S

0.00

0.25

0.50

0.75

Method

F
it
n
e
s
s

534

(c)

Figure 11. Case 534: (a) map of the real fire spread; (b) fitness averages; and (c) fitness distributions.

Algorithms 2022, 15, 478 23 of 30

As for the fitness distribution in Figures 7c, 8c, 9c, 10c and 11c, ESS-NS presents a
much narrower distribution of predictions compared to ESS and ESSIM-EA. ESSIM-DE
presents more variability in this respect, with the lowest distribution of fitness values for
Cases 533 and 534 throughout all steps and in some of the steps for Cases 520, 751, and
519. In general, the best method regarding fitness distribution is ESS-NS, which is most
likely related to its strategy of keeping a set of solutions of high fitness found throughout
the search instead of returning a final population as the other methods. This provides a
guarantee of the robustness of the method, which yields similar results regardless of the
initial population.

The runtimes for ESS-NS (Table 4) are considerably faster than the other methods for Cases
533, 751, 519, and 534. In these cases, the times for ESS-NS are proportional to those of ESSIM-
DE. For Case 520, the runtimes of ESS-NS are longer than ESSIM-DE, and comparable to ESS,
but still better than ESSIM-EA. Overall, ESS-NS is the fastest method for these experiments.
Regarding time complexity, the main bottleneck for these methods is the simulation time;
therefore, this complexity is determined by the population size, the number of iterations, and the
number of individuals that are different in each population (assuming that all implementations
avoid repeating simulations that have already been performed when the same individual
remains in a subsequent iteration). Then, the improvements seen with NS are mainly due to
its exploration ability, which often allows it to reach the fitness threshold earlier than other
methods. Changing the fitness threshold also affects the time complexity, providing a parameter
for the trade-off between speed and quality. As stated in Section 4.1, for simplicity and for the
sake of comparison, we decided for ESS-NS to keep the same value of fitness threshold as the
other methods, which had been chosen in previous works based on calibration experiments.
Nevertheless, it would be interesting to test how this value affects different methods as a future
line of research.

It is important to note that ESS-NS achieves quality results that are similar to the
ESSIM methods but without the island model component. That is, it outperforms the
original ESS only by means of a different metaheuristic. One advantage of this is that the
time complexity of ESS-NS is not burdened with the additional computations for handling
the islands and the migration of individuals present in the ESSIM methods. Another
implication is that, just as ESSIM-EA and ESSIM-DE benefited from the use of an island
model and were able to improve quality results, this will likely also be true for ESS-NS if the
same strategy is applied to it. However, one should also take into account that there exist a
number of variants of ESSIM-DE that have shown improved quality and runtimes [13,25].
These results have been excluded because we decided that a fair comparison would use
the base methods with their statically calibrated configuration parameters but without the
dynamic tuning techniques.

As a final note, it is important to emphasize that this new approach improves the
quality of predictions by means of a metaheuristic that employs fewer parameters, which
makes it easier to adapt to a specific problem. Another advantage is the method for
constructing the final set of results, which provides more control over which solutions will
be kept or discarded. In this case, the algorithm keeps a number of the highest fitness
solutions found during the search, and this number can be established by a parameter
(for simplicity, in our experiments we have used the same number as the population size
for the results set). This mechanism improves robustness in the distribution of quality
results over many different runs of the prediction process. Finally, this approach is simpler
to understand and implement than its predecessors. For all these reasons, we find that,
overall, the new method is the best regarding quality, robustness, and efficiency.

5. Conclusions

In this work, we have proposed a new parallel metaheuristic approach for uncertainty
reduction applied to the problem of wildfire propagation prediction. It is based on previous
methods that also use parallel metaheuristics, but in this case, we follow the recently devel-
oped Novelty Search paradigm. We designed a novel genetic algorithm based on NS, which

Algorithms 2022, 15, 478 24 of 30

guides the evolution of the population according to the novelty of the solutions. During the
search, the solutions of highest fitness are stored and then returned as the solution set at the
end of the evolution process. The results obtained with this new method show consistent
improvements in quality and execution times with respect to previous approaches.

While in this work we have experimented with the particular use case of wildfires, the
scope of application of ESS-NS can be extended in at least three ways. Firstly, given that
the fire simulator is used as a black box, it could potentially be replaced with another one if
necessary. Secondly, as with its predecessors, another propagation simulator might also
be used in order to adapt the system for the prediction of different phenomena, such as
floods, avalanches, or landslides. Thirdly, although ESS-NS was designed for this kind of
phenomena, the applications of its internal optimization algorithm (Algorithm 1) are wider;
it can potentially be applied to any problem that can be adapted to a GA representation.

