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ABSTRACT. The aim of this paper is to apply the diffusive metric technique defined by the spectral
analysis of graph Laplacians to the set of the 41 cities belonging to AMBA, the largest urban concentration
in Argentina, based on public transport and neighborhood. It could be expected that the propagation of any
epidemic desease would follow the paths determined by those metrics. Our result reflects that the isolation
measures decided by the health administration helped at the atenuation of the actual spread of COVID-19
in AMBA.
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1 INTRODUCTION

Let V = {1,2, . . . ,n}, n ≥ 1 be the set of vertices of the graph G =
(
V ,E , a⃗, ¯̄A

)
, where E =

{{i, j} : i, j ∈ V } is the set of all edges, a⃗ = (a1,a2, . . . ,an) is the sequence of positive weights
of the vertices and ¯̄A = (Ai j) is the matrix of no negative weights of the edges. Assume also that
A j j = 0 for every j = 1, . . . ,n. We say that G is a simple undirected weighted graph based on V .
Set G(V ) to denote the class of all such simple undirected weighted graphs based on V .

Let (Ω,F ,P) be a probability space. Let G : Ω → G(V ) be a graph valued random variable
defined in Ω with V and E fixed. So that G (ω) =

(
V ,E , a⃗(ω), ¯̄A(ω)

)
with a⃗ : Ω → Rn a ran-

dom vector with positive components and ¯̄A : Ω → Rn×n a random matrix with non negative
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784 DIFFUSIVE METRICS INDUCED BY RANDOM AFFINITIES ON GRAPHS

entries, with Aii = 0 and Ai j = A ji. So that ai : Ω → R and Ai j : Ω → R are n+ n2 = n(n+ 1)
given random variables. Assume that all of them belong to L1(Ω,P), i.e. they have finite first

moments
∫

Ω

|ai|dP =
∫

Ω

ai dP < ∞ and
∫

Ω

|Ai j|dP =
∫

Ω

Ai j dP < ∞. We shall also assume

the normalizations
n

∑
i=1

ai(w) = 1 and
n

∑
i=1

n

∑
j=1

Ai j(w) = 1 for every ω ∈ Ω.

The expected graph is E(G ) =
(
V ,E ,E(⃗a),E( ¯̄A)

)
, with E(⃗a) = (Ea1, . . . ,Ean), and E( ¯̄A) =

(EAi j : i, j = 1, . . . ,n). Notice that Eai ≥ 0 and EAi j ≥ 0, and that

n

∑
i=1

Eai = E

(
n

∑
i=1

ai

)
= E(1) = 1,

n

∑
i=1

n

∑
j=1

EAi j = E

(
n

∑
i=1

n

∑
j=1

Ai j

)
= 1.

Many interesting questions arise regarding the relation between the analysis provided by each
graph G (ω) and the analysis provided by the graph E(G ). In this paper we focus on building a
metric, by the diffusion method given in [1], on the graph E(G ). For a different approach see [2].

This search is motivated by the application to the analysis of the transportation of people between
the 41 cities in AMBA (Buenos Aires) in the COVID-19 context, through different ways of
passengers transport. The acronym AMBA is used to name the 41 cities that concentrate one
third of the total population of Argentina and is spatially concentrated around Buenos Aires City.
The total population of AMBA is of about 16.7 millions. The Figure 1 depicts their distribution.

Aside from the geographical distance between locations i and j in the map there is a valuable
information given by the public transport system in AMBA. The system SUBE (unifier system
of electronic ticket) keeps a great amount of information that allows to have another geometry
provided by a connectivity distance built on this big data source. With the idea of considering at
once a diversity of affinities between two cities i and j, such as euclidean distance, neighborhood,
public transport, private transport, etcetera, we introduce a diffusive metrization of the graph that
takes into account these diverse factors which all together contribute to the motion of people
inside AMBA.

Section 2 is devoted to introduce theoretical background of our general setting. In Section 3 we
apply the metric built in §2 to some particular cases of affinities for the graph AMBA. Here we
draw the families of balls in these metrics in order to have a picture of the behavior of distance
measured in terms of transport. We also give here empirical estimates of the norms of the dif-
ferences between metric matrices coming from different combinations of ways of transport. In
Section 4 we compare the metric maps obtained above with the actual spread of COVID-19 in
AMBA during different steps of the pandemic growth in Argentina.

Trends Comput. Appl. Math., 23, N. 4 (2022)
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Figure 1: A map of the 41 cities of AMBA. Buenos Aires city (CABA) has the label 30.

