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Abstract
The time needed by a quantum system to reach a state fully distinguishable
from the original one provides a natural way of determining how fast the
corresponding dynamical evolution is. This orthogonality time admits a lower
bound, expressible in terms of the energy’s expectation value and the energy’s
standard deviation, that yields a ‘quantum speed limit’. Composite quantum
systems need entanglement in order to achieve this limit. So far, most studies on
the connection between entanglement and the quantum speed limit have focused
on the case of non-interacting systems. The connection between quantum speed
and entanglement is systematically investigated here for the case of a system of
two interacting qubits, taking into consideration all possible initial states that
evolve into an orthogonal one.

PACS numbers: 03.65.−w, 03.65.Ud, 03.67.−a

(Some figures may appear in colour only in the online journal)

1. Introduction

Two pure states of a quantum system are fully distinguishable if, and only if, they are
orthogonal. This basic fact of quantum physics leads to a natural way of assessing how
fast a quantum system evolves in time [1–4]. The ‘speed’ of quantum evolution is determined
by the minimum time τ required by a quantum system to evolve into a state orthogonal to
the initial one (the smaller the orthogonality time τ , the faster is the system’s evolution). This
approach to the speed of quantum dynamical evolution is relevant from the fundamental as well
as the applied points of view. The orthogonality time of a quantum system with Hamiltonian
H admits lower bounds both in terms of the standard deviation �E =

√
〈H2〉 − 〈H〉2 of the

energy and also in terms of the shifted energy expectation value E = 〈H〉 − E0, where E0 is
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the energy of the system’s ground state; that is, when computing E one chooses the zero of
energy as the energy of the ground state. The inequality relating τ to �E,

�Eτ � 1
2π�, (1)

can be interpreted as a time–energy uncertainty relation [5]. This is not, of course, the only
possible formulation of a time–energy uncertainty relation. The study of such relations and
their applications is in itself an active research area (see, for instance, [5, 6] and references
therein). An alternative lower bound for the orthogonality time, based directly on the energy
expectation value, was discovered by Margolus and Levitin [1],

Eτ � 1
2π�. (2)

When considering quantum mechanical information processing devices, the orthogonality time
τ provides a convenient estimate of the minimum time required by the system to perform an
elementary information processing step. A considerable amount of research has been devoted
in recent years to the investigation of this and related concepts, which constitute powerful
tools for exploring the fundamental limits imposed by the quantum mechanical laws of nature
on the information-processing capabilities of physical systems [7–16].

Combining the two basic lower bounds for the orthogonality time, one based on �E and
the other one on E, the lowest possible value of τ is [3]

τmin = max

(
π�

2E
,

π�

2�E

)
. (3)

Giovannetti et al discovered an interesting relation between the quantum speed limit given
by (3) and entanglement [3]. It turns out that in the case of composite quantum systems,
entanglement is essential for achieving the minimum orthogonality time τmin. Non-entangled
(pure) initial states whose evolution is described by a non-interacting Hamiltonian (which
cannot generate entanglement) do not achieve the speed limit; except in marginal cases where
only one of the subsystems actually evolves, and the rest are in the eigenstates of their respective
Hamiltonians.

In order to reach the speed limit in situations where all the subsystems do really evolve it
is necessary that either: (i) the initial state of the system is entangled or (ii) the Hamiltonian is
endowed with an interaction term that generates entanglement as the quantum evolution takes
place. The fulfilment of at least one of these requirements is a necessary (but not sufficient)
condition to achieve the maximum speed allowed by quantum mechanics.

The connection between entanglement and the quantum speed limit has been the subject
of various recent research works [7, 17–21]. Many of these efforts focused on the case
of non-interacting systems. In particular, in [20] a systematic exploration of the quantum
speed–entanglement connection for systems of two non-interacting qubits was conducted,
taking into account all possible initial pure states exhibiting a finite orthogonality time. In
this study [20], the case of systems of two identical particles (either fermions or bosons)
was also considered. In [21], the relation between quantum speed and entanglement was
investigated for general mixed states of systems of two non-interacting qubits. Some aspects
of the role of entanglement in the speed of evolution of systems of N non-interacting qubits
were considered in [19]. The entanglement-related aspects of the quantum speed of a system
of two identical fermions evolving according to a Hubbard-like Hamiltonian was investigated
in [17]. A reformulation of the connection between quantum speed and entanglement based
upon the quantum Fisher information, focusing on the case of non-interacting subsystems, was
advanced in [7]. The concept of quantum brachistochrone [22–26] has been used to elucidate
some of the entanglement features exhibited by general time-optimal quantum evolutions
(comprising both interacting and non-interacting scenarios) [27–30]. However, the detailed
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characterization of the connection between quantum speed and entanglement for interacting
composite systems is a problem that still remains largely unexplored.

Appropriate multi-qubit interacting Hamiltonians can generate entanglement in such a
way that an initially separable state can reach the minimum orthogonality time τmin [3]. To
achieve this task two different conditions must be fulfilled: (i) all the qubits must be connected
by the interaction and (ii) the interaction must be sufficiently strong. The quantum speed
of evolution associated with this type of Hamiltonian has been studied only in the case of
particular families of initial states. The typical behavior of more general classes of states still
remains unknown. The aim of this work is to explore the connection between entanglement
and quantum speed for general two-qubit states that reach an orthogonal state when evolving
according to a paradigmatic entangling Hamiltonian of relevance for information-related
quantum technologies.