Regarding the weaknesses and limitations of ESS-NS, these are directly related to the
requirements of the system: it depends on a fire simulator (which has its own sources of er-
rors), it needs to obtain maps from the real fire spread at each step, and two simulation steps
are needed before a first prediction can be made. In addition, it is possible that many vari-
ables are unknown, and this can cause the search process to be more resource-consuming.
However, provided that the appropriate resources can be obtained, i.e., hardware and
real-time information of the terrain, this method is already capable of producing useful
predictions for real-world decision-making tasks.

As next steps, the two most interesting paths are related to the parallelization and the
behavioral characterization. On the one hand, our current version of ESS-NS only takes
advantage of parallelization at the level of the fitness evaluations. Different parallelization
techniques could be applied in order to improve quality, execution times, or both. Regarding
quality, the most straightforward of these methods would be an island model, such as
the ones in ESSIM-EA and ESSIM-DE, but with migration strategies designed specifically
for NS. The island model would allow the search process to be carried out with several
populations at once, increasing the level of exploration and, as a consequence, the quality
of the final results. A migration strategy could even introduce hybridization with a fitness-
based approach. Other parallelization approaches could be applied to the remaining
sequential steps of Novelty search, e.g., novelty score computation. On the other hand, the
current behavioral characterization is based on fitness values, which may bias the search
towards high fitness depending on the parameters of the metaheuristic, e.g., the population
size. An interesting hypothesis is that a different behavioral characterization based on the
simulation results may be a better guide for the exploration of the search space. Therefore,
another possibility of improvement could be a novelty score that relies on the distance
between simulated maps instead of on the fitness difference.

Lastly, another possibility is the design of a dynamic size archive and/or solution set,
a novelty threshold for including solutions in the archive as in [19] or even switching the
underlying metaheuristic and adapting its mechanisms to the application problem.

Author Contributions: Conceptualization, J.S., P.C.-S. and G.B.; methodology, P.C.-S. and G.B.;

software, J.S.; formal analysis, J.S., P.C.-S. and G.B.; investigation, J.S.; resources, P.C.-S. and G.B.;

writing—original draft preparation, J.S.; writing—review and editing, P.C.-S. and G.B.; visualization,

J.S.; supervision, P.C.-S. and G.B.; project administration, P.C.-S., G.B. and J.S.; funding acquisition,

P.C.-S., G.B. and J.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been supported by Universidad Tecnológica Nacional under the project

SIUTIME0007840TC, by FONCyT (Fondo para la Investigación Científica y Tecnológica, Agencia

Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación, Argentina)

under the project UUMM-2019-00042, and by CONICET (Consejo Nacional de Investigaciones

Científicas y Técnicas) through a postdoctoral scholarship for the first author.

Data Availability Statement: The data and source code for visualization of results is available online

at https://github.com/jstrappa/ess-ns-supplementary.git, accessed on 13 October 2022. Other

data and sources that are not openly available may be provided by the corresponding author

https://github.com/jstrappa/ess-ns-supplementary.git

Algorithms 2022, 15, 478 25 of 30

on reasonable request. We have provided supplementary information consisting of primary re-

sults, together with R code for visualizing them with static and interactive plots, and an online

report with these results. The results contain the same information as published in this work, in a

slightly different format, and consist of: figures for the fitness averages; fitness averages distribu-

tion; heatmap tables as in Appendix A; computation of MSE score; and runtime averages distribu-

tion. The online report with interactive figures can be read at https://jstrappa.quarto.pub/ess-ns-

experimentation/, accessed on 13 October 2022. The complete source material can be accessed at:

https://github.com/jstrappa/ess-ns-supplementary.git, accessed on 13 October 2022.

Acknowledgments: We wish to thank María Laura Tardivo (ORCiD ID: 0000-0003-1268-7367, Univer-

sidad Nacional de Río Cuarto, Argentina) for providing primary results for the fitness and average

runtimes of the methods ESS, ESSIM-EA and ESSIM-DE. Thanks are also due to the LIDIC laboratory

(Laboratorio de Investigación y Desarrollo en Inteligencia Computacional), Universidad Nacional de

