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Abstract
A three-dimensional modelling of the Friction Stir Spot Welding process was carried out by means of a two-
dimensional continuum with symmetry of revolution around the tool axis. The model included the plunging, dwelling
and withdrawal stages of two 1:3 mm thick AA6061 alloy plates joining process. A highly viscous flow model was
adopted, as well as the hypothesis of full stick contact between tool and material. The model was solved by means of
the Finite Element Method (FEM) and Arbitrary Lagrangian Eulerian (ALE) techniques in an axisymmetric domain with
mesh tracking and algorithms to account for contact and free flow. Numerical results were compared to experimental
data found in literature. The maximum temperature for the pin front face was found within less than 5% of the
experimental value. The velocity field were found close to those reported in literature and the final shape of the weld
flash was similar to its experimental counterpart.
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Introduction

The Friction Stir Spot Welding process (FSSW) was
introduced in 1991 by The Welding Institute, along
with the Friction Stir Welding technique. These tech-
niques are used to join materials without electric arc,
fumes and radiation. Moreover, it can join dissimilar
materials that can not be welded by arc.

Friction Stir Spot Welding is based on the action
of a rotary tool pressed axially against the materials
to be joined. The materials to be welded are usually
two (sometimes three) overlapped plates. The tool
consists of a cylinder called the shoulder, from which
usually protrudes a smaller shape named the pin.
Typically the shoulder’s diameter ranges between 8
and 28mm. The pin shape is mainly cylindrical or
conical, but it can also be a triangular or square-based
prism and even more complex shapes.

In FSSW three stages can be identified: plunging,
dwelling and withdrawal. In the plunging stage, the
tool spins at a constant speed and is pressed axially
against the top plate, which leads to local temperature
rise and plastic deformation takes place. Due to the
temperature increase up to a 90% of the melting
point, the material reaches a highly viscous plastic
flow state. As the tool plunges into the plates, their
materials are physically mixed. Once a prescribed

depth is reached, the tool is kept spinning but fixed in
its vertical position. This stage is called plunging.
Therefore, the dwelling stage follows, during which
mixing continues and the heat generated by plastic
work flows beyond the mixing zone. The last stage is
the withdrawal, in which the tool is lifted and the
welded plates cool down.

The rotational speed, the plunging speed and
depth and the time span of the dwelling stage depend
on the materials to join, their thicknesses, and tool
dimensions.

Due to the existence of enormous spatial gradients
of temperature and flow velocities that take place in
very short distances, detailed experimental studies are
challenging to carry out. For this reason, testing of
FSSW involves robust machinery and complex setups.
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Therefore, numerical modelling becomes an excellent
alternative tool for studying this welding process.

Success in numerical modelling is determined by
adopting the correct constitutive equations and mod-
elling techniques. There are systematic studies of the
materials behaviour models, such as the one by
Kuykendall1 and D’Urso and Giardini.2 There are
also different approaches to FSSW depending on the
representation of the materials behaviour, for it can
be often described as an elastic-plastic solid or a
highly viscous non-linear flow. Numerous works that
use solid models can be cited, among them Mandal
et al.3 and Zhang et al.4 On the other hand, viscous
fluid models have the advantage of adequately
describing high shear velocities processes, as of
Jedrasiak and Shercliff.5

Among others, the remarkable motion of the com-
putational domain is a significant challenge when
modelling this joining process. In models that use
Lagrangian description, extreme mesh deformations
can occur and hinder their performance. Adaptive
remeshing is often used to circumvent this inconveni-
ence.6,7 On the other hand, this technique can intro-
duce artificial diffusion in the scalar and vector fields
results. It also involves increasing computational time
with the addition of mesh re-assembly processes. In
the present work the Arbitrary Lagrangian-Eulerian
(ALE) technique8,9 has been used to avoid remeshing
and artificial diffusion, for the expected gradients in
the velocity field are steep. Also, given that the
domain boundaries are movable in ways that depend
on the results of the FSSW modelling, adopting ALE
techniques is considered adequate to overcome the
problems that arise with other techniques, as
described previously.