2 METRIZATION OF RANDOM GRAPHS

Let (Ω,F ,P) be a probability space. We say that a function G defined in Ω with values on the
simple undirected weighted graphs on V = {1,2, . . . ,n}, is a random graph on V with finite first
moments if G (ω) = (V ,E , a⃗(ω), ¯̄A(ω)) with V = {1,2, . . . ,n}, E = {{i, j} : i, j ∈ V }, a⃗(ω) =(
ai(ω) : i = 1, . . . ,n

)
, ¯̄A(ω) =

(
Ai j(ω) : i, j = 1, . . . ,n

)
with each ai(ω) and each ¯̄Ai j(ω) in

L1(Ω,F ,P). We shall also assume the probabilistic normalizations
n

∑
i=1

ai(ω) = 1,
n

∑
i=1

n

∑
j=1

Ai j(ω) = 1

for every ω ∈ Ω and that ai(ω)> 0 for each i ∈ V and ¯̄Ai j(ω)≥ 0 for i, j ∈ V and ω ∈ Ω.

With the above notation, it makes sense to consider a notion of expected graph EG =(
V ,E , E⃗a,E ¯̄A

)
, with E⃗a = (Ea1, . . . ,Ean) and E ¯̄A = (EAi j : i, j ∈ V ), Eai =

∫
Ω

ai(ω)dP(ω)

and EAi j =
∫

Ω

Ai j(ω)dP(ω).

Proposition 2.1. Let G (ω) and EG as before. Then

Trends Comput. Appl. Math., 23, N. 4 (2022)
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786 DIFFUSIVE METRICS INDUCED BY RANDOM AFFINITIES ON GRAPHS

(i) Eai > 0 for every i ∈ V ;

(ii) EAi j ≥ 0 for every i, j ∈ V ;

(iii) ∑
n
i=1Eai = 1;

(iv) ∑
n
i=1 ∑

n
j=1EAi j = 1.

Proof. (i) Since ai(ω) is positive for every ω ∈Ω, the sets Ωk = {ω ∈Ω : 2−k < ai(ω)≤ 2−k+1}
for k ∈ Z forms a disjoint partition of Ω. In other words

Ω =
⋃
k∈Z

Ωk, Ωk ∩Ωℓ = /0.

Hence 1 = P(Ω) = ∑k∈ZP(Ωk). So that for some k0 ∈ Z we have that P(Ωk0)> 0. Then

Eai =
∫

Ω

ai(ω)dP = ∑
k∈Z

∫
Ωk

ai(ω)dP ≥
∫

Ωk0

ai(ω)dP ≥ 2−k0P(Ωk0)> 0.

The proofs of (ii), (iii) and (iv) are clear. □

Notice that under the assumptions ai(ω) > 0, Ai, j(ω) ≥ 0, ∑
n
i=1 ai(ω) = 1 and

∑
n
i=1 ∑

n
j=1 Ai j(ω) = 1 we have that each ai and each Ai j belong to L∞(Ω,F ,P)⊆ L1(Ω,F ,P).

Given a graph Γ = (V ,E , a⃗, ¯̄A) the Laplacian on Γ is given by

∆Γ f (i) =
1
ai

n

∑
j=1

Ai j
(

f (i)− f ( j)
)

when f : V → R is any function defined on the set of vertices. In matrix notation

∆Γ = ¯̄a−1
(

¯̄A− ¯̄D
)

with ¯̄a−1 = diag
(
a−1

1 , . . . ,a−1
n
)

and ¯̄D = diag
(
∑ j ̸=1 A1 j, . . . ,∑ j ̸=n An j

)
.

Notice now that for a given random graph on V , G (ω), as before we have at least two ways
of considering an expected Laplacian. The first it to apply the above definition of the Laplace
operator to Γ = EG . In fact

∆EG f (i) =
1
Eai

n

∑
j=1

EAi j
(

f (i)− f ( j)
)

is well defined from Proposition 2.1. The second way is to ask for the existence of an expected
Laplacian for the random Laplacian defined by

∆ω f (i) = ∆G (ω) f (i) =
1

ai(ω)

n

∑
j=1

Ai j(ω)
(

f ( j)− f (i)
)
,

ω ∈ Ω, i ∈ V . It is clear that with the current hypotheses on the ai’s the expected Laplacian
E∆ω not necessarily exists. On the other hand, it is also clear that when the ai’s are deterministic

Trends Comput. Appl. Math., 23, N. 4 (2022)
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(constant) we have that E∆ω = ∆EG . Actually in our application this will be the case. Neverthe-
less, for the sake of theoretical completeness we give some sufficient conditions on the random
graph in order to guarantee the existence of the expected Laplacian and to produce a formula to
compute it. This is done in the next result.

