
Automatica 148 (2023) 110725

R
a

S
b

n
s
m
a
t
i
p

o
t

h

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Optimal robust exact differentiation via linear adaptive techniques✩

ichard Seeber a,∗, Hernan Haimovich b

Graz University of Technology, Institute of Automation and Control, Christian Doppler Laboratory for Model Based Control of Complex Test Bed
ystems, Graz, Austria
Centro Internacional Franco-Argentino de Ciencias de la Información y de Sistemas (CIFASIS) CONICET-UNR, 2000 Rosario, Argentina

a r t i c l e i n f o

Article history:
Received 13 January 2022
Received in revised form 25 July 2022
Accepted 14 September 2022
Available online 29 November 2022

Keywords:
Differentiation
Optimal worst-case accuracy
Discrete-time implementation

a b s t r a c t

The problem of differentiating a function with bounded second derivative in the presence of bounded
measurement noise is considered in both continuous-time and sampled-data settings. Fundamental
performance limitations of causal differentiators, in terms of the smallest achievable worst-case
differentiation error, are shown. A robust exact differentiator is then constructed via the adaptation
of a single parameter of a linear differentiator. It is demonstrated that the resulting differentiator
exhibits a combination of properties that outperforms existing continuous-time differentiators: it is
robust with respect to noise, it instantaneously converges to the exact derivative in the absence
of noise, and it attains the smallest possible—hence optimal—upper bound on its differentiation
error under noisy measurements. For sample-based differentiators, the concept of quasi-exactness
is introduced to classify differentiators that achieve the lowest possible worst-case error based on
sampled measurements in the absence of noise. A straightforward sample-based implementation of
the proposed linear adaptive continuous-time differentiator is shown to achieve quasi-exactness after
a single sampling step as well as a theoretically optimal differentiation error bound that, in addition,
converges to the continuous-time optimal one as the sampling period becomes arbitrarily small. A
numerical simulation illustrates the presented formal results.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The signal differentiation problem consists in estimating a sig-
al’s derivatives based on signal measurements. This seemingly
imple task becomes complicated in the presence of measure-
ent noise and other perturbations, even if measurements are
ssumed to be available continuously over time. In a practical set-
ing, moreover, measurements become available only at sampling
nstants, and calculations need to be performed on a digital com-
uter; this may present additional obstacles to differentiation.
Methods for signal differentiation include algebraic meth-

ds involving elementary differential algebraic (linear) opera-
ions (Mboup et al., 2009), linear high-gain observers (Khalil &
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Praly, 2014; Vasiljevic & Khalil, 2008) and sliding-mode differen-
tiators (Levant, 1998, 2003; Yu & Xu, 1996). The linear differen-
tiators can have good measurement noise rejection capability but
are not exact, meaning that in the absence of noise their output is
not ensured to converge to the true value of the signal derivative.
Sliding-mode differentiators, in contrast, can be exact but this
may lead to the exact differentiation also of some (differentiable)
noise signals. Some strategies even aim to combine the positive
features of linear and sliding-mode differentiators (Ghanes et al.,
2020).

One specific differentiation problem of particular interest in
relation to sliding-mode control is the estimation of a signal’s
first n derivatives having knowledge of a bound for the n + 1th
erivative. In this context, the presence of measurement noise
imits the accuracy of any differentiator with a bound depending
n noise amplitude and known derivative bound. The expres-
ions for these accuracy limitations are related to the so-called
andau–Kolmogorov inequalities (Kolmogorov, 1962; Schoenberg
Cavaretta, 1970), cf. also Levant et al. (2017). The differentiation
ccuracy for many sliding-mode differentiators can be shown to
e of the asymptotic order indicated by these inequalities as the
oise amplitude tends to zero (Cruz-Zavala et al., 2011; Levant,
003).
Since the derivative estimates are usually required for achiev-

ng some subsequent control objective, an important feature of
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ny differentiator is its convergence speed. Sliding-mode differ-
ntiators can converge in finite time (Levant, 1998), whereas lin-
ar differentiators only do so asymptotically (Vasiljevic & Khalil,
008). Moreover, some sliding-mode differentiators can even
onverge in a finite time that is independent of initial condi-
ions (Cruz-Zavala et al., 2011), a situation that is called fixed-
ime convergence (Bhat & Bernstein, 2000). In addition, such
ifferentiators can be designed to achieve any given bound on
he convergence time (Seeber et al., 2021).