In the literature, heat sources in thermal analysis
were modelled differently according to the nature of
the constitutive models adopted for the material. On
the one hand, elastic-plastic models have the main
advantage of computing residual stresses, as pointed
out by Zhu et al.10 These models were usually imple-
mented with various heat sources due to contact fric-
tion type, such as Coulomb’s,10 Norton’s,11

combined12 or other elaborate ad-hoc heat input func-
tions.4,5,7 A more detailed comparison between ther-
mal analysis in FSW can be found in Meyghani
et al.13 On the other hand, non-linear viscous flow
models such as the one adopted in the present work
allow the implementation of a volumetric heat source,
taking advantage of the nature of its governing equa-
tions. Miles et al.7 used a similar axisymmetric
approach as the present work but with a viscoplastic
Norton-Hoff model and an updated Lagrangian
scheme with explicit time integration on a commercial
software. These authors used a modified dry Coulomb
friction function to consider the saturation of contact
stress. Using viscous fluid models also allows the use
of full adhesion contact condition, also observed
experimentally by Gerlich et al.14 In the present work,

the numerical model was designed in order to com-
pare its results with those of the aforementioned
authors, given their very accurate temperature mea-
surements obtained by placing thermocouples at 0:2
mm below the tool pin and shoulder surfaces Also,
the cited work provided a photograph of the actual
tool, and its dimensions. These data were used to
define the model parameters and tool geometries with
a more precise representation.

The remainder of this document is organised as
follows: Section Methods introduces the methods for
the series of mechanical subproblems associated with
the FSSW problem with adequate boundary condi-
tions and initialisation. Also, the geometry tool
description, material properties and the initial mesh
discretisation employed, are provided. Section Results
shows the computational results and the comparison
with experimental data as found in Gerlich et al.14

The discussion of these results is presented in Section
Discussion. Final remarks are outlined in Section
Conclusions.

Methods

The whole FSSW process of two 1:3mm alloy plates
was modelled. The modelling time span was set from
the initial tool contact at the beginning of the plunging
stage until 2 s into the withdrawal stage.

Figure 1 shows the problem setup. Therein, the
domain of interest Ot (i.e. the alloy plates) and the
spinning tool for an arbitrary configuration at the
time t are shown, considering a plane axisymmetric
geometry. On the same Figure the different bound-
aries can be seen, corresponding G1, t to the material
in contact with the backing plate, G2, t to the conti-
nuation of the material, G3, t to the upper fixed sur-
face, G4, t to the upper surface free of contact, G5, t to
the upper surface in contact with the tool and G6, t to
the axis of symmetry of the domain, êz.

The tool is made of H12 alloy steel and was repre-
sented in the model as an analytical solid, in the form
of a sequence of segments defined by a set of (r̂, ẑ)
coordinates. The tool pin minimum diameter was
dmin=3 mm and the maximum diameter was
dmax=6 mm, and its height was hpin=2 mm. The
tool shoulder diameter was DShoulder=10 mm. These

Figure 1. Problem setup. Nomenclature of the different
elements of the domain and boundaries.
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coordinates were calculated previously from the
actual tool profile and were taken into account in the
mesh movement sub-step. In the flow problem sub-
step the flow velocities imposed at the contact inter-
face were set by oblique conditions determined by the
tool spinning and vertical displacement and by the
mesh movement in the mesh dynamics problem sub-
step. The vertical movement of the tool was a func-
tion of time. For the thermal sub-step, the material
parameters and heat transfer coefficients were chosen
for the corresponding alloy.

A full adherence contact condition between tool
and material was adopted, after Gerlich et al.14 These
authors found that seizure wear conditions were
found on the tool at 50ms since the beginning of the
welding process.

There are multiple sources of non-linearities that
take place in this problem. Firstly, there is a contact
condition between tool and material varying in time
and space. This translates in the imposition of velocities
in three dimensions and heat flow conditions that
change with time. Furthermore, this leads to the move-
ment of the material and hence the mesh, by means of
flow tracking. This sets the problem in the context
of moving deformable domains. Also, steep gradients of
circumferential velocities develop. In addition, the velo-
city is dependant on both temperature and flow rate.
The heat generation is a function of the deformation
rate, and also both the heat conduction coefficient and
heat capacity are functions of the local temperature.

All these characteristics that take place simultane-
ously were taken into account by means of a staggered
solving approach. The problem solution was imple-
mented by means of non-linearly iterating a sequence
of three sub-steps for each time step. The resolution
scheme is shown in subsection Algorithm and it is
described in detail in subsection Solving Sequence.
The mentioned sub-steps are described in the follow-
ing subsections: Flow Problem, Thermal Problem and
Mesh Dynamics Problem.