2. Quantum speed and entanglement in a system of two interacting qubits

We are considering a system of two interacting qubits evolving according to the Hamiltonian

H = �ω0
[
2 I(1) ⊗ I(2) − σ (1)

x ⊗ I(2) − I(1) ⊗ σ (2)
x

] + �ω
[
I(1) ⊗ I(2) − σ (1)

x ⊗ σ (2)
x

]
, (4)

where I is the identity matrix and σx is the x-Pauli operator. The Hamiltonian (4) depends on
two parameters with the dimension of frequency, ω0 and ω. The first parameter characterizes
the free Hamiltonian of the qubits (first term in (4)) and the parameter ω is associated with the
interaction (second term in (4)). The eigenvectors of H are

|u0〉 = 1
2 {|00〉 + |01〉 + |10〉 + |11〉}, (5)

|u1〉 = 1
2 {|00〉 − |01〉 − |10〉 + |11〉}, (6)

|u2〉 = 1√
2
{−|00〉 + |11〉}, (7)

|u3〉 = 1√
2
{−|01〉 + |10〉}, (8)

with the concomitant eigenvalues respectively being {0, 4�ω0, 2�(ω +ω0), 2�(ω +ω0)}. The
Hamiltonian (4) describes systems that have technological relevance because the interaction
part is closely related to a Hamiltonian leading to a time evolution that can substantially
increase the power-limited communication capacity of coupled quantum channels (see [31]).
It is clear that the time evolution associated with the Hamiltonian (4) is not described by a
local unitary operation. It is, instead, given by a global unitary transformation that cannot
be factorized into local parts. This implies that the amount of entanglement exhibited by the
bipartite system is time dependent.

As already mentioned, it is possible for an appropriate interaction to build up entanglement
so that the system can reach the speed bound even though no entanglement is present initially.
In fact, it was shown in [3] that an interaction like the one in (4) is indeed capable of speeding
up the dynamics of initially non-entangled states. However, that study was limited only to a
particular set of initial states. The purpose here is to obtain a more complete picture of the
connection between entanglement and quantum speed for a Hamiltonian of the aforementioned
form. It must be emphasized that our main focus in this work is not the absolute time τ required
to reach an orthogonal state, but the ratio τ/τmin between τ and the lower bound τmin determined
by the system’s energy E and energy variance �E (see equation (3)). It is instructive, however,
to consider the values of τmin corresponding to those initial states that reach an orthogonal state
in the shortest possible time when evolving according to the Hamiltonian (4). These states
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have the smallest possible value of the orthogonality time and they saturate the (E,�E )-based
bound (having thus τ = τmin). These states have the form

a0|u0〉 + a2|u2〉 + a3|u3〉, with |a0|2 = |a2|2 + |a3|2 = 1
2 , (ω > ω0),

a0|u0〉 + a1|u1〉 + a2|u2〉 + a3|u3〉, with |a0|2 = |a1|2 + |a2|2 + |a3|2 = 1
2 , (ω = ω0),

a0|u0〉 + a1|u1〉, with |a0|2 = |a1|2 = 1
2 , (ω < ω0), (9)

and the corresponding values of the orthogonality times are

τ = τmin = π

2(ω + ω0)
, (ω � ω0),

τ = τmin = π

4ω0
, (ω < ω0). (10)

When studying the connection between quantum speed and entanglement, Giovannetti et al
considered a separable initial state, and then analyzed the effect of varying ω and ω0. We shall
consider, instead, general families of initial states endowed with finite orthogonality times,
and restrict ourselves to specific cases of ω and ω0 admitting an analytical treatment. For
these families of the initial states of the two-qubit system, we are going to investigate the
connection between the quotient τ/τmin (which determines the speed of quantum evolution)
and the amount of entanglement E exhibited by those states. As a measure of entanglement
of the two-qubit system, we shall use the linear entropy of the marginal density matrix ρ1

corresponding to one of the qubits,

E = 2
(
1 − Tr

(
ρ2

1

))
, (11)

where ρ1 = Tr2ρ and ρ = |ψ(t0)〉〈ψ(t0)| is the joint density matrix globally describing the
composite system. The linear entropy of a quantum density matrix is a useful measure with
multiple applications. It has the important advantage that in order to evaluate it one does not
need to compute first the eigenvalues of the density matrix. It is closely related to measures
of purity of quantum states, based on the trace of the squared density matrix [32]. The inverse
of the trace of the squared marginal density matrix associated with a subsystem gives the
(effective) Schmidt number of a pure state describing a bipartite quantum system [33–35].
The linear entropy of the marginal density matrix of a subsystem has been recently used by
several researchers as a convenient entanglement measure for pure states of bipartite quantum
systems (see, for instance [36]).

In what follows, we shall explore the connection between entanglement and the speed
of quantum evolution considering both the amount of entanglement exhibited by initial states
evolving into an orthogonal one, and the time averaged entanglement associated with such an
evolution. We consider these two quantities because they constitute estimates of the amount
of entanglement, regarded as a resource, needed by the system in order to evolve into a state
fully distinguishable from the initial one. We are interested in the ‘entanglement cost’ of
evolving into an orthogonal state, and in how this ‘cost’ is related to the quantum speed.
When focusing upon the initial entanglement one deals with the amount of entanglement that
has to be generated when preparing the initial state. On the other hand, the time averaged
entanglement provides us with a global estimate of the amount of entanglement involved in
the full evolution, including the entanglement buildup by the interaction.