Proposition 2.2. Let G (Ω) be a random graph on V = {1, . . . ,n}. Assume that ai(ω) > 0 for
every i ∈ V and ω ∈ Ω, ∑

n
i=1 ai(ω) = 1 and a−1

i ∈ L1(Ω,F ,P) for every i ∈ V . Assume
that Ai j(ω) ≥ 0, ∑

n
i=1 ∑

n
j=1 Ai j(ω) = 1 for ω ∈ Ω. If each ai(ω) is independent of the random

variables Akℓ(ω) for every {k, ℓ} ∈ E , then with

∆G (ω) f (i) =
1

ai(ω) ∑
j=1

Ai j(ω)( f ( j)− f (i)) , ω ∈ Ω, i ∈ V ,

we have that E∆G (ω) = ∆G̃ with G̃ =
(
V ,E , b̄,E ¯̄A

)
, b̄ = (b1,b2, . . . ,bn) and bi =

(
E 1

ai

)−1
.

Proof. Since we are assuming the finiteness of
∫

Ω

1
ai(ω)

dP(ω) and independence of each

ai(ω) with all the Akℓ(ω), we have that 1
ai(ω) is a random variable which is independent of the

random variable
n

∑
j=1

Ai j(ω)( f ( j)− f (i)) for any f : V → R. Hence

E
(
∆G (ω) f (i)

)
= E

(
1
ai

)
E

(
n

∑
j=1

Ai j ( f ( j)− f (i))

)

=
1(

E
(

1
ai

))−1

n

∑
j=1

E(Ai j)( f ( j)− f (i))

=
1
bi

n

∑
j=1

E(Ai j)( f ( j)− f (i))

= ∆G̃ f (i),

as desired. □

Once we have a Laplacian defined on (V ,E ) which could be ∆EG or E∆ω we can build the
diffusive metric on V (see [1]). For completeness, let us state and prove the basic facts regarding
the constructive of these metrics.

Teorema 2.1. Let Γ = (V ,E ,bi,Bi j) be a simple undirected weighted graph. Then

a) the operator ∆Γ is selfadjoint with respect to the inner product

⟨ f ,g⟩b̄ =
n

∑
i=1

f (i)g(i)bi ;

b) the operator ∆Γ is negative definite, i. e.

⟨∆Γ f , f ⟩b̄ ≤ 0, for every f ;

Trends Comput. Appl. Math., 23, N. 4 (2022)
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c) the operator ∆Γ is diagonalizable, i. e. there exist a sequence λn−1 ≤ λn−2 ≤ ·· · ≤ λ1 ≤
λ0 = 0 and an orthonormal sequence φ0,φ1, . . . ,φn−1 with respect to the inner product
⟨ , ⟩b̄, such that

∆Γφi = λiφ1, for i = 0,1, . . . ,n−1;

d) for any t > 0, the function dt : V ×V → R given by

dt(i, j) =

√√√√n−1

∑
ℓ=0

e2tλℓ |φℓ(i)−φℓ( j)|2

is a metric on V .

Proof. a) Let f and g be two functions from V to R, then since Bi j = B ji,

⟨∆Γ f ,g⟩b̄ =
n

∑
i=1

(∆Γ f )(i)g(i)bi

=
n

∑
i=1

(
1
bi

n

∑
j=1

Bi j
(

f ( j)− f (i)
))

g(i)bi

=
n

∑
j=1

n

∑
i=1

Bi j
(

f ( j)− f (i)
)
g(i)

=
n

∑
j=1

(
n

∑
i=1

Bi j f ( j)g(i)−
n

∑
i=1

Bi j f (i)g(i)

)

=
n

∑
j=1

n

∑
i=1

Bi j f ( j)g(i)−
n

∑
j=1

n

∑
i=1

Bi j f (i)g(i)

=
n

∑
i=1

n

∑
j=1

Bi j f ( j)g(i)−
n

∑
i=1

n

∑
j=1

Bi j f (i)g(i)

=
n

∑
i=1

(
1
bi

n

∑
j=1

Bi j
(
g( j)−g(i)

))
f (i)bi

= ⟨ f ,∆Γg⟩b̄ .