The choice for the volume domain mesh were LBB
stabilised P1 elements. These elements have shown
good numerical behaviour and low computational
cost due to the low level of connectivity and low order
Gauss quadrature required.15,16

Solving the flow problem

The fluid problem was solved by means of the incom-
pressible Navier-Stokes equations in Arbitrary
Lagrangian-Eulerian (ALE) form. These equations
were solved in a three-dimensional approach consid-
ering the directions êr, êu, êz and axial symmetry
around the ẑ axis. We assumed the following hypoth-
esis for the velocity field:

v(r, u, z)= vr(r, z) êr + vu(r, z) êu + vz(r, z) êz, ð1Þ

and for the pressure:

p= p(r, z): ð2Þ

The fluid problem reads as follows: find (v, p) 2 Ot

such that

�rp+2div(mε(v)) = r ∂v
∂t +rv v� vRð Þ
� �

in Ot,
div v=0 in Ot,
vR = ∂u

∂t in Ot,
P(êu)v= 0 on G1, t,
v= 0 on G2, t [ G3, t,
s(v, p)n= 0 on G4, t,
P(êu)v= f(xt, t) on G5, t,

0
BBBBBBBBBB@

ð3Þ
where vR denotes the fluid domain velocity, often
called mesh velocity, ε(v) is the strain-rate tensor
vð ÞS = def 1

2
v+ vTð Þ, P(n)= I� n� n is the orthogo-

nal projection operator over the plane with normal n,
and s(v, p) = � pI+2mε(v) is the Cauchy stress ten-
sor for a Newtonian flow. The function f(xt, t) corre-
sponds to the action of the tool on the material and is
described in subsection Mesh Dynamics Problem. In
addition, the material was considered as an incom-
pressible fluid with density r and the dynamic
viscosity

m=
se

3ee
, ð4Þ

where ee is the second invariant of the effective defor-
mation rate tensor

ee =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
ε(v) � ε(v)

r
ð5Þ

and se is the equivalent plastic flow accordingly with
the Sheppard and Wright model.17,18

se =
1

a
ln

Z

A

� �1=n

+ 1+
Z

A

� �2=n
" #1=22

4
3
5 ð6Þ

where the Zenner-Hollomon parameter Z is defined as

Z= ee exp
Q

RT

� �
: ð7Þ

The parameters a, A, n and Q in equations (6) and
(7) are material properties.

The governing differential equation (3) that
describe the physical problem were set in their varia-
tional formulation form, more adequate to solve by
the Finite Element Method. This led to a set of scalar
equations which was solved using a general purpose
solver framework developed by the authors’ group
since year 2001 and published elsewhere.19

The governing equation (3) have several sources of
non-linearity, which were made evident explicitly by
the convective term as well as implicitly through the
referential domain description, the constitutive rela-
tion of the viscosity with the velocity (4) and tempera-
ture (7). The mentioned sources were linearised using
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a fixed-point method detailed in subsection Solving
Sequence.

For the temporal discretisation, an unconditionally
stable and totally implicit backward Euler schema was
used. Therefore, the resulting semi-discrete equations
were discretised via FEM and stabilised by means of
Streamline Upwind/Petrov-Galerkin (SUPG) intro-
duced by Brooks and Hughes20 and Pressure
Stabilising/Petrov-Galerkin (PSPG) proposed by
Tezduyar.21

Solving the thermal problem

The thermal problem was solved by means of the
energy equation in ALE form. As done with the fluid
problem (see subsection Flow Problem), this equation
was solved considering axial symmetry around the
direction êz. We assumed the following hypothesis for
the temperature field:

T=T(r, z): ð8Þ

The thermal problem reads as follows: find T 2 Ot

such that

rCp
∂T
∂t +rT � v� vRð Þ
� �

=div(krT)+ g

in Ot,
qn = hSteel T� Tref

� �
on G1, t,

qn = hAl T� Tref

� �
on G2, t,

qn = hAir T� Tref

� �
on G3, t [ G4, t,

qn = hTool T� Tref

� �
on G5, t,

0
BBBBBB@

ð9Þ

where g =h �s � εð Þ is a heat source per unit volume,
h is the fraction of mechanical work transformed into
heat, �s=2mε(v) is the deviatoric component of the
Cauchy stress tensor and ε(v) is the strain-rate tensor.
Regarding the boundary conditions, qn = � k ∂T

∂n

denotes a prescribed normal heat flux while hSteel,
hAir, hAl and hTool are the heat transfer coefficients for
the the backing steel plate, aluminium, air and tool
steel, respectively.22

In addition, Tref is the reference temperature, usu-
ally Tref=20 8C.

The governing equation (9) have several sources of
non-linearities. The heat capacity and the heat trans-
fer coefficient are defined as Cp =Cp(T) and
k= k(T), respectively. On the other hand, the domain
of resolution is Ot =Ot(u), that is, depends on the
displacement field u, which also has sources of nonli-
nearities (see subsection Solving the Mesh Dynamics
Problem). Furthermore, the heat source per unit vol-
ume is g = g(v) whose dependency with the field v is
implicitly related with fields u and T.