Let us consider a general initial state at time t0 given by

|ψ(t0)〉 = a0|u0〉 + a1|u1〉 + a2|u2〉 + a3|u3〉
= [

1
2 a0 + 1

2 a1 − 1√
2
a2

]|00〉 + [
1
2 a0 − 1

2 a1 − 1√
2
a3

]|01〉
+ [

1
2 a0 − 1

2 a1 + 1√
2
a3

]|10〉 + [
1
2 a0 + 1

2 a1 + 1√
2
a2

]|11〉, (12)
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with

|a0|2 + |a1|2 + |a2|2 + |a3|2 = 1. (13)

At time t the state will have evolved to

|ψ(t0 + t)〉 = a0|u0〉 + a1 e−4iω0t |u1〉 + a2 e−2i(ω0+ω)t |u2〉 + a3 e−2i(ω0+ω)t |u3〉. (14)

To obtain all possible states evolving to an orthogonal state, we have to find all the possible
sets of coefficients ai satisfying

〈ψ(t0)|ψ(t0 + τ )〉 = |a0|2 + e−4iω0τ |a1|2 + e−2i(ω0+ω)τ [|a2|2 + |a3|2] = 0, (15)

where τ is the time needed to reach an orthogonal state. This is a transcendental equation
which cannot be solved analytically in the general case (that is, for arbitrary values of ω0 and
ω), so we shall concentrate on the three cases (A) ω = ω0; (B) ω0 = 0; (C) ω = 3ω0. In the
first two cases, equation (15) is a linear equation in either e−4iω0τ or e−2iωτ . In the third case,
we have a quadratic equation in e−4iω0τ . Note that other cases given by ω = nω0, with n an
integer, lead in general to polynomial equations in e−4iω0τ that cannot be solved by radicals,
except for the cases n = 5 and n = 7, respectively yielding cubic and quartic equations,
respectively. In these cases, the analytical expressions involved are too cumbersome to lead
to a really illuminating discussion. Situations with more general values of the quotient ω/ω0

are better dealt with by recourse to a semi-numerical treatment, as discussed in section 3.
Next, we are going to separately consider each one of the aforementioned analytically soluble
situations.

2.1. ω = ω0

In this case, the eigenenergies become {0, 4�ω0, 4�ω0, 4�ω0} and from equation (15) we
obtain

|a0|2 = |a1|2 + |a2|2 + |a3|2,
τ = π

4ω0
, (16)

which, together with the normalization condition, gives

a0 = |a0| = 1√
2
,

a1 = eiγ1

√
δ1

2
,

a2 = eiγ2

√
δ2(1 − δ1)

2
,

a3 = eiγ3

√
(1 − δ1)(1 − δ2)

2
. (17)

We can omit the phase for a0 because we can choose an arbitrary global phase such that this
coefficient is real, and we have 0 � δ1, δ2 � 1 and 0 � γ1, γ2, γ3 < 2π . The mean energy E
and the dispersion �E are then both equal to 2�ω0, thus giving rise to

τmin = π

4ω0
= τ. (18)

Hence, all the states evolving to an orthogonal state evolve at the speed limit. To determine
the range of entanglement values adopted by these states let us consider, for example, the
subset of those states having γ1, γ2, γ3 = 0 (to determine the alluded range of entanglement
values it is enough to consider these states because they already ‘saturate’ the full range of
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possible values between zero and one). The expression for the entanglement of these initial
states becomes

E (δ1, δ2) = 1
4 (1 + 2

√
δ1 − 2 δ2 + δ1(−1 + 2 δ2))

2. (19)

According to this expression the entanglement E can adopt any value between 0 and 1. In other
words, within the set of states that achieve the quantum speed limit, all possible degrees of
initial entanglement are represented. Non-entangled states are obtained when setting δ1 = 0
and δ2 = 1

2 , while maximally entangled states are obtained for δ1 = 1.

2.2. ω0 = 0

This case is similar to the former case, with the eigenenergies now being {0, 0, 2�ω, 2�ω} and

|a0|2 + |a1|2 = |a2|2 + |a3|2,
τ = π

2ω
. (20)

This gives

a0 = |a0| =
√

δ1

2
,

a1 = eiγ1

√
1 − δ1

2
,

a2 = eiγ2

√
δ2

2
,

a3 = eiγ3

√
1 − δ2

2
. (21)

Once again
τ

τmin
= 1, (22)

since E = �E = �ω gives τmin = π
2ω

. As in the previous case, to determine the range of
possible entanglement values adopted by these states, it is sufficient to consider initial states
with γ1, γ2, γ3 = 0. This leads to

E (δ1, δ2) = δ1(1 − δ1) + 1 − 2δ2

4
((1 − 2δ2) + 4

√
δ1(1 − δ1)). (23)

Thus, in this case we also have initial states with all possible values of entanglement between
0 and 1. Separable states are obtained for δ1 = 0, 1 and δ2 = 1

2 , and maximally entangled
states for δ1 = 1

2 and δ2 = 0.

2.3. ω = 3ω0

The eigenenergies are now {0, 4�ω0, 8�ω0, 8�ω0} and thus equation (15), whose roots
determine the orthogonality time, becomes

P(x) = |a0|2 + |a1|2x + [|a2|2 + |a3|2]x2 = 0,

x = e−4iω0τ . (24)

Now, either we have two complex conjugate roots (we shall refer to this situation as the
‘β-case’) or we have two real roots (which we shall refer to as the ‘s-case’) of which one root
must be −1 in order for the state to evolve to an orthogonal state.

Let us now consider each of these possibilities in detail.
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2.3.1. β-case. Assume that eiβ, e−iβ are the complex roots of (24), so that

P(x) = [|a2|2 + |a3|2]

{
x2 + |a1|2

|a2|2 + |a3|2 x + |a0|2
|a2|2 + |a3|2

}
(25)

= [|a2|2 + |a3|2]{x − eiβ}{x − e−iβ} (26)

= [|a2|2 + |a3|2]{x2 − 2 cos β x + 1}. (27)

Comparing equations (25) and (27) yields

|a1|2
|a2|2 + |a3|2 = −2 cos β,

|a0|2
|a2|2 + |a3|2 = 1. (28)

This, together with the normalization condition, gives

|a0|2 = 1

2(1 − cos β)
,

|a1|2 = − cos β

1 − cos β
,

|a2|2 = δ

2(1 − cos β)
,

|a3|2 = 1 − δ

2(1 − cos β)
. (29)

Since the squares of the absolute values of the coefficients have to be positive, β is restricted
to the interval