San Luis, Argentina, for providing the hardware equipment for the experimentation.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design

of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or

in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

DDM Data-Driven Methods

DDM-MOS Data-Driven methods with Multiple Overlapping Solutions

ESS Evolutionary Statistical System

ESS-NS Evolutionary Statistical System based on Novelty Search

ESSIM Evolutionary Statistical System with Island Model

ESSIM-EA ESSIM based on evolutionary algorithms

ESSIM-DE ESSIM based on Differential Evolution

GA Genetic Algorithm

NS Novelty Search

PEA Parallel Evolutionary Algorithm

OS Optimization Stage

SS Statistical Stage

CS Calibration Stage

PS Prediction Stage

RFL Real Fire Line

PFL Predicted Fire Line

Appendix A. Calibration Experiment

In this section, we describe a calibration experiment performed for ESS-NS. The
motivation of this experiment was to produce information in order to choose sensible
parameters for comparison against the other methods in Section 4. Static calibrations are
motivated by the fact that metaheuristics usually have a set of parameters that can be very
sensitive to the application problem. Therefore, it is often necessary to test a number of
combinations of possible values for these parameters in order to find values that are suitable
for the kind of problem to be solved. Previous work [22,46] includes static calibration for
several parameters of ESSIM-EA and ESSIM-DE, including number of islands, number of
workers per island, and frequency of migration, among others. In the context of our current
work, most parameters are fixed in order to perform a fair comparison. For example, the
population size and fitness threshold are the same for all methods, and the number of
workers is the same for ESS and ESS-NS. This gives all algorithms similar computational
resources and restrictions. As a particular case, we have fixed the crossover rate at one
since we consider this to be the most direct approach for a novelty-based strategy, given
such a value maximizes diversity. These simplifications also help narrow down the space of
possible combinations of parameters. Therefore, our calibration was performed by varying

https://jstrappa.quarto.pub/ess-ns-experimentation/
https://jstrappa.quarto.pub/ess-ns-experimentation/
https://github.com/jstrappa/ess-ns-supplementary.git
https://orcid.org/0000-0003-1268-7367

Algorithms 2022, 15, 478 26 of 30

only two parameters: tournament probability and mutation probability (or mutation rate).
The candidate values vary among the following, respectively:

tour_prob ∈ {0.75, 0.8, 0.85, 0.9}

mut_prob ∈ {0.1, 0.2, 0.3, 0.4}

Appendix A.1. Results

Tables A1–A5 show the fitness averages resulting from running ESS-NS with each
combination of parameters. There is one table for each controlled fire. In each table, the
rows show the fitness values, averaged over 30 repetitions, for a particular configuration of
the parameters. For columns are labeled by numbers; the number indicates the prediction
step. The f̄ column is the average fitness over all steps, and the last column, t(s), shows
total runtime values in seconds. The runtimes for each repetition correspond to the whole
execution (including all steps); the runtimes shown are averaged over 30 repetitions. The
darker the color, the better the results, both for quality (fitness) and runtimes.

Table A1. Calibration results for map 520. Colored columns show fitness averages for each step

(identified by step number), average over all steps (f̄), and runtimes (in seconds). Each row is a

combination of two parameters: tournament probability (tour) and mutation rate (mut).

Tour Mut 1 2 3 4 5 f̄ t (s)

0.75

0.1 0.879 0.720 0.864 0.817 0.883 0.833 2813.000
0.2 0.882 0.769 0.861 0.837 0.884 0.847 3091.330
0.3 0.882 0.777 0.855 0.807 0.881 0.840 3202.670
0.4 0.883 0.769 0.862 0.823 0.882 0.844 3176.670

0.8

0.1 0.888 0.713 0.866 0.765 0.882 0.823 3358.330
0.2 0.888 0.785 0.862 0.763 0.883 0.836 3087.670
0.3 0.884 0.777 0.863 0.786 0.883 0.838 3058.000
0.4 0.882 0.755 0.861 0.790 0.881 0.834 3232.000

0.85

0.1 0.882 0.760 0.862 0.801 0.885 0.838 2760.670
0.2 0.888 0.781 0.860 0.815 0.879 0.845 2977.000
0.3 0.883 0.781 0.855 0.741 0.884 0.829 3067.330
0.4 0.879 0.759 0.857 0.816 0.880 0.838 3162.670

0.9

0.1 0.880 0.711 0.860 0.734 0.884 0.814 2800.330
0.2 0.882 0.710 0.862 0.786 0.881 0.824 2821.000
0.3 0.882 0.775 0.866 0.824 0.880 0.845 3055.000
0.4 0.885 0.779 0.864 0.810 0.882 0.844 3131.000

Table A2. Calibration results for map 533. Colored columns show fitness averages for each step

(identified by step number), average over all steps (f̄), and runtimes (in seconds). Each row is a

combination of two parameters: tournament probability (tour) and mutation rate (mut).