For the temporal discretisation, we used the sec-
ond order accuracy Crank-Nicholson time integration
scheme to satisfy the Geometric Conservation Law.23

Therefore, the resulting semi-discrete equations were

discretised via FEM and stabilised by means of
SUPG.

The constants for heat extraction calculation
(whether conduction through the tool-material inter-
face, boundary G5, t, or by convection to open air,
through boundaries G3, t and G4, t) were determined by
the contact condition for each time step. Heat extrac-
tion by conduction due to contact with the backup
plates (boundary G1, t) was set as a Neumann condi-
tion, as was the extraction of heat by conduction
through the plates, boundary G2, t.

Solving the mesh dynamics problem

The mesh dynamics problem, naturally arising from
the ALE description of flow and thermal problems
(see subsections Flow Problem and Thermal Problem,
respectively), was solved via pseudo-elastic equations.
These equations, considering the axial symmetry
around the ẑ axis, represent a two-dimensional prob-
lem in the current domain Ot.

The mesh problem reads as follows: find (u) 2 Ot

such that

l+Gð Þr divuð Þ+Gr2u= 0 in Ot,
u � êz =0 on G1, t,
u � êr =0 on G2, t,
u � êz =0 on G3, t,
u=(v � n)ndt on G4, t,
u= f(xt, t) on G5, t,
u � êr =0 on G6, t,

0
BBBBBBBB@

ð10Þ

being l and G the Lamé’s constants. In addition,
these constants were stiffened through an element-
based strategy based on element size and deformation
modes regarding volume and shape changes by means
of the well-known parameter x, introduced by Stein
et al.24 This parameter is a non-negative number that
stiffens the elements proportionally to (Je)�x, being
(Je) the element Jacobian. When x =0 the method is
reduced to a conventional elasticity problem. In the
present work x =1 for the general dominion and
x =1:5 in the zone associated to the tool contact
interface.

With reference to boundary conditions, the displa-
cement field over the boundaries G1, t, G2, t, G3, t and
G6, t are prescribed to be null in the direction of the
unit normal vector (i.e. the directions êr and êr). On
the other hand, the displacement field on the bound-
aries G4, t and G5, t correspond to the free surface
motion and the tool-mesh contact dynamics, respec-
tively. In the first case, the displacement field is set
equal to the perpendicular velocity times the time step
interval. In the case of the tool-mesh contact, without
loss of generality the displacement field is determined
by a two-dimensional vector-valued function related
to the current coordinates and time, that is,
f= f(xt, t)8xt 2 G5, t.
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The tool-mesh contact and free surface movement
was calculated using a special contact algorithm that
involved upsampling the surface segments in bound-
aries G4, t and G5, t as a chain of ordered segments. The
calculation of interference between the upsampled seg-
ment chain and the rigid solid tool geometry segments
was carried out. The surface nodes that were not dri-
ven by the tool were free to move following the per-
pendicular projection of the material velocity nodal
values. Downsampling was done to preserve the origi-
nal proportional spacing between nodes along the con-
tact boundary. Despite the success of this ad-hoc
contact algorithm, and due to the nature of the pro-
cess, excessive mesh distortion can not be prevented at
the end of the plunging stage when more dense meshes
are used and element collapse arises. The use of more
sophisticated techniques such as of Takizawa et al.25,26

and Biocca et al.27 are recommended.

Solving sequence

A staggered solving approach, shown in Algorithm
2.5 was used.

Three sub-steps were solved in sequence for each
time step, and described as follows:

During the first sub-step the full Navier-Stokes
equations were solved using ALE technique, as
explained in section 2.1. In this sub-step the velocity
and pressure fields were obtained, while mesh displa-
cements, the associated mesh velocities and tempera-
tures were held constant.

During the second sub-step heat balance differen-
tial equations were solved, taking into account the
heat exchange across the domain boundaries, as
described in section 2.2. All variables but temperature
were held constant during this sub-step. The velocity
field obtained in the previous sub-step were used to
carry out the advection-diffusion differential equa-
tions solving by means of ALE technique.

During the third sub-step the mesh displacements
in the (r̂, ẑ) plane were calculated by means of solving
a linear elasticity problem (10) taking into account the
radial and vertical velocities of the free surface nodes
and the nodes under the tool action, as stated in sec-
tion 2.3. All remaining variables (i.e. v and p fields)
were held constant during this sub-step.

For each variable a comparison was carried out
between the previous iteration values and those of the
current one. Once these differences fell under their
respective tolerances it was assumed that convergence
of the solution had been achieved, therefore a new
time step calculation cycle would begin.