Trends Comput. Appl. Math., 23, N. 4 (2022)



i
i

“A11-1629-9694” — 2022/10/11 — 18:23 — page 789 — #7 i
i

i
i

i
i

M. F. ACOSTA, H. AIMAR, I. GÓMEZ and F. MORANA 789

b) Since Bi j = B ji we have

⟨−∆Γ f , f ⟩b̄ =
n

∑
i=1

(−∆Γ f )(i) f (i)bi

=
n

∑
i=1

n

∑
j=1

Bi j
(

f (i)− f ( j)
)

f (i)

=
n

∑
i=1

n

∑
j=1

Bi j f 2(i)−
n

∑
i=1

n

∑
j=1

Bi j f (i) f ( j)

=
n

∑
i=1

n

∑
j=1

Bi j
(

f 2(i)− f (i) f ( j)
)

=
1
2

[
n

∑
i=1

n

∑
j=1

Bi j
(

f 2(i)− f (i) f ( j)
)
+

n

∑
i=1

n

∑
j=1

Bi j
(

f 2(i)− f (i) f ( j)
)]

=
1
2

n

∑
i=1

n

∑
j=1

Bi j
(

f 2(i)+ f 2( j)−2 f (i) f ( j)
)

=
1
2

n

∑
i=1

n

∑
j=1

Bi j
(

f (i)− f ( j)
)2

≥ 0.

c) follows from a) and b) since we are dealing with a self-adjoint and negative definite matrix ∆Γ.
Since the constant functions are ∆Γ-harmonic we hare that λ0 = 0 is the eigenvalue corresponding

to the eigenfunction φ0(i) =
(

∑
n
j=1 b j

)−1/2
for i = 1, . . . ,n, which has the L2 norm given by the

inner product ⟨ , ⟩b̄ equal to one.

d) it is clear that dt is nonnegative, symmetric, faithful and satisfies the triangle inequality for
every t > 0. Let us notice here the dt(i, j) is the L2(V , b̄) norm of the difference of the heat

kernels at i and j provided by the diffusion
∂u
∂ t

= ∆Γu. □

As a general reference for the above see for example [3].

3 THE CASE OF AMBA (BUENOS AIRES)

In this section we effectively compute and sketch some families of balls, the metric provided by
dt in Theorem 2.1 for several natural instances of affinity matrices Ai j and some of their means
and a couple of instances for the weights ai at each node. All the underlying computations are
performed in Python. In order to show our results in a compact way we shall first introduce the
families of affinities Ai j that we shall use and the weights ai that we consider.

Our basic vertex set is V = {1, . . . ,41} one for each city in AMBA. The first, and perhaps more
relevant matrix concerning the spread of COVID-19 in this setting, is the matrix built with the
data of SUBE provided by the public transport in AMBA. This matrix takes onto account buses,
subte (metro), trains and even fluvial public transportation. We shall denote it by A0. We exhibit

Trends Comput. Appl. Math., 23, N. 4 (2022)
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in Figure 3 the full unnormalized form of the 41×41 matrix A0. We shall as well consider some
neighborhood matrices. With A1 we denote the normalization of the matrix that takes the value 1
at (i, j) if the cities i and j share some points of their boundaries, and zero otherwise. In Figure 2
we show a small part of A1 (unnormalized). With A2 we denote a better quantified weighted
approach of A1 that takes into account the length of the shared portion of the boundary between
cities i and j. See Figure 4. Since the population of different cities is in several instances quite
different for two neighbor cities, we consider still another matrix that we denote A3, which takes
into account the length of the shared boundaries and also the minimum of the population of the
two neighbor cities. Precisely, the unnormalized matrix A3 i given by A3

i j equals the product of
the length of the shared boundaries times the minimum of the population of the two neighbor
cities. Figure 5 depicts a part of this matrix. For last, the matrix A4 considers only the minimum
of the populations of any two neighbor cities. The matrix A4 is partially showed in Figure 6.

Regarding the weights ai at the nodes, we shall consider only two a⃗: the uniform a⃗1 =
( 1

41 , . . . ,
1
41

)
and a normalization of the density of the disease in each location (total number of active
infections over population) by July 2020, given by

a⃗2 = (0.0023,0.0009,0.0004,0.0014,0.0015,0.0009,0.0012,0.0030,0.0007,0.0009,0.0011,

0.0015,0.0008,0.0016,0.0049,0.0005,0.0006,0.0018,0.0015,0.0031,0.0013,0.0008,

0.0012,0.0010,0.0019,0.0022,0.0014,0.0006,0.0019,0.0095,0.0011,0.0004,0.0015,

0.0018,0.0018,0.0026,0.0013,0.0018,0.0029,0.0018,0.0034)

Figure 2: Unnormalized 20× 41 submatrix of A1, the adjacency matrix provided by the neigh-
borhood relation A1

i j = 1 when cities i and j share points of their boundaries.