Tour Mut 1 2 3 4 f̄ t (s)

0.75

0.1 0.672 0.675 0.731 0.696 0.694 2122.970
0.2 0.754 0.773 0.743 0.751 0.755 2239.330
0.3 0.709 0.784 0.722 0.755 0.742 2148.000
0.4 0.737 0.790 0.769 0.784 0.770 2284.330

0.8

0.1 0.706 0.722 0.745 0.736 0.727 2003.330
0.2 0.737 0.707 0.703 0.765 0.728 2192.670
0.3 0.743 0.737 0.731 0.762 0.743 2165.670
0.4 0.737 0.741 0.745 0.769 0.748 2247.000

0.85

0.1 0.739 0.801 0.770 0.781 0.773 2176.670
0.2 0.719 0.806 0.784 0.766 0.769 2392.000
0.3 0.707 0.762 0.738 0.740 0.737 2262.000
0.4 0.703 0.781 0.723 0.769 0.744 2296.000

0.9

0.1 0.785 0.801 0.766 0.751 0.776 2128.330
0.2 0.717 0.817 0.728 0.758 0.755 2271.670
0.3 0.717 0.743 0.700 0.757 0.730 2317.330
0.4 0.782 0.784 0.721 0.780 0.767 2304.000

Algorithms 2022, 15, 478 27 of 30

Table A3. Calibration results for map 751. Colored columns show fitness averages for each step

(identified by step number), average over all steps (f̄), and runtimes (in seconds). Each row is a

combination of two parameters: tournament probability (tour) and mutation rate (mut).

Tour Mut 1 2 3 f̄ t (s)

0.75

0.1 0.893 0.888 0.805 0.862 992.433
0.2 0.942 0.864 0.854 0.886 1064.730
0.3 0.938 0.888 0.848 0.891 1042.970
0.4 0.950 0.897 0.843 0.897 1048.870

0.8

0.1 0.954 0.896 0.821 0.890 1011.500
0.2 0.899 0.875 0.803 0.859 1056.670
0.3 0.948 0.884 0.836 0.889 1034.700
0.4 0.924 0.875 0.832 0.877 1064.630

0.85

0.1 0.933 0.861 0.803 0.866 963.733
0.2 0.941 0.888 0.841 0.890 1002.300
0.3 0.937 0.900 0.855 0.897 1017.730
0.4 0.932 0.876 0.822 0.877 1088.230

0.9

0.1 0.898 0.888 0.794 0.860 1043.030
0.2 0.932 0.892 0.841 0.889 1021.170
0.3 0.947 0.887 0.843 0.892 1039.770
0.4 0.947 0.883 0.834 0.888 1055.770

Table A4. Calibration results for map 519. Colored columns show fitness averages for each step

(identified by step number), average over all steps (f̄), and runtimes (in seconds). Each row is a

combination of two parameters: tournament probability (tour) and mutation rate (mut).

Tour Mut 1 2 3 f̄ t (s)

0.75

0.1 0.886 0.931 0.783 0.867 1738.670
0.2 0.881 0.926 0.834 0.880 1835.000
0.3 0.897 0.910 0.771 0.859 1879.330
0.4 0.897 0.882 0.812 0.863 1949.000

0.8

0.1 0.893 0.912 0.728 0.845 1770.000
0.2 0.890 0.924 0.800 0.871 1844.000
0.3 0.901 0.926 0.779 0.869 1902.330
0.4 0.875 0.923 0.811 0.870 1912.000

0.85

0.1 0.865 0.834 0.782 0.827 1787.670
0.2 0.872 0.925 0.741 0.846 1810.330
0.3 0.896 0.901 0.772 0.856 1874.670
0.4 0.904 0.907 0.765 0.859 1965.000

0.9

0.1 0.864 0.914 0.751 0.843 1804.000
0.2 0.897 0.906 0.805 0.869 1822.670
0.3 0.863 0.923 0.755 0.847 1892.000
0.4 0.898 0.917 0.724 0.846 1888.000

In order to choose a combination of parameters that better generalizes for all maps, we
computed the mean squared error (MSE) [49] for each combination, using 1− f̄ (where f̄ is
the average fitness over all prediction steps) as the error. Formally, for each combination of
parameters {tour_prob, mut_prob}, we computed:

MSEtour,mut =
1

n

n

∑
i=1

(1− f̄i)
2 (A1)

where f̄i is the fitness average over all steps for each map, and n is the number of ex-
periments, in this case, five, corresponding to the five controlled fires. The combination
of parameters that minimizes the MSE is {tour = 0.75, mut = 0.4}. Therefore, we have
chosen this combination for comparison against the competitors in Section 4. Nevertheless,
the results seem to imply that there is no single combination of parameters that clearly
outperforms all the others considerably. This aspect adds to the robustness of the method,
since it is not very sensitive to variations of these parameters.