Algorithm

Loop in time for step n+1.

uk = un

Evaluate: m= se

3 ee
, using ee = ee(v

k) and
se =se(Z(T

k)) se =se(Z(T
k)); (see equations (6)

and (7), respectively)
Non linear loop for FSSW coupled problem, itera-

tion k+1.
Solve iteratively linearised flow problem, equation

(3)! uk+1

- Evaluate: vk+1
R = uk+1�un

dt in Ot(u
k+1)

Solve thermal problem, equation (9)! Tk+1

Solve mesh dynamics problem, equation (10)

- Evaluate: uk+1 = (vk+1 � nk+1)nk+1 dt

on G4, t(u
k)

Evaluate convergence using the fields vk+1, uk+1

and Tk+1

Initial mesh discretisation

Figure 2 shows the mesh discretisation for the two-
dimensional domain of interest. The amount of ele-
ments and nodes were 649 and 1211, respectively. The
initial aspect ratio of the elements was conveniently
designed in order to reduce high distortions during
the introduction stage. Therein, three mesh regions
can be observed: lower sheet and upper sheet with
contact sub zone (see close-up view in Figure 2).

Tool geometry and physical model parameters

The tool profile was defined by a series of segments
joining counter clockwise consecutive points in plane
rz (i.e. radii and heights), in the shape of a closed
polygon with symmetry around ẑ axis. In order to
feed our model with a more precise representation, it
was defined based on its dimensions and the actual
image of it as seen in Gerlich et al.14 Both tool profile
definition and source picture are shown in Figure 3

It is worth noting that the cited authors used ther-
mocouples placed 0:2mm below the surface of the
pin and the shoulder front faces, therefore the tem-
perature measurements were quite close to those of
the material.

Figure 2. Two-dimensional initial mesh used for the
resolution of FSSW joining. In the close-up view, the thin layer
mesh is shown.
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The alloy chosen for the model was AA6061, and
its composition is shown in Table 1.

The process parameters were set as follows: total
material thickness e=2:6 mm, tool rotational speed
O=1000 rpm, shoulder diameter Fh =10 mm, pin
diameter Fp =4 mm, pin length h=2 mm, plunging
speed vz =0:75 mm=s, dwelling time td =4 s and tool
plunging depth hf =2:2 mm.

The heat capacity and heat transfer coefficient were
defined with the following polynomials29:

Cp(T)=929� 6:27 � 10�1T+1:48 � 10�3T2�
�4:33 � 10�8T3 J

KgK

h i
,

ð11Þ

k(T)=25:2+3:98 � 10�1T+7:36 � 10�6T2�
�2:52 � 10�7T3 W

mK

� �
:

ð12Þ

The material constants for AA6061 alloy accord-
ing to the Sheppard and Wright model were:
lnA=26:707, a=0:01 1=MPa½ �, n=9:16 and
Q=143890 J=mol½ �.

The value for the fraction of mechanical work
transformed into heat was h=0:9 as per Ulysse.30

The heat transfer coefficient between the material

and the backing plate was: hSteel =11 W
m2 K

� �
(bound-

ary G1, t),
22 while the heat transfer coefficient through

boundary G2, t was hAl=1000 W
m2 K

� �
representing the

continuation of the material. The heat transfer coeffi-

cient to open air (G3, t and G4, t) was hAir=5 W
m2 K

� �
.

The heat transfer coefficient between the material and

the tool (G5, t) was: hTool =300 W
m2K

� �
.

The tool thermal parameters were as follows: the
heat capacity Cp =5:6 N

mm2K

� �
and the conductivity

k=28:4 W
mK

� �
.

Results

On Figure 4 experimental results as of Gerlich et al.14

are shown along with numerical results of tempera-
ture values at their corresponding points in the
domain.

On Figure 5 the circumferential velocity field at
four plunging stage time frames are shown: t=0, 0:5,
1:0 and 1:5 s.

On Figure 6 circumferential velocity field is shown
for six time frames of the plunging stage: t=2:0, 2:25,
2:5, 2:75, 3:0 and 3:25 s. After t=3:1 s the dwelling
stage begins, during which there is negligible variation
in the circumferential velocity field and the vertical
and radial velocities are null. After t=7:1 s the with-
drawal stage begins. The velocity field is null through-
out the domain and the material cools down until
reaching ambient temperature. On Figure 7 the verti-
cal (ẑ axis) and radial (r̂ axis) velocities are shown in
the form of vectors for four-time frames during the
plunging stage.