[
π
2 , π

]
and δ ∈ [0, 1]. Introducing the phases 0 � φ1, φ2, φ3 < 2π , we have

a0 = 1√
2(1 − cos β)

,

a1 = eiφ1

√
− cos β

1 − cos β
,

a2 = eiφ2

√
δ

2(1 − cos β)
,

a3 = eiφ3

√
1 − δ

2(1 − cos β)
. (30)

The expression for the time-dependent entanglement in terms of the above parameters is

E (β, δ, φ1, φ2, φ3, ω0t)

= 1

4(cos β − 1)2
(1 − 8 cos β − 4

√
−2 cos β(δ cos (12ω0t + φ1 − 2φ2)

+ (δ − 1) cos (12ω0t + φ1 − 2φ3)) + 4δ(δ − 1) cos2 (φ2 − φ3)). (31)

The time needed to reach an orthogonal state is

τ (β) = β

4ω0
, (32)

the mean energy is E = 4�ω0 and the dispersion is �E = 4�ω0√
1−cos β

. In this case, the dispersion
of the energy is always less than the mean energy and thus we have for the minimum possible
time

τmin(β) = π
√

1 − cos β

8ω0
. (33)
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Figure 1. Initial states corresponding to the β-case. The dot on the boundary curve corresponds
to the initial states of highest entanglement that evolve into an orthogonal state. These states have

E = 1 and τ
τmin

= 4
3

√
2
3 . All depicted quantities are dimensionless.

The quantities we are interested in are
τ

τmin
(β) = 2β

π
√

1 − cos β
, (34)

and the entanglement E associated with the β-case states.
Figure 1 depicts the region in the

(
E, τ

τmin

)
-plane corresponding to the family of initial

states comprising the β-case. It can be verified after some algebra that this region coincides
with the region associated with initial states belonging to the β-case and having vanishing
phases {φ1, φ2, φ3}. The entanglement of these states is given by

E (β, δ) = (1 − 2 δ)(1 − 2 δ + 4
√

2
√− cos β) − 8 cos β

4 (−1 + cos β)2
. (35)

The boundary curves of the allowed region depicted in figure 1 starting at the top and moving
counterclockwise are given by

A β = π, δ ∈ [0, 1],
{ 1

16 (9 − 4
√

2) � E � 1
16 (9 + 4

√
2), τ/τmin = √

2},
B β ∈ [arccos (−1/8) , π ], δ = 1,

{0 � E � 1
16 (9 − 4

√
2),

4
√

2 arccos(−1/8)

3π
� τ/τmin �

√
2},

C β ∈ [π
2 , arccos (−1/8)], δ = 1

2

(
1 + 2

√− csc(β) sin(2β)
)

{E = 0, 1 � τ/τmin � 4
√

2 arccos(−1/8)

3π
},

D β = π
2 , δ ∈ [0, 1],

{0 � E � 1
4 , τ/τmin = 1},

E β ∈ [π
2 , π ], δ = 0,

{ 1
4 � E � 1

16 (9 + 4
√

2), 1 � τ/τmin �
√

2}.
We can see in figure 1 that the initial states within the β-case that evolve into an orthogonal

state cover a large part of the
(
E, τ

τmin

)
-plane. There are, however, some relevant features of

figure 1 pointing toward an interesting connection between entanglement and quantum speed.
First, we see that only states of relatively low entanglement (more precisely, states with
entanglement values within the interval 0 � E � 1

4 ) achieve the quantum speed limit given by

8
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Figure 2. Initial states corresponding to the β-case, with time averaged entanglement. The dot on the
boundary curve corresponds to the initial states leading to the highest time averaged entanglement.
These states have 〈E〉 ≈ 0.62 and τ

τmin
≈ 1.19. All depicted quantities are dimensionless.

τ
τmin

= 1. Moreover, separable states (that is, those with E = 0) that reach an orthogonal state
have orthogonality times τ quite close to the minimum one τmin. Indeed, the separable states
represented in figure 1 satisfy 1 � τ

τmin
� 4

√
2 arccos(−1/8)

3π
. It also transpires from figure 1 that

there are no slow states (that is, having large values of τ
τmin

) with low entanglement.
Let us now consider the time averaged entanglement

〈E〉 = 1

τ

∫ τ

0
E dt, (36)

of initial states corresponding to the β-case. The expression for the averaged entanglement is
given by

〈E (β, δ, φ1, φ2, φ3)〉 = csc
(

β

2

)4

48β

(
6βδ(δ − 1) cos2

(
φ2 − φ3

)
+ 3β(1 − 8 cos(β)) − 8

√
−2 cos(β) sin

(
3β

2

)(
δ cos

(
3β

2
+ φ1 − 2φ2

)

+ (δ − 1) cos

(
3β

2
+ φ1 − 2φ3

)))
. (37)

We can see in figure 2 the region in the
(〈E〉, τ

τmin

)
-plane associated with initial states

corresponding to the β-case. The boundary lines of this region are given by

A β = π, δ ∈ [0.5, 1],{
1
2 � 〈E〉 � 9

16 , τ/τmin = √
2
}
,

B β ∈ [
π
2 , π

]
, δ = 3β+2 sin(3β)

√− csc(β) sin(2β)

6β
,{

0 � 〈E〉 � 1
2 , 0 � τ/τmin �

√
2
}
,

C β = π
2 , δ ∈ [0.5, 1],

{0 � 〈E〉 � 1
4 , τ/τmin = 0,

D β ∈ [
π
2 , 2π

3

]
, δ = 1,{

0 � 〈E〉 � 5
9 , 1 � τ/τmin � 4

3

√
2
3

}
,

E β ∈ [
2π
3 , π

]
, δ = 0,{

5
9 � 〈E〉 � 9

16 , 4
3

√
2
3 � τ/τmin �

√
2
}
.
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The connection between entanglement and speed of quantum evolution for the β-case states
can be appreciated more clearly when plotting these states in the