Trends Comput. Appl. Math., 23, N. 4 (2022)



i
i

“A11-1629-9694” — 2022/10/11 — 18:23 — page 791 — #9 i
i

i
i

i
i

M. F. ACOSTA, H. AIMAR, I. GÓMEZ and F. MORANA 791
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Figure 4: Unnormalized 20×20 submatrix of A2, the adjacency weighted matrix provided by the
length of the shared portions of the boundaries of the two cities.

Figure 5: Unnormalized 20× 20 submatrix of A3, the weighted matrix provided by the product
of the lengths of the shared boundaries times the minimum of their population.

The result of Section 2 generate a diversity of metrics on V = {1,2, . . . ,41} provided by any
choice of A ∈ {A0,A1,A2,A3,A4} and a⃗ ∈ {⃗a1, a⃗2}. Moreover from Proposition 2.2 in Section 2
any convex combination of matrices A provides a Laplacian and a corresponding family of met-
rics on V . Sometimes we shall use a convex combination of A0 and Ai with i = 1,2,3,4, i.e.
A = θA0 +(1−θ)Ai with 0 ≤ θ ≤ 1. In this cases we write di,θ ; j

t to denote the metric provided

Trends Comput. Appl. Math., 23, N. 4 (2022)



i
i

“A11-1629-9694” — 2022/10/11 — 18:23 — page 793 — #11 i
i

i
i

i
i

M. F. ACOSTA, H. AIMAR, I. GÓMEZ and F. MORANA 793

Figure 6: Unnormalized 20× 20 submatrix of A4, the matrix provided by the minimum of the
population of any two neighboring cities.

by Theorem 2.1 with B = θA0 +(1− θ)Ai and b = a⃗ j. We shall use the standard notation for
balls keeping the above notation, precisely

Bi,θ ; j
t (k,r) = {ℓ ∈ V : di,θ ; j

t (k, ℓ)< r}

for k ∈ V , r > 0, i = 0,1,2,3,4 and 0 ≤ θ ≤ 1.

A way to schematically depict the unrestricted paths of COVID-19 propagation from the point
(CABA) with higher initial concentration of diseases is to consider for each metric the balls
centered at CABA (30) and growing radii.

Using a prescribed scale of colors we can run our algorithm in Python in order to obtain a di-
versity of images for propagation due to the above described notations of neighborhood and
transport and their convex combinations. With the above introduced notation we give the follow-
ing illustration of the results. In Figure 7 and Figure 8 we use always t = 0.25 and j = 1, the other
parameters are explicitly given. The center is always 30 (CABA), the growing radii are colored
according to the given scale.

Some global comparison of the different metrics are in order. In Table 1 we shall show the
comparison of the metric induced by public transport (SUBE) with the metrics induced a convex
combination of the SUBE data and some of the neighborhood matrices defined above only for
the case of ā1, the uniform distribution

(
ai =

1
41

)
of the vertices of the graph. Here we compute

the relative deviations with respect to the metric induced just by public transport. Let us precise
the above. Set

ε
i,θ
t =

∥∥∥d0,0;1
t −di,θ ;1

t

∥∥∥∥∥∥d0,0;1
t

∥∥∥ ,

Trends Comput. Appl. Math., 23, N. 4 (2022)
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d0,0;1
0.25 (30, ·)

Figure 7: Diffusion distances to CABA (30) for t = 0.25 with affinity matrix A0 and node uniform
weights given by a⃗1.

where d0,0;1
t is the metric matrix associate to the public transport only and di,θ ;1

t are the metrics
defined above. The norm considered here is the Euclidean one, i.e.∥∥∥d0,0;1

t −di,θ ;1
t

∥∥∥2
=

n

∑
k,ℓ=1

∣∣∣d0,0;1
t (k, ℓ)−di,θ ;1

t (k, ℓ)
∣∣∣2

and ∥∥∥d0,0;1
t

∥∥∥2
=

n

∑
k,ℓ=1

(
d0,0;1

t (k, ℓ)
)2

.

Table 1: Relative differences.