Discussion

There is no perfect model for representing the joining
process throughout, given that the material at the
laboratory is actually behaving like a viscous fluid at
the stirred zone (at T’0:9Tmelt) and as a solid at the
heat affected zone and beyond, with a smooth transi-
tion in between. Constitutive models, such as
Johnson-Cook, are well suited for solving the solid
material behaviour, while others such as Sheppard-

Table 1. Chemical composition for AA6061 alloy.28

Element %

Al Base
Si 0:4 - 0:8
Fe 40:7
Cu 0:04 - 0:35
Mn 0:15
Mg 1:2
Cr 0:04 - 0:35
Zn 40:25
Ti 40:15

Figure 4. Experimental results for pin and shoulder
temperatures as of Gerlich et al.14 Numerical results of
temperature values at corresponding points in the domain.

Figure 3. Tool geometry for the present work model. The
background image of the actual tool was taken from Gerlich et
al.14 The tool profile is shown in black with yellow dots.
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Wright as used in this work are better suited for high
strain rates like in a viscous flow.

The dynamic viscosity function m used for the
numerical computation of the FSSW process
(Equation (4)) is inversely proportional to the tem-
perature through the Zenner-Hollomon parameter
(Equation (7)) present in the flow stress equation
(Equation (6)). In turn, temperature is proportional
to the heat source, given by the flow stress inner
product with the strain rate tensor. Since the begin-
ning of the joining process (Figure 5(a)), the high
strain rate zone developed in the material near the
contact interface becomes the source of heat which is
conducted and convected to the surroundings. This
local temperature increment provokes a drop in the
local viscosity and a high temperature gradient which
in turn, lowers the dynamic viscosity gradient until an
equilibrium is reached, at each time step.

Figure 4 shows the temperature values of nodes in
contact with the tool at the same radius as the experi-
mental thermocouples were located. It can be seen
that for t41 s, the numerical model values of the pin
have a larger increase than those of the real tool since
the thermocouple is embedded in the tool steel, while
the numerical result corresponds to the material
undergoing high shear rates. Notice that at the begin-
ning of the considered time span (i.e. t41), the
shoulder temperature results show a steeper curve
than the experimental measurements. This outcome
may be due to the fact that the shoulder starts to
make contact with the material when t. 2:1 s. The
thermocouple embedded in the tool shoulder mea-
sured the temperature of the steel tool, while for
t\ 2:1 s the corresponding nodes in the model were

heated by conduction through the aluminium alloy,
which has a higher coefficient of heat conduction
than that of the steel. Since t’2:1 s, the flat surface of
the shoulder made contact with the material and
hence, the temperature values for the corresponding
node in the continuum were closer to those obtained
experimentally.

There is a slight drop in temperature between the
last part of the plunging stage before the dwelling stage
(2:5 s \ t\ 3:1 s). This may be because at time t=2
s (Figure 6(a)) the tool shoulder starts to squeeze
material outwards form the tool axis and therefore
the strain rate near the interface is higher than before,
leading to an increase in viscous forces dissipated as
heat. At the dwelling stage only the circumferential
velocity field is present and hence, heat input is a little
lower than previously.

During the withdrawal stage, the temperature
curves diverge for the simple reason that the thermo-
couples read the tool temperature as it cooled down
while the nodes show the welded material tempera-
ture evolution.

The early tool seizure condition in experimental
FSSW (found at t=50ms since the tool contact) as
reported by Gerlich et al.14 showed that such a condi-
tion could be adopted for the present model aiming
to reproduce the physical phenomenon as close as
possible. This choice implied some new issue that had
to be addressed. Due to contact, the velocity at the
tool-workpiece boundary had to be imposed as obli-
que conditions, spawning additional velocity coupling
terms in the global system of equations. Also, these
velocities at the boundary had to be gradually
imposed, as in Ulysse30 to minimise instability and

Figure 5. Plunging stage. Circumferential velocity field for range 04t41:5 s: (a) t = 0 s, (b) t = 0:5 s, (c) t = 1:0 s and (d) t = 1:5 s.

Carr et al. 7



convergence issues. The introduction of an auxiliary
contact variable was also needed, since it played an
important role in the smooth transition from free sur-
face nodes to penalised nodes (in terms of velocities).

We observed that the temperature curves fit well to
the experimental values, mainly in the dwelling stage.
Therefore, it can be considered that both the condi-
tion of adherence throughout the contact surface and
the heat loss coefficients and boundary conditions
were well chosen.

From Figures 5 and 6, it can be observed that the
highest circumferential velocities were found in the
zone next to the tool surface, as well as the highest
gradients of Vu in the vertical direction, êz. A particu-
lar condition that may have led to an oscillatory beha-
viour was found at that location. The high velocity
gradients led to an increase in the amount of local
plastic work and thus in the temperature. This, in
turn, decreased the local values of viscosity m, which
lowered the effective stress SEff. This phenomenon
was one of the main issues to deal with while achiev-
ing the solution.