(〈E〉, τ
τmin

)
-plane than when

plotting them in the
(
E, τ

τmin

)
-plane. We observe in figure 2 that all initial states that reach

the speed limit give rise to time evolutions with low average entanglement in the range
0 � 〈E〉 � 1

4 . Actually, all initial states that generate evolutions with low average entanglement
(in the above-mentioned range) are endowed with orthogonality times close to the minimum
one τmin. In other words, within the β-case states there are no slow states of low entanglement,
as attested by the large upper-left empty region in figure 2. Slow states characterized by large
values of the ratio τ

τmin
are concentrated in the region of medium time averaged entanglement

values. There are no states in figure 2 with large values of 〈E〉, meaning that states leading to
high values of the time averaged entanglement do not reach an orthogonal state at all. Finally,
note that figures 1 and 2 have the same range of values of τ

τmin
(and, in particular, the same

maximum value of this quantity). This is due to the fact that τ
τmin

is determined solely by
the initial state, and does not depend on which particular measure we use to characterize the
amount of entanglement involved during the evolution of the system under consideration.

Symmetric states are of special interest when investigating the connection between
entanglement and quantum speed, since they correspond to the most efficient use of the
available energy resources. In the case of symmetric states, entanglement is strictly necessary
in order to reach the quantum speed limit, that is, in order to have the minimum orthogonality
time τ = τmin. In contrast, there are some particular highly asymmetric states, where all the
energetic resources are concentrated in one of the qubits that achieve the speed limit without
any entanglement. These are separable states of non-interacting qubits where only one of
the qubits actually evolves and the remaining qubits are in eigenstates of their corresponding
Hamiltonians. This is a marginal case where, from the dynamical point of view, one effectively
deals with a single-qubit system, and the composite character of the whole system plays no
physical role (see [18] and references therein).

For a symmetric state, the coefficients of the states |01〉 and |10〉 in equation (12) must
be equal. This only holds when a3 = 0 which, in turn, corresponds to δ = 1. The coefficients
associated with symmetric states are then of the form

a0 = 1√
2 (1 − cos β)

,

a1 = eiφ1

√
− cos β

1 − cos β
,

a2 = eiφ2
1√

2 (1 − cos β)
,

a3 = 0. (38)

with β ∈ [π
2 , π ].

Figure 3 shows the region in the (E , τ/τmin)-plane which the symmetric β-case states
occupy. The boundaries of this region are given by

A β = π, φ1 = φ2 ∈ [0, π ],{
1
16 (9 − 4

√
2) � E � 1

16 (9 + 4
√

2), τ/τmin = √
2
}
,

B β ∈ [arccos (−1/8) , π ], φ1 = φ2 = 0,{
0 � E � 1

16 (9 − 4
√

2),
4
√

2 arccos(−1/8)

3π
� τ/τmin �

√
2
}
,

C β ∈ [π/2, arccos(−1/8)], φ1 = φ2 = 0,{
0 � E � 1

4 , 1 � τ/τmin � 4
√

2 arccos(−1/8)

3π

}
,

10
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Figure 3. E versus τ/τmin for the symmetric initial states belonging to the β-case. The dot on the
boundary curve corresponds to the initial symmetric states of highest entanglement that evolve into
an orthogonal state. All depicted quantities are dimensionless.

Figure 4. Symmetric initial states corresponding to the β-case, with time averaged entanglement.
The dot on the boundary curve corresponds to the initial symmetric states that evolve into
an orthogonal state with the highest time averaged entanglement. All depicted quantities are
dimensionless.

D β ∈ [
π
2 , π

]
, φ1 = φ2 = π,{

1
4 � E � 1

16 (9 + 4
√

2), 1 � τ/τmin �
√

2
}
.

The general features of figure 3 are similar to those of figure 1. There is, however, an
interesting difference: the only symmetric β-case states that achieve the speed limit have one
particular entanglement value, E = 1

4 .
In figure 4, the symmetric β-case states are represented in the

(〈E〉, τ
τmin

)
-plane. The

boundaries of this region are given by

A β = π, φ1 ∈ [0, π ], φ2 = 5π
4 ,{

9
16 − 1

3
√

2π
� 〈E〉 � 9

16 + 1
3
√

2π
, τ/τmin = √

2
}
,

B β ∈ [ 2π
3 , π ], φ1 = 0, φ2 = 3β+2π

4 ,

{ 9
16 − 1

3
√

2π
� 〈E〉 � 5

9 , 4
3

√
2
3 � τ/τmin �

√
2},

11
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C β ∈ [1.5861, 2π
3 ], φ1 = π, φ2 = 3β+2π

4 ,

{0.2229 � 〈E〉 � 5
9 , 1.0021 � τ/τmin � 4

3

√
2
3 },

D β ∈ [π
2 , 1.5861], φ1 = π, φ2 = 3β+2π

4 ,

{0.2229 � 〈E〉 � 1
4 , 1 � τ/τmin � 1.0021},

E β ∈ [π
2 , 2π

3 ], φ1 = 0, φ2 = 3β+2π

4 ,

{ 1
4 � 〈E〉 � 5

9 , 1 � τ/τmin � 4
3

√
2
3 },

F β ∈ [ 2π
3 , π ], φ1 = π, φ2 = 3β+2π

4 ,

{ 5
9 � 〈E〉 � 9

16 + 1
3
√

2π
, 4

3

√
2
3 � τ/τmin �

√
2}.

It can be appreciated in figure 4 that there is a clear tendency for the quotient τ
τmin

to
increase as the time averaged entanglement 〈E〉 increases: that is, lower entanglement tends to
enhance the speed of quantum evolution.