When only sampled measurements are available and differ-
ntiator implementation becomes digital, then the differentia-
ors conceived as continuous-time systems must be discretized.
are must be taken, however, because with improper discretiza-
ion the accuracy of the resulting discretized differentiator can
orsen significantly compared to the continuous-time one (Lev-
nt, 2012). The analysis of different discretization techniques
ecomes then highly relevant (Andritsch et al., 2021; Carvajal-
ubio et al., 2021; Mojallizadeh et al., 2021b). Livne and Levant
2014) propose a proper discretization that preserves the ac-
uracy asymptotics of a continuous-time differentiator. Several
xtensions of this idea are given by Barbot et al. (2020). More-
ver, Hanan et al. (2021) introduce a rather slight modification
hat allows to lower the resulting discrete differentiator’s output
hattering in the absence of noise. Filtering differentiators (Levant
Livne, 2020; Levant & Yu, 2018) are even capable of filtering out
nbounded noise with small average values while preserving all
dvantageous features of the standard sliding-mode-based differ-
ntiators. A radically different strategy for signal differentiation
n a digital implementation setting is to directly consider the
nformation carried by noisy sampled measurements accounting
or noise magnitude and known derivative bound. If a suitable
ound on the noise magnitude is known, then the differentiation
roblem can be performed through solving specific convex opti-
ization problems (Haimovich et al., 2022) in the form of linear
rograms. This strategy is shown to achieve the best possible
orst-case accuracy and to have explicitly computable fixed-time
onvergence and accuracy bounds for first-order differentiation,
rovided that the noise amplitude is known.
For the continuous-time case, an interesting consequence of

he results in Haimovich et al. (2022) is that the best possible
orst-case accuracy may also be achieved by a linear finite differ-
nce. However, this is true only if the noise magnitude is known
o the differentiator; if the actual noise magnitude happens to be
ower than the assumed bound, then performance can worsen
reatly. In particular, such a linear differentiator can never be
xact for arbitrary signals with bounded second derivative. The
se of such finite differences for robust output-feedback control
as explored by Levant (2007), who showed that when utilized

n conjunction with homogeneous sliding-mode controllers, dif-
erentiation via finite differences turns into an appealing strategy
y adaptation of the sampling time. This adaptation allowed to
chieve similar asymptotic accuracy as is obtained when using
liding-mode differentiators. However, its use is restricted to
ifferentiation in a closed feedback loop.
In this paper, first-order differentiation of noisy signals is

onsidered. Via adaptation of the parameter of a linear finite dif-
erence, a robust exact differentiator is constructed that achieves
ptimal differentiation accuracy. Contrary to what is called asymp-
otic optimality in Levant (1998), which relates just to optimal-
ty of the exponents in the accuracy expression, optimality is
chieved here in the sense that the differentiation error is ulti-
ately bounded from above by the smallest possible upper bound.

t is further shown that the convergence time of the resulting dif-
erentiator in the absence of noise is zero, i.e., that it outputs the
rue derivative from the beginning, and hence converges faster

han any fixed-time differentiator. For practical realization, it is

2

shown that a straightforward sample-based realization achieves
the lowest possible worst-case error among all sample-based
differentiators in the absence of noise—a fact that is formalized
by introducing the notion of quasi-exactness for sample-based
differentiators. Moreover, the proposed realization is shown to
retain its optimal convergence behavior and its optimal accuracy
with respect to the noise.

After a brief problem statement, Section 2 introduces formal
definitions for worst-case differentiation error, exactness, and
robustness that take the initial values of the signal into account.
Sections 3, 4, and 5 then consider the continuous-time case,
while Sections 6 and 7 deal with the case of sampled measure-
ments. Sections 3 and 6, in particular, show lower bounds for
the worst-case error of all (causal) differentiators; the former
section discusses such performance limits for arbitrary and for
exact differentiators, which motivate the notion of (optimal) dif-
ferentiation accuracy, while the latter section shows performance
limitations incurred by sampling, leading to the notion of quasi-
exactness of sample-based differentiators. As a preliminary result
for the considered linear adaptive strategy, Section 4 shows that
a finite difference is an optimal causal linear differentiator, which
is not exact, however. The main results—the proposed optimal
robust exact differentiators—are then presented in Sections 5 and
7 for the continuous-time and the sampled-data case, respec-
tively; their formal properties, in particular, are summarized in
the main Theorems 5.1 and 7.1. Section 8, finally, illustrates the
results by means of a numerical simulation, and Section 9 draws
conclusions.