Figure 7 shows the flow velocities in radial êr and
vertical êz directions. It can be seen that a flow of

material was developed in a zone very close to the
tool surface. This flow had a maximum value at a
small distance below the contact surface. This may be
due to the cooling effect that the tool exerted on the
material, added to the adherence contact condition
adopted. These results, in turn, were coincident with
those of Hirasawa et al.31 who used the Particle
Method32 with a similar tool geometry to the one
used in this work.

It can also be seen that the tool plunged into the
material at a constant rate, while the flow velocity at
the free surface increased until a crown of debris was
generated. The shape of the displaced material is char-
acteristic of this type of welding process whenever
there is some degree of shoulder plunging, as seen in
Zhang et al.4 and Reilly et al.,33 to name a few.

Regarding the issues about solving the model for
the whole process, it turned out to be better to con-
sider the viscosity as a variable field within each ele-
ment (i.e. compute the viscosity at each Gauss point)
instead of constant across elements. This approach
led to better conditioned sub-steps coupling achieving
faster convergence for the solution. The viscosity cal-
culus as a temperature function turned out to be

Figure 6. Plunging stage. Circumferential velocity field for range 2:04t43:25 s: (a) t = 2:00s, (b) t = 2:25s, (c) t = 2:50s, (d)
t = 2:75s, (e) t = 3:00s and (f) t = 3:25s.
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crucial. Otherwise, the maximum values of the latter
would have resulted far from the experimental data.

Conclusions

Numerical modelling of the whole Friction Stir Spot
Welding process was carried out using the Finite
Element Method on a two-dimensional domain with
symmetry of revolution. Accordingly, a computational
tool for modelling the whole process was developed.

The model comprises three sub-steps for each time
step: a first one solving the Navier-Stokes equations
for an incompressible non-linear fluid using Arbitrary
Lagrangian-Eulerian (ALE) techniques, a second
sub-step solving the heat balance equations using
ALE techniques and integrating on as time-dependent
domain using a Crank-Nicholson schema, and finally,
a third sub-step calculating the mesh shape evolution
in the two-dimensional domain through the resolu-
tion of pseudo-elasticity equations. The time discreti-
sation for the first two sub-steps was made using a
Crank-Nicholson strategy.

The modelling thermal outcomes were compared
to those of literature. The obtained curves showed a
very good adjustment to experimental data, within
5% of its maximum values. These results may lead us
to consider that full sticking hypothesis, heat genera-
tion and heat transfer conditions were well chosen. In

addition, the final weld flash geometry was found
similar quite close to those that of experimental coun-
terparts with same proportion of shoulder plunging.
Besides, the velocity field was qualitatively close to
those found in literature.

Despite the good agreement in temperature values
after considering tool-workpiece full adherence, fur-
ther work needs to be carried out on the contact con-
ditions model in order to take into account the
possibility of dry friction between the tool and the
material, given that this phenomenon was observed
experimentally very shortly at the beginning of the
welding process.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of
this article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: Consejo Nacional de Investigaciones Cientı́ficas y
Técnicas (CONICET) and grants ‘‘Simulación Computacional
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Figure 7. Plunging stage sequence. Velocity field in [m/s] for directions êr and êz for the time range 0:754t43:0 s: (a) t = 0:75 s,
(b) t = 1:50 s, (c) t = 2:25 s and (d) t = 3:00 s.

Carr et al. 9



References

1. Kuykendall KL. An evaluation of constitutive laws

and their ability to predict flow stress over large varia-

tions in temperature, strain, and strain rate characteris-

tic of friction stir welding, https://scholarsarchive.

byu.edu/etd/2768 (2011, accessed March 2018).
2. D’Urso G and Giardini C. Fem model for the thermo-

mechanical characterization of friction stir spot welded

joints. Int J Mater Forming 2016; 9(2): 149–160.
3. Mandal S, Rice J and Elmustafa AA. Experimental

and numerical investigation of the plunge stage in fric-

tion stir welding. J Mater Process Technol 2008; 203(1–

3): 411–419.
4. Zhang B, Chen X, Pan K, et al. Thermo-mechanical

simulation using microstructure-based modeling of fric-

tion stir spot welded AA 6061-T6. J Manuf Process

2019; 37: 71–81.
5. Jedrasiak P and Shercliff HR. Small strain finite ele-

ment modelling of friction stir spot welding of al and

mg alloys. J Mater Process Technol 2019; 263: 207–222.
6. Guerdoux S. Numerical simulation of the friction stir

welding process using both Lagrangian and arbitrary

Lagrangian Eulerian formulations. AIP Conf Proc

2004; 712: 1259.
7. Miles M, Karki U and Hovanski Y. Temperature and

material flow prediction in friction-stir spot welding of

advanced high-strength steel. JOM 2014; 66(10):

2130–2136.