2.3.2. s-case. One of the real roots has to be −1 and let the other one be s. Then, we have

P(x) = [|a2|2 + |a3|2]

{
x2 + |a1|2

|a2|2 + |a3|2 x + |a0|2
|a2|2 + |a3|2

}
(39)

= [|a2|2 + |a3|2]{x2 + (1 − s) x − s}. (40)

Comparing equations (39) and (40) gives

|a1|2
|a2|2 + |a3|2 = 1 − s,

|a0|2
|a2|2 + |a3|2 = −s. (41)

This, together with the normalization condition, gives

|a0|2 = −s

2(1 − s)
,

|a1|2 = 1 − s

2(1 − s)
= 1

2
,

|a2|2 = λ

2(1 − s)
,

|a3|2 = 1 − λ

2(1 − s)
, (42)

with λ ∈ [0, 1]. From the positivity condition, we see that s � 0. Again introducing three
phases μ1, μ2, μ3 ∈ [0, 2π) we have

a0 =
√ −s

2(1 − s)
,

a1 = eiμ1
1√
2
,

a2 = eiμ2

√
λ

2(1 − s)
,

a3 = eiμ3

√
1 − λ

2(1 − s)
. (43)

12
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Figure 5. Initial states corresponding to the s-case. All depicted quantities are dimensionless.

The linear entanglement is hence

E (s, λ, μ1, μ2, μ3, ω0t) = 1

4(1 − s)5/2
(4(s − 1)

√−s(λ cos (12ω0t + μ1 − 2μ2)

+ (λ − 1) cos (12ω0t + μ1 − 2μ3))

+√
1 − s(1 + 4s(s − 1) + 4λ(λ − 1) cos2 (μ2 − μ3))). (44)

Since one of the roots is equal to −1, the time needed to reach an orthogonal state is constant,
implying that all the states that do evolve to an orthogonal state take the same amount of time,
namely

τ = π

4ω0
. (45)

What differs among the states are the energy resources:

E = 2ω0�(3 − s)

1 − s
, �E = 2ω0�

√
1 − 6s + s2

1 − s
. (46)

This results in

τmin = π(1 − s)

4ω0

√
1 − 6s + s2

, (47)

and
τ

τmin
(s) =

√
1 − 6s + s2

1 − s
. (48)

In figure 5, we can see the region in the (E, τ/τmin)-plane corresponding to the s-case.
It can be verified that the boundaries of this region coincide with those corresponding to
s-case initial states with the phases μ1, μ2, μ3 all equal to zero. The linear entanglement then
becomes

E (s, λ) = 4 (−1 + s)
√−s (−1 + 2 λ) + √

1 − s (1 + 4 (−1 + s) s + 4 (−1 + λ) λ)

4 (1 − s)5/2
. (49)

The boundary curves of the region depicted in figure 5 are given by

A s = −1, λ ∈ [0, 1],
{ 1

16 (9 − 4
√

2) � E � 1
16 (9 + 4

√
2), τ/τmin = √

2},

13
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Figure 6. Initial states corresponding to the s-case, with time averaged entanglement. All depicted
quantities are dimensionless.

B s ∈ [−1, 1−√
2

2 ], λ = 1,

{0 � E � 1
16 (9 − 4

√
2), τ/τmin ∈ [1,

√
40

√
2 − 55},

C s ∈ [ 1−√
2

2 , 0], λ = 1
2

√
s(s − 1),

{E = 0, τ/τmin ∈ [1,
√

40
√

2 − 55]},
D s = 0, λ ∈ [0, 1],

{0 � E � 1
4 , τ/τmin = 1},

E s ∈ [0, 1
9 (−23 + 8

√
7)], λ = 0,

{0 � E � 175
256 , 1 � τ/τmin � 5

4 },
F s ∈ (−∞, 1

9 (−23 − 8
√

7)], λ = 1,

{ 175
256 � E � 1, 5

4 � τ/τmin � 1},
G s ∈ (−∞,−1], λ = 0,

{ 1
16 (9 + 4

√
2) � E � 1, 1 � τ/τmin �

√
2}.

Figure 6 corresponds to s-case initial states with time averaged entanglement, which can
be computed using the following expression:

< E (s, λ, μ1, μ2, μ3) >= 1

12π(1 − s)5/2
(8(1 − s)

√−s(λ sin (μ1 − 2μ2)

+ (λ − 1) sin (μ1 − 2μ3))

+ 3π
√

1 − s(1 + 4s(s − 1) + 4λ(λ − 1) cos2 (μ2 − μ3))). (50)

The boundaries of the allowed region depicted in figure 6 are given by

A s = −1, λ ∈ [0.5, 1],
{ 1

2 � 〈E〉 � 9
16 , τ/τmin = √

2},
B s ∈ [−1, 0], λ = 0.5,

{0 � 〈E〉 � 1
2 , τ/τmin ∈ [1,

√
2},

C s = 0, λ ∈ [0.5, 1],
{0 � 〈E〉 � 1

4 , τ/τmin = 1},

14
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D s ∈ [−
√

3
2 , 0], λ = 0,

{1/4 � 〈E〉 � 4 − 2
√

3, 1 � τ/τmin �
√

56
√

3 − 95},
E s ∈ (−∞,− 2√

3
], λ = 0.5,

{4 − 2
√

3 � 〈E〉 � 1, 1 � τ/τmin �
√

56
√

3 − 95},
F s ∈ [−1,−∞), λ = 1,

{ 9
16 � 〈E〉 � 1, 1 � τ/τmin �

√
2}.

To find the states evolving at the speed limit, we set τ/τmin(s) = 1. This means either s = 0
or s → −∞. The former instance yields 0 � E � 1

4 , whereas the latter gives E = 1. The
symmetric states correspond to λ = 1 and thus have E = 1

4 . In contrast to what happens in
the β-case, we can see in figures 5 and 6 that there are maximally entangled states that reach
the speed limit. These states evolve in a time-optimal way in the sense of having τ

τmin
= 1.