Notation: R, R≥0, R>0 denote the reals, nonnegative reals, and
positive reals, respectively. N denotes the natural numbers and
N0 the naturals including 0. If α ∈ R, then |α| is its absolute value.
For a set A, its image under f is denoted by f (A) = {f (a) : a ∈ A}.
One-sided limits of a function f at time instant T from above or
below are written as limt→T+ f (t) or limt→T− f (t), respectively.
‘Almost everywhere’ is abbreviated as ‘a.e.’.

2. Preliminaries and problem statement

This section introduces the considered problem of signal dif-
ferentiation, and provides formal definitions for important prop-
erties of differentiators.

2.1. Signal differentiation

Consider the problem of computing the derivative of a func-
tion f : R≥0 → R based on a noisy measurement u = f +η, under
the assumption that uniform bounds N and L for the noise η and
for the second derivative f̈ , respectively, exist. More precisely,
let F denote the set of functions f : R≥0 → R such that f is
differentiable and ḟ is Lipschitz continuous on R≥0. Therefore, if
f ∈ F then the second derivative f̈ exists almost everywhere
(a.e.) due to Rademacher’s Theorem. The corresponding classes of
signals to consider, from which the measurements are generated,
are hence given by

FL = {f ∈ F :
⏐⏐f̈ (t)⏐⏐ ≤ L a.e. on R≥0} (1a)

EN = {η measurable : |η(t)| ≤ N for all t ≥ 0}. (1b)

Write FL + EN = {f + η : f ∈ FL, η ∈ EN} for the set of inputs u
with fixed L and N . All possible inputs for the differentiator then
belong to the set

U =

⋃
L≥0
N≥0

(FL + EN ). (2)

Note that U includes all bounded measurable functions.
A differentiator is an operator D : U → (R≥0 → R) that maps

the measured signal u to an estimate Du for the derivative of f .
his estimate is hereafter denoted by y = Du.
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efinition 2.1. The differentiator D is said

• to be causal, if [Du1](T ) = [Du2](T ) whenever u1(t) = u2(t)
for all t ∈ [0, T ];

• to be linear, if D(α1u1 + α2u2) = α1Du1 + α2Du2 holds for
u1, u2 ∈ U and α1, α2 ∈ R.

Two further important properties are exactness and robust-
ness, as introduced by Levant (1998). To formally define these
properties, the worst-case differentiation error is introduced next.

2.2. Worst-case differentiation error

For future reference, for every R ≥ 0, define the class of signals
with bounded second derivative that, in addition, have a bounded
initial value and initial derivative, as follows

FR
L := {f ∈ FL : |f (0)| ≤ R, |ḟ (0)| ≤ R}. (3)

Definition 2.2. Let L,N ∈ R≥0. A differentiator D is said to have

• worst-case error M f
N (t) from time t ≥ 0 for a signal f ∈ FL

with noise bound N if

M f
N (t) = sup

u=f+η
η∈EN

sup
τ≥t

⏐⏐ḟ (τ ) − [Du](τ )
⏐⏐; (4)

• worst-case error ML,R
N (t) from time t ≥ 0 over the signal

class FR
L with noise bound N if

ML,R
N (t) = sup

f∈FR
L

M f
N (t). (5)

Clearly, M f
N (t) and hence also ML,R

N (t) are non-increasing with
respect to t and non-decreasing with respect to N . The latter is
also non-decreasing with respect to L and R.

The worst-case error ML,R
N (t) for a fixed time instant t may be

an unbounded function of R. This can be seen, e.g., by considering
a linear differentiator and is the reason for restricting consider-
ations to the signal class FR

L ⊂ FL in Definition 2.2. Using the
worst-case differentiation error from time t , different notions of
exactness may now be defined.