Algorithms 2022, 15, 478 28 of 30

Table A5. Calibration results for map 534. Colored columns show fitness averages for each step

(identified by step number), average over all steps (f̄), and runtimes (in seconds). Each row is a

combination of two parameters: tournament probability (tour) and mutation rate (mut).

Tour Mut 1 2 3 4 5 f̄ t (s)

0.75

0.1 0.738 0.573 0.588 0.804 0.768 0.694 1593.330
0.2 0.697 0.590 0.700 0.796 0.751 0.707 1665.000
0.3 0.762 0.575 0.692 0.839 0.757 0.725 1655.330
0.4 0.762 0.575 0.699 0.822 0.742 0.720 1698.670

0.8

0.1 0.696 0.566 0.662 0.809 0.756 0.698 1643.330
0.2 0.778 0.590 0.687 0.822 0.765 0.728 1644.000
0.3 0.738 0.582 0.679 0.829 0.723 0.710 1654.670
0.4 0.793 0.547 0.692 0.811 0.734 0.716 1628.330

0.85

0.1 0.754 0.590 0.708 0.825 0.753 0.726 1599.000
0.2 0.770 0.547 0.667 0.786 0.780 0.710 1642.000
0.3 0.692 0.563 0.676 0.839 0.759 0.706 1672.330
0.4 0.744 0.590 0.668 0.841 0.759 0.720 1702.000

0.9

0.1 0.667 0.547 0.669 0.808 0.756 0.689 1578.500
0.2 0.778 0.590 0.700 0.811 0.770 0.730 1652.000
0.3 0.771 0.582 0.708 0.795 0.731 0.717 1686.000
0.4 0.762 0.582 0.700 0.825 0.755 0.725 1673.330

References

1. Facts Plus Statistics: Wildfires—III. Available online: https://www.iii.org/fact-statistic/facts-statistics-wildfires#Wildland%20

fires (accessed on 13 October 2022).

2. Burgan, R.E.; Rothermel, R.C. BEHAVE: Fire Behavior Prediction and Fuel Modeling System—FUEL Subsystem; U.S. Department of

Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1984. [CrossRef]

3. Finney, M.A. FARSITE: Fire Area Simulator-Model Development and Evaluation; Res. Pap. RMRS-RP-4, Revised 2004; U.S.

Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 1998; Volume 4, 47p. [CrossRef]

4. Smith, J.E. vFireLib: A Forest Fire Simulation Library Implemented on the GPU. Master’s Thesis, University of Nevada, Reno,

NV, USA, 2016.

5. Heinsch, F.A.; Andrews, P.L. BehavePlus Fire Modeling System, Version 5.0: Design and Features; Gen. Tech. Rep. RMRS-GTR-249;

U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2010; Volume 249, 111p.

[CrossRef]

6. Lopes, A.; Cruz, M.; Viegas, D. FireStation—An Integrated Software System for the Numerical Simulation of Fire Spread on

Complex Topography. Environ. Model. Softw. 2002, 17, 269–285. [CrossRef]

7. Abdalhaq, B.; Cortés, A.; Margalef, T.; Bianchini, G.; Luque, E. Between Classical and Ideal: Enhancing Wildland Fire Prediction

Using Cluster Computing. Clust. Comput. 2006, 9, 329–343. [CrossRef]

8. Piñol, J.; Salvador, R.; Beven, K.; Viegas, D.X. Model Calibration and Uncertainty Prediction of Fire Spread. In Forest Fire Research

and Wildland Fire Safety: Proceedings of IV International Conference on Forest Fire Research 2002 Wildland Fire Safety Summit, Coimbra,

Portugal, 18–23 November 2002; Millpress Science Publishers: Rotterdam, The Netherlands, 2002.

9. Bianchini, G.; Denham, M.; Cortés, A.; Margalef, T.; Luque, E. Wildland Fire Growth Prediction Method Based on Multiple

Overlapping Solution. J. Comput. Sci. 2010, 1, 229–237. [CrossRef]

10. Bianchini, G.; Caymes-Scutari, P.; Méndez Garabetti, M. Evolutionary-Statistical System: A Parallel Method for Improving Forest

Fire Spread Prediction. J. Comput. Sci. 2015, 6, 58–66. [CrossRef]

11. Méndez Garabetti, M.; Bianchini, G.; Tardivo, M.L.; Caymes Scutari, P. Comparative Analysis of Performance and Quality of

Prediction Between ESS and ESS-IM. Electron. Notes Theor. Comput. Sci. 2015, 314, 45–60. [CrossRef]

12. Méndez Garabetti, M.; Bianchini, G.; Caymes Scutari, P.; Tardivo, M.L.; Gil Costa, V. ESSIM-EA Applied to Wildfire Prediction

Using Heterogeneous Configuration for Evolutionary Parameters. In Proceedings of the XXIII Congreso Argentino de Ciencias

de la Computación, La Plata, Argentina, 9–13 October 2017; p. 10.