However, in terms of the absolute orthogonality time τ , the s-case states are slow. Actually,
they are the slowest states, because they have the largest possible orthogonality time, given by
τ = π

4ω0
.

3. More general values of ω and ω0: semi-numerical treatment

We want to find solutions to the equation

〈ψ(t0)|ψ(t0 + τ )〉∗ = |a0|2 + e4iω0τ |a1|2 + e2i(ω+ω0 )τ [|a2|2 + |a3|2] = 0. (51)

By equating the real and imaginary parts to zero, one obtains two equations which, together
with the normalization condition, constitute a set of three linear equations in |a0|2, |a1|2 and
|a2|2 + |a3|2. These equations lead to

|a0|2 = sin[2(ω − ω0)τ ]

sin(4ω0τ ) + sin[2(ω − ω0)τ ] − sin[2(ω + ω0)τ ]
,

|a1|2 = − sin[2(ω + ω0)τ ]

sin(4ω0τ ) + sin[2(ω − ω0)τ ] − sin[2(ω + ω0)τ ]
,

|a2|2 + |a3|2 = sin[4ω0τ ]

sin(4ω0τ ) + sin[2(ω − ω0)τ ] − sin[2(ω + ω0)τ ]
. (52)

It is now convenient to introduce the parameters

β = 4ω0τ and ν = 1

2

[
ω

ω0
− 1

]
. (53)

To emphasize the role of the perturbation, we are only going to consider ω > ω0, thus ν > 0.
Using the above parametrization, the form of the initial states that evolve into an orthogonal
state is

|ψ(t0)〉 = |a0||u0〉 + eiφ1 |a1||u1〉 + eiφ2 |a2||u2〉 + eiφ3 |a3||u3〉, (54)

where

|a0|2 = sin(νβ)

sin(β) + sin(νβ) − sin[(1 + ν)β]
,

|a1|2 = − sin[(1 + ν)β]

sin(β) + sin(νβ) − sin[(1 + ν)β]
,

|a2|2 = δ sin(β)

sin(β) + sin(νβ) − sin[(1 + ν)β]
,

|a3|2 = (1 − δ) sin(β)

sin(β) + sin(νβ) − sin[(1 + ν)β]
, (55)

15



J. Phys. A: Math. Theor. 46 (2013) 095302 C Zander et al

with δ ∈ [0, 1] and φ1, φ2, φ3 ∈ [0, 2π). For the right-hand sides in (55) to be all non-
negative quantities, it is necessary that β � π

ν+1 (note that, since β is proportional to the
orthogonality time, it is always a positive quantity). States with very large orthogonality time,
and correspondingly very large β, are not interesting for our present purposes because those
states are not useful in order to implement fast information-related tasks. Consequently, it is
sensible to study the connection between quantum speed and entanglement by restricting the
analysis only to states that do not have very large values of β. So we focus on the range of
values β ∈ [ π

ν+1 , π ). In order to calculate τmin in (3), we need the mean energy and standard
deviation, which are given by

E = 4�ω0

{ − sin[(1 + ν)β] + (1 + ν) sin(β)

sin(β) + sin(νβ) − sin[(1 + ν)β]

}
,

�E = 4�ω0

{− sin[(1 + ν)β] + (ν + 1)2 sin(β)

sin(β) + sin(νβ) − sin[(1 + ν)β]

−
( − sin[(1 + ν)β] + (ν + 1) sin(β)

sin(β) + sin(νβ) − sin[(1 + ν)β]

)2} 1
2

. (56)

Let us first discuss the special case β = π . In that instance, for general non-integer values
of ν, the only states that evolve to orthogonal states are maximally entangled and have
|a0|2 = |a1|2 = 1/2 and |a2|2 = |a3|2 = 0. For integer values of ν, the solution (55) is not
valid. However, the correct solution of (51) in this case admits a parametrization similar to
the s-case discussed previously. Indeed, the solutions for odd integer values of ν correspond
precisely to the alluded s-case, and the correct parametrization for the states evolving into
orthogonal ones is then given by (42) and (43). For even integer values of ν similar coefficients
are obtained, but with a0 and a1 interchanged.

As already mentioned, we are going to focus on states with β ∈ [
π

ν+1 , π
)
. The initial

states that reach an orthogonal state are parameterized by the five parameters β, δ, φ1, φ2, φ3.
For general ν-values, the expressions for the entanglement and the quotient τ

τmin
become too

cumbersome, and it is thus not possible to analytically obtain the boundaries of the physically
allowed region in the

(
E, τ

τmin

)
-plane corresponding to general states evolving to an orthogonal

one. However, the shape of this region can be investigated numerically by recourse to a
Monte Carlo-like procedure. In order to do that, we numerically generate random initial states,
corresponding to random values of the aforementioned parameters. We implemented this
numerical procedure for several ν-values. As an illustration, the region in the

(
E, τ

τmin

)
-plane

corresponding to ν = 1.2 is depicted in figure 7.

4. Discussion and comparison between the interacting and non-interacting scenarios

We have explored the connection between the speed of quantum evolution, as given by the
ratio τ/τmin, and quantum entanglement for quantum evolutions of two interacting qubits
governed by the Hamiltonian (4). We have considered the particular instances that allow for
an analytical treatment, and also provided some numerical results concerning more general
cases. The expressions for τmin corresponding to the different cases investigated by us are
summarized in the following table:

The cases ω = ω0 and ω0 = 0 are special, because all initial states that do evolve into
an orthogonal state reach this state in the minimum time τ = τmin. The physical reason
behind this is that the Hamiltonians corresponding to these two cases have only two different
eigenenergies (each one is two-fold degenerate). Consequently, as far as the quantum speed is
concerned, they behave as two-level systems, for which the states evolve into an orthogonal
state in a time-optimal fashion [1].
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Figure 7. Initial states that evolve into orthogonal states for ν = 1.2. All depicted quantities are
dimensionless.