8. Donea J, Huerta A, Ponthot JP, et al. Arbitrary Lagran-

gian-Eulerian methods. In: Stein E, Thomas J .R. Hughes,

(eds) The encyclopedia of computational mechanics. Hobo-

ken: John Wiley & Sons, Ltd, 2004, pp.413–437, Vol. 1.

DOI:10.1002/9781119176817.ecm2009.
9. Hughes TJR, Liu WK and Zimmermann TK. Lagran-

gian-eulerian finite element formulation for incompressi-

ble viscous flows. Comput Methods Appl Mech Eng 1981;

29(3): 329–349. https://www.sciencedirect.com/science/

article/pii/0045782581900499. Accessed March, 2018.
10. Zhu Z, Wang M, Zhang H, et al. A finite element model

to simulate defect formation during friction stir weld-

ing.Metals 2017; 7(7): 256.
11. Fourment L and Guerdoux S. 3d numerical simulation

of the three stages of friction stir welding based on fric-

tion parameters calibration. Int J Mater Forming 2008;

1(S1): 1287–1290.
12. Khosa SU, Weinberger T and Enzinger N. Thermo-

mechanical investigations during friction stir spot weld-

ing (FSSW) of AA6082-T6. Weld World 2010; 54(5–6):

R134–R146.
13. Meyghani B, Awang M, Emamian SS, et al. A compar-

ison of different finite element methods in the thermal

analysis of friction stir welding (FSW). Metals 2017;

7(10): 450.
14. Gerlich A, Su P and North TH. Tool penetration dur-

ing friction stir spot welding of al and mg alloys. J

Mater Sci 2005; 40(24): 6473–6481.
15. Karabelas E, Haase G, Plank G, et al. Versatile stabi-

lized finite element formulations for nearly and fully

incompressible solid mechanics. Comput Mech 2020;

65(1): 193–215.
16. Pironneau O. On the transport-diffusion algorithm and

its applications to the Navier-Stokes equations. Numer

Math 1982; 38: 309–332.

17. Li Z, Yue Y, Ji S, et al. Optimal design of thread geo-

metry and its performance in friction stir spot welding.

Mater Des 2016; 94: 368–376. https://www.sciencedirect.

com/science/article/pii/S026412751630082X. Accessed

March 2018.
18. Sun Z, Wu CS and Kumar S. Determination of heat

generation by correlating the interfacial friction stress

with temperature in friction stir welding. J Manuf Pro-

cess 2018; 31: 801–811.
19. Urquiza S and Venere M. An application framework

architecture for fem and other related solvers. Mec

Comput 2001; XXI: 3099–3109.

20. Brooks AN and Hughes TJR. Streamline upwind/Pet-

rov-Galerkin formulations for convection dominated

flows with particular emphasis on the incompressible

Navier-Stokes equations. Comput Methods Appl Mech

Eng 1982; 32(1-–3): 199–259.
21. Tezduyar T. Stabilized finite element formulations for

incompressible flow computations. Adv Appl Mech

1991; 28: 1–44.
22. Kang J, Lee K and Kang S. Heat transfer coefficient

for F.E. Analysis in the warm forging process. J Achiev

Mater Manuf Eng 2006; 20(1–2): 367–370.
23. Farhat C, Geuzaine P and Grandmont C. The discrete

geometric conservation law and the nonlinear stability

of ALE schemes for the solution of flow problems on

moving grids. J Comput Phys 2001; 174(2): 669–694.
24. Stein K, Tezduyar T and Benney R. Mesh moving tech-

niques for fluid-structure interactions with large displa-

cements. J Appl Mech 2003; 70(1): 58–63.
25. Takizawa K, Tezduyar TE and Avsar R. A low-

distortion mesh moving method based on fiber-

reinforced hyperelasticity and optimized zero-stress

state. Comput Mech 2020; 65: 1567–1591.
26. Takizawa K, Tezduyar TE, Boben J, et al. Fluid–struc-

ture interaction modeling of clusters of spacecraft para-

chutes with modified geometric porosity. Comput Mech

2013; 52(6): 1351–1364.
27. Biocca N, Blanco PJ, Caballero D, et al. A biologically-

inspired mesh optimizer based on pseudo-material

remodeling. Comput Mech 2022; 69: 505–525.
28. Yang S. Comportement et endommagement des alliages

d’aluminium 6061-T6: approche micromécanique. PhD
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