13. Tardivo, M.L.; Caymes Scutari, P.; Méndez Garabetti, M.; Bianchini, G. Optimization for an Uncertainty Reduction Method

Applied to Forest Fires Spread Prediction. In Computer Science—CACIC 2017; De Giusti, A.E., Ed.; Springer International

Publishing: Cham, Switzerland, 2018; Volume 790, pp. 13–23. [CrossRef]

14. Mitchell, M. An Introduction to Genetic Algorithms; The MIT Press: Cambridge, MA, USA, 1998. [CrossRef]

15. Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley: Reading, MA, USA, 1988.

16. Bilal.; Pant, M.; Zaheer, H.; Garcia-Hernandez, L.; Abraham, A. Differential Evolution: A Review of More than Two Decades of

Research. Eng. Appl. Artif. Intell. 2020, 90, 103479. [CrossRef]

17. Malan, K.M.; Engelbrecht, A.P. A Survey of Techniques for Characterising Fitness Landscapes and Some Possible Ways Forward.

Inf. Sci. 2013, 241, 148–163. [CrossRef]

https://www.iii.org/fact-statistic/facts-statistics-wildfires#Wildland%20fires
https://www.iii.org/fact-statistic/facts-statistics-wildfires#Wildland%20fires
http://doi.org/10.2737/INT-GTR-167
http://dx.doi.org/10.2737/RMRS-RP-4
http://dx.doi.org/10.2737/RMRS-GTR-249
http://dx.doi.org/10.1016/S1364-8152(01)00072-X
http://dx.doi.org/10.1007/s10586-006-9745-4
http://dx.doi.org/10.1016/j.jocs.2010.07.005
http://dx.doi.org/10.1016/j.jocs.2014.12.001
http://dx.doi.org/10.1016/j.entcs.2015.05.004
http://dx.doi.org/10.1007/978-3-319-75214-3_2
http://dx.doi.org/10.7551/mitpress/3927.001.0001
http://dx.doi.org/10.1016/j.engappai.2020.103479
http://dx.doi.org/10.1016/j.ins.2013.04.015

Algorithms 2022, 15, 478 29 of 30

18. Lehman, J.; Stanley, K.O. Abandoning Objectives: Evolution Through the Search for Novelty Alone. Evol. Comput. 2011,

19, 189–223. ._a_00025. [CrossRef]

19. Lehman, J.; Stanley, K.O. Exploiting Open-Endedness to Solve Problems Through the Search for Novelty. In Artificial Life; 2008;

p. 329; ISBN 978-0-262-75017-2. Available online: http://eprints.soton.ac.uk/id/eprint/266740 (accessed on 13 October 2022).

20. Lehman, J.; Stanley, K.O. Evolvability Is Inevitable: Increasing Evolvability without the Pressure to Adapt. PLoS ONE 2013,

8, 2–10. [CrossRef]

21. Strappa, J.; Caymes-Scutari, P.; Bianchini, G. A Parallel Novelty Search Metaheuristic Applied to a Wildfire Prediction System. In

Proceedings of the 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Lyon, France,

30 May–3 June 2022; pp. 798–806. [CrossRef]

22. Tardivo, M.L. Paralelización Y Sintonización De Evolución Diferencial Aplicada a Un Método De Reducción De Incertidumbre

Para La Predicción De Incendios Forestales. Ph.D. Thesis, Universidad Nacional de San Luis, San Luis, Argentina.

23. Naono, K.; Teranishi, K.; Cavazos, J.; Suda, R. (Eds.) Software Automatic Tuning; Springer: New York, NY, USA, 2010. [CrossRef]

24. Caymes Scutari, P.; Bianchini, G.; Sikora, A.; Margalef, T. Environment for Automatic Development and Tuning of Parallel

Applications. In Proceedings of the 2016 International Conference on High Performance Computing & Simulation (HPCS),

Innsbruck, Austria, 18–22 July 2016; IEEE: Innsbruck, Austria, 2016; pp. 743–750. [CrossRef]

25. Caymes Scutari, P.; Tardivo, M.L.; Bianchini, G.; Méndez Garabetti, M. Dynamic Tuning of a Forest Fire Prediction Parallel