ε
1,0
t 0.12035607 ε

1,0.5
t 0.0609088

ε
2,0
t 0.17173178 ε

2,0.5
t 0.091446

ε
3,0
t 0.0644136 ε

3,0.5
t 0.0306021

ε
4,0
t 0.09062579 ε

3,0.5
t 0.04661433

In Table 1 we observe that, as it could be expected and as it reflected by the colored maps in Fig-
ure 8, the largest relative differences with the metric provided by the public transport are those
given by matrices A1 and A2 which only take into account neighboring, with no reference to the
sizes of populations. On the other hand, for matrices A3 and A4 which take into account popu-
lations, the results are closer to that of the pure public transport matrix A0. All the interpolation
cases show, at least with θ = 0.5 a closer behavior to that of A0.

Trends Comput. Appl. Math., 23, N. 4 (2022)



i
i

“A11-1629-9694” — 2022/10/11 — 18:23 — page 795 — #13 i
i

i
i

i
i

M. F. ACOSTA, H. AIMAR, I. GÓMEZ and F. MORANA 795

d1,0;1
0.25 (30, ·) d1,0.5;1

0.25 (30, ·)

d2,0;1
0.25 (30, ·) d2,0.5;1

0.25 (30, ·)

d3,0;1
0.25 (30, ·) d3,0.5;1

0.25 (30, ·)

d4,0;1
0.25 (30, ·) d4,0.5;1

0.25 (30, ·)

Figure 8: Diffusion distances to CABA (30) for t = 0.25 in eigth different instances of affinities
(θA0 +(1−θ)Ai with i = 1,2,3,4 and θ = 0, 1

2 ) and node uniform weights given by a⃗1.
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4 DISCUSSION

As we show in Section 3 all the above considered versions of the diffusive metric, provide in
some way a measure of closeness of any given pair of the cities of AMBA. These metrics take
into account some classical notions of proximity such us neighboring and size of the shared
boundaries.

Nevertheless, each of the above considered metrics take into account the public transportation
in AMBA as central contribution to their definitions. Let us notice that in any of the above
considered metrics the cities of Buenos Aires and La Matanza, labeled 30 and 35 respectively
can be considered as a urban unity of 3075000+ 2280000 = 5355000 people. They share 10
kilometers of densely populated boundaries, and they have an intense people traffic through
public transportation by buses and trains. The above statement can be seen in Figure 7 and the
eight maps in Figure 8 that show quite close colors for the cities 30 and 35. In what follow we
shall contrast these, let us say, purely geometrical considerations with the actual dynamics of the
spread of COVID-19 taken from public data in [4]. We shall provide two different approaches
for this comparison.

First, for each one of the 41 cities we computed the time passed until the number of infected
people surpass the threshold of x% of the population with x = j · 1

10 , j = 1,2, . . . ,20.

The maps provided by the data are of the type depicted in Figure 9

Figure 9: Days up to 0.1% of infections over the population (from 0.1% of CABA).
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and Figure 10 for j = 1 and j = 3 respectively.

Figure 10: Days up to 0.3% of infections over the population (from 0.1% of CABA).

Second, if we measure, for fixed dates, the amount of the total infections normalized by the
population of each city we obtain the patterns depicted in Figure 11.

We observe that in the six instances in Figure 11, we are using the scale of colors in such a way
that, the cities with high density are depicted with the lower frequencies.

All the metrics in the models of Section 3 place La Matanza as the closest city to CABA. This
fact is by no ways reflected by the actual data regarding the spread of the pandemic in AMBA.
In fact while for CABA we have the red distribution as a function of time in Figure 12, for La
Matanza we have the blue one.

This lack of coincidence in the dynamics of these two large cities that share a big portion of
their boundaries is certainly multicausal but it can be reasonably attributed to the government
decisions regarding the social preventive isolation starting on March 20th, 2020, which in par-
ticular produced a drastic reduction of the public transportation of people in AMBA. Also some
consideration has to be paid to the difference of population densities of the two largest cities of
AMBA: CABA 15150 inhabitants per km2 and La Matanza 7062 inhabitants per km2.
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i
i

“A11-1629-9694” — 2022/10/11 — 18:23 — page 798 — #16 i
i

i
i

i
i

798 DIFFUSIVE METRICS INDUCED BY RANDOM AFFINITIES ON GRAPHS

Figure 11: Percentage of total infections for the first and second halves for June, July and August
2020.
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Figure 12: Evolution of cases in CABA (red) and La Matanza (blue).
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Let us finally observe that among the several papers dealing with the issue of COVID and people
transportation, we were unable to find the application of diffusive metrics. Neither other quanti-
tative methods for the particular case of AMBA. Some graph based models are used for example
in [5] and [6].
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