Hamiltonian’s parameters τmin

ω = ω0
π

4ω0

ω0 = 0 π

2ω
π

√
1−cos(β)

8ω0
(β-case)

ω = 3ω0
π(1−s)

4ω0

√
1−6s+s2

(s-case)

π

8ω0

[
− sin[(1+ν)β]+(ν+1)2 sin(β)

sin(β)+sin(νβ)−sin[(1+ν)β] −
(

− sin[(1+ν)β]+(ν+1) sin(β)

sin(β)+sin(νβ)−sin[(1+ν)β]

)2
]− 1

2

(E � �E)

ω = (2ν + 1)ω0
π

8ω0

(
sin(β)+sin(νβ)−sin[(1+ν)β]
− sin[(1+ν)β]+(1+ν) sin(β)

)
(�E > E)

The ω = 0 case of the Hamiltonian can also be studied analytically and corresponds to a
system constituted by non-interacting parts [18]. It is useful to provide a brief summary of its
main features, in order to compare them with the ones corresponding to the interacting case
investigated in the present contribution. As occurs in the ω = 3ω0 case already analyzed in
this paper, for the non-interacting scenario it is also convenient to consider two different cases
of the characteristic equation (15) that determines the orthogonality time τ . This equation can
have two complex conjugate roots (β-case) or it may have two real roots, one of them equal
to −1 (s-case). In general, it is seen that states of higher entanglement tend to be faster than
states of lower entanglement, in the sense of having smaller values of τ/τmin.

The case ω = 3ω0 is the one exhibiting the richest structure. The main results concerning
this case are summarized in figures 1–6. There is a general tendency that can be appreciated in
these figures: states of low initial entanglement are those that tend to evolve in the fastest way.
This means that the entanglement generated by the time evolution itself is able to enhance the
quantum speed of initial states of relatively low entanglement.

As in the non-interacting case, it is useful to consider two different families of initial
states: those for which the characteristic equation has two complex conjugate roots (β-case)
and those for which this equation has two real roots, one of them equal to −1 (s-case). As can

17



J. Phys. A: Math. Theor. 46 (2013) 095302 C Zander et al

be appreciated in figure 1, β-case initial states of low entanglement tend to evolve faster than
initial states of high entanglement. Among β-case states, those reaching the speed limit have
relatively low entanglement values belonging in the interval [0, 1/4]. These features of the
β-case initial states are much more notable if, instead of considering the plane

(
E, τ

τmin

)
, we

consider the plane
(〈E〉, τ

τmin

)
, where we do not represent the initial entanglement E , but the

time averaged entanglement 〈E〉. This plane is represented in figure 2. As already mentioned,
the connection between entanglement and quantum speed is now much more evident. The
physically allowed region, corresponding to initial states that reach an orthogonal state, is
much smaller in figure 2 than in figure 1, and a clear trend associating low entanglement with
high speed (in the sense of having an orthogonality time τ close to the minimum oneτmin) can
be observed.

Symmetric states are particularly relevant with regards to the connection between
entanglement and the quantum speed of evolution. This connection tends to be stronger for
symmetric states than in the case of asymmetric ones. In fact, highly asymmetric states, where
only one of the qubits actually evolves, can reach the speed limit even if no entanglement at all
is involved (that is, even in the case of an initially separable state of a system of independent
non-interacting qubits). The

(
E, τ

τmin

)
-plane corresponding to initially symmetric β-case states

is depicted in figure 3. An interesting aspect of the data depicted in figure 3 is that the only
β-case states saturating the speed bound have the same amount of entanglement, E = 1

4 . These
states are especially interesting because they define a family of energetically symmetric states
with low entanglement (ESSLE) that saturate the speed bound.

The
(
E, τ

τmin

)
and

(〈E〉, τ
τmin

)
planes corresponding to initial s-case states are plotted,

respectively, in figures 5 and 6. In contrast with what happens in the β-case, there are initially
maximally entangled s-case states that achieve the speed limit. This seems to contradict the
general trend associating initial states of low entanglement with high speed (in the sense of
having τ/τmin close to one). However, the s-states (even those with τ

τmin
= 1) have the largest

possible orthogonality time τ . That is, in terms of the absolute value of τ (as opposed to its
value relative to τmin), the s-case states evolve in the slowest possible way.

Finally, let us consider more general values of ω and ω0. The (numerically determined)
region in the

(
E, τ

τmin

)
-plane corresponding to ν = 1.2 is shown in figure 7. We observe

that the shape of this region differs appreciably from the corresponding region of the β-case
for ω = 3ω0 (ν = 1). However, the essential features exhibited by the fast states with low
values of the quotient τ

τmin
remain the same. In particular, the maximum possible value of

entanglement for which the optimal speed (in the sense of having τ/τmin = 1) is reached is
1/4. That is, all states that saturate the quantum speed limit have relatively low entanglement.
We have performed a numerical study of other cases corresponding to other ν-values and our
results suggest that this occurs for all ν � 1. Furthermore, we observe that the initial states
of highest entanglement reaching the speed bound are always symmetric states. Moreover, for
all symmetric states the maximum speed is reached only for one value of the entanglement,
namely 1/4.

5. Conclusions

We have studied the connection between entanglement and the speed of quantum evolution
(as determined by the orthogonality time) for a system of two interacting qubits. We have
performed a systematic analysis of this connection for all the initial states of this system that
actually evolve into a state orthogonal to, and consequently fully distinguishable from, the
initial one. The general trend observed is that, with the exception of some marginal special
cases, only initial states with relatively low entanglement do achieve the quantum speed limit
given by the minimum orthogonality time τmin. In this sense, the present system exhibits a
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behavior complementary to the one observed in the systems of non-interacting qubits, which
are characterized by the opposite trend, where initial states with relatively high entanglement
are those which tend to reach the minimum orthogonality time.
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