Method. In Computer Science—CACIC 2019; Pesado, P., Arroyo, M., Eds.; Springer International Publishing: Cham, Switzerland,

2020; Volume 1184, pp. 19–34. ._2. [CrossRef]

26. Zou, F.; Chen, D.; Liu, H.; Cao, S.; Ji, X.; Zhang, Y. A Survey of Fitness Landscape Analysis for Optimization. Neurocomputing

2022, 503, 129–139. [CrossRef]

27. Pugh, J.K.; Soros, L.B.; Stanley, K.O. Quality Diversity: A New Frontier for Evolutionary Computation. Front. Robot. AI 2016, 3,

40. [CrossRef]

28. Gomes, J.; Urbano, P.; Christensen, A.L. Evolution of Swarm Robotics Systems with Novelty Search. Swarm Intell. 2013, 7, 115–144.

[CrossRef]

29. Krčah, P. Solving Deceptive Tasks in Robot Body-Brain Co-evolution by Searching for Behavioral Novelty. In Advances in Robotics

and Virtual Reality; Kacprzyk, J., Jain, L.C., Gulrez, T., Hassanien, A.E., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg,

Germany, 2012; Volume 26, pp. 167–186. ._7. [CrossRef]

30. Lehman, J.; Stanley, K.O. Evolving a Diversity of Virtual Creatures through Novelty Search and Local Competition. In Proceedings

of the 13th Annual Conference on Genetic and Evolutionary Computation—GECCO ’11, Dublin, Ireland, 12–16 July 2011; ACM

Press: Dublin, Ireland, 2011; p. 211. [CrossRef]

31. Ollion, C.; Doncieux, S. Why and How to Measure Exploration in Behavioral Space. In Proceedings of the 13th Annual Conference

on Genetic and Evolutionary Computation—GECCO ’11, Dublin, Ireland, 12–16 July 2011; ACM Press: Dublin, Ireland, 2011;

p. 267. [CrossRef]

32. Gomes, J.; Mariano, P.; Christensen, A.L. Devising Effective Novelty Search Algorithms: A Comprehensive Empirical Study. In

Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, Madrid, Spain, 11–15 July 2015; ACM:

Madrid, Spain, 2015; pp. 943–950. [CrossRef]

33. Doncieux, S.; Paolo, G.; Laflaquière, A.; Coninx, A. Novelty Search Makes Evolvability Inevitable. arXiv 2020, arXiv:2005.06224.

34. Galvao, D.F.; Lehman, J.; Urbano, P. Novelty-Driven Particle Swarm Optimization; Bonnevay, S., Legrand, P., Monmarché, N.,

Lutton, E., Schoenauer, M., Eds.; Artificial Evolution. EA 2015. Lecture Notes in Computer Science; Springer: Cham, Swizerland,

2015; Volume 9554, pp. 177–190. ._14. [CrossRef]

35. Cuccu, G.; Gomez, F. When Novelty Is Not Enough. In Applications of Evolutionary Computation; Di Chio, C., Cagnoni, S., Cotta, C.,

Ebner, M., Ekárt, A., Esparcia-Alcázar, A.I., Merelo, J.J., Neri, F., Preuss, M., Richter, H., et al., Eds.; Springer: Berlin/Heidelberg,

Germany, 2011; Volume 6624, pp. 234–243. ._24. [CrossRef]

36. Mouret, J.B.; Doncieux, S. Encouraging Behavioral Diversity in Evolutionary Robotics: An Empirical Study. Evol. Comput. 2012,

20, 91–133. ._a_00048. [CrossRef] [PubMed]

37. Pugh, J.K.; Soros, L.B.; Szerlip, P.A.; Stanley, K.O. Confronting the Challenge of Quality Diversity. In Proceedings of the 2015

Annual Conference on Genetic and Evolutionary Computation, Madrid, Spain, 11–15 July 2015; ACM: Madrid, Spain, 2015;

pp. 967–974. [CrossRef]

38. Cully, A.; Clune, J.; Tarapore, D.; Mouret, J.B. Robots That Can Adapt like Animals. Nature 2015, 521, 503–507. [CrossRef]

[PubMed]

39. Mouret, J.B.; Clune, J. Illuminating Search Spaces by Mapping Elites. arXiv 2015, arXiv:1504.04909.

40. Hodjat, B.; Shahrzad, H.; Miikkulainen, R. Distributed Age-Layered Novelty Search. In Proceedings of the Artificial Life

Conference 2016, Cancun, Mexico, 4–6 July 2016; MIT Press: Cancun, Mexico, 2016; pp. 131–138. [CrossRef]

41. Liu, Q.; Wang, Y.; Liu, X. PNS: Population-Guided Novelty Search for Reinforcement Learning in Hard Exploration Environments.

In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic,

27 September–1 October 2021. [CrossRef]

42. Andrews, P.L. BehavePlus Fire Modeling System, Version 5.0: Variables; Gen. Tech. Rep. RMRS-GTR-213 Revised; Department of

Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2009; Volume 213, 111p. [CrossRef]

43. Real, R.; Vargas, J.M. The Probabilistic Basis of Jaccard’s Index of Similarity. Syst. Biol. 1996, 45, 380–385. [CrossRef]

http://dx.doi.org/10.1162/EVCO_a_00025
http://eprints.soton.ac.uk/id/eprint/266740
http://dx.doi.org/10.1371/annotation/f4c5a0f3-cb53-4c05-a84c-f0aead483b77
http://dx.doi.org/10.1109/IPDPSW55747.2022.00134
http://dx.doi.org/10.1007/978-1-4419-6935-4
http://dx.doi.org/10.1109/HPCSim.2016.7568409
http://dx.doi.org/10.1007/978-3-030-48325-8_2
http://dx.doi.org/10.1016/j.neucom.2022.06.084
http://dx.doi.org/10.3389/frobt.2016.00040
http://dx.doi.org/10.1007/s11721-013-0081-z
http://dx.doi.org/10.1007/978-3-642-23363-0_7
http://dx.doi.org/10.1145/2001576.2001606
http://dx.doi.org/10.1145/2001576.2001613
http://dx.doi.org/10.1145/2739480.2754736
http://dx.doi.org/10.1007/978-3-319-31471-6_14
http://dx.doi.org/10.1007/978-3-642-20525-5_24
http://dx.doi.org/10.1162/EVCO_a_00048
http://www.ncbi.nlm.nih.gov/pubmed/21838553
http://dx.doi.org/10.1145/2739480.2754664
http://dx.doi.org/10.1038/nature14422
http://www.ncbi.nlm.nih.gov/pubmed/26017452
http://dx.doi.org/10.7551/978-0-262-33936-0-ch027
http://dx.doi.org/10.1109/iros51168.2021.9636234
http://dx.doi.org/10.2737/RMRS-GTR-213
http://dx.doi.org/10.1093/sysbio/45.3.380

Algorithms 2022, 15, 478 30 of 30

44. Forest Fire Spread Prevention and Mitigation, SPREAD Project, Fact Sheet, FP5, CORDIS, European Commission. Available

online: https://cordis.europa.eu/project/id/EVG1-CT-2001-00043 (accessed on 13 October 2022).

45. Tardivo, M.L.; Caymes Scutari, P.; Bianchini, G.; Méndez Garabetti, M.; Cencerrado, A.; Cortés, A. A Comparative Study of

Evolutionary Statistical Methods for Uncertainty Reduction in Forest Fire Propagation Prediction. Procedia Comput. Sci. 2017,

108, 2018–2027. [CrossRef]

46. Méndez Garabetti, M.; Bianchini, G.; Gil Costa, V.; Caymes Scutari, P. Método de Reducción de Incertidumbre Basado en

Algoritmos Evolutivos y Paralelismo Orientado a la Predicción y Prevención de Desastres Naturales. AJEA 2020, 5. [CrossRef]

47. MPICH—High-Performance Portable MPI. Available online: https://www.mpich.org/ (accessed on 13 October 2022).

48. Bianchini, G.; Cortés, A.; Margalef, T.; Luque, E. Improved Prediction Methods for Wildfires Using High Performance Computing: A

Comparison; Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J., Eds.; Computational Science—ICCS 2006. ICCS 2006.

Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 3991. [CrossRef]

49. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer Texts in

Statistics; Springer: New York, NY, USA, 2021. [CrossRef]

https://cordis.europa.eu/project/id/EVG1-CT-2001-00043
http://dx.doi.org/10.1016/j.procs.2017.05.252
http://dx.doi.org/10.33414/ajea.5.749.2020
https://www.mpich.org/
http://dx.doi.org/10.1007/11758501_73
http://dx.doi.org/10.1007/978-1-0716-1418-1

	Introduction
	Related Works
	ESS Framework
	ESSIM-EA and ESSIM-DE Frameworks
	Novelty Search: Paradigm and Applications

	Novelty-Based Approach for the Optimization Stage in a Wildfire Prediction System
	New Framework: ESS-NS
	Novelty-Based Genetic Algorithm with Multiple Solutions

	Experimentation and Results
	Experimental Setup
	Results
	Discussion

	Conclusions
	Appendix A
	Appendix A.1

	References