2.3. Exactness

Exactness, as introduced by Levant (1998), is an important
property of differentiators. It guarantees that noise-free signals
in a certain class, specifically FL in the following, are differen-
tiated exactly, i.e., that the worst-case differentiation error for
the noise-free case, ML,R

0 (t), is zero for certain values of t . For a
given differentiator, this property may sometimes be established
only after a certain transient period. Hence, distinctions between
different convergence behaviors are made.

Definition 2.3. A differentiator D is said to be

• exact in finite time over FL if for every R ≥ 0 there exists a
tR such that ML,R

0 (tR) = 0;
• exact in fixed time over FL if there exists t such that

ML,R
0 (t) = 0 for all R ≥ 0;

• exact from the beginning over FL if M
L,R
0 (t) = 0 for all R ≥ 0

and all t > 0;
• not exact over FL if it is not exact in finite time over FL.

Note that the time instant t = 0 is excluded when speaking
about exactness from the beginning, since a causal differentiator
only knows f (0) at this point. This makes it impossible to deduce
˙ L,R
f (0); specifically, M0 (0) ≥ R for all causal differentiators. t

3

For illustration purposes, consider the well-known robust ex-
act differentiator (RED) proposed by (Levant, 1998)

ẏ1 = λ1L
1
2 |u − y1|

1
2 sign(u − y1) + y2 y1(0) = u(0)

˙2 = λ2L sign(u − y1) y2(0) = 0 (6)

ith input u, output y = y2, and constant positive parameters
1 and λ2 > 1. With its solutions understood in the sense
f Filippov (1988), this differentiator is exact in finite time over
L for sufficiently large λ1. In particular, for λ1 ≥

√
8λ2, one has

R =
R

(λ2−1)L , cf. Seeber et al. (2018, Theorem 5).

While the RED is exact in finite time, the uniform robust exact
differentiator (URED) proposed by Cruz-Zavala et al. (2011) is
exact in fixed time. In contrast, the linear high gain differentiator
(HGD) in state–space form as considered by Vasiljevic and Khalil
(2008) is not exact. The only existing differentiator that is exact
from the beginning is the Euler differentiator Du = u̇. It is well-
defined only in the absence of noise, however, i.e., only for u ∈ FL.
In Section 5, an original differentiator is constructed that is exact
from the beginning and is well-defined for input signals in U .

2.4. Robustness

A concept that is closely connected with exactness is robust-
ness. In Levant (1998), a differentiator is said to be robust if
the differentiator output D(f + η) tends to Df uniformly as the
uniform bound N on the noise tends to zero. To define robustness
here, the following quantities (almost) analogous to M f

N (t) and
ML,R

0 (t) are introduced to quantify the deviation between Du
and Df :

Q f
N (t) = sup

u=f+η
η∈EN

sup
τ≥t

⏐⏐[Df ](τ ) − [Du](τ )
⏐⏐, (7)

L,R(t) = lim sup
N→0+

sup
f∈FR

L

Q f
N (t). (8)

ith these abbreviations, robustness may then be defined in a
imilar style as exactness.

efinition 2.4. A differentiator D is said to be

• robust in finite time over FL, if for every R ≥ 0 there exists
a tR such that Q L,R(tR) = 0;

• robust in fixed time over FL, if there exists t such that
Q L,R(t) = 0 for all R ≥ 0;

• robust almost from the beginning over FL, if Q L,R(t) = 0 for
all R ≥ 0 and all t > 0;

• robust from the beginning over FL, if Q L,R(0) = 0 for all
R ≥ 0;

• not robust over FL if it is not robust in finite time over FL.

Unlike for exactness, the time instant t = 0 is not excluded
hen speaking about robustness from the beginning. However,

t is impossible for a causal differentiator to be both robust
nd exact from the beginning as shown in the following, which
otivates the additional notion of robustness almost from the
eginning. All differentiators previously mentioned, i.e., the HGD,
he RED, and the URED, are robust from the beginning.

.5. Exactness and robustness

Some basic relationships between exactness and robustness
re next established.

roposition 2.5. Let L ≥ 0 and let D be a causal differentiator.
hen, D is either not robust from the beginning or not exact from

he beginning over FL.
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Fig. 1. Input signal limiting the worst-case error of any causal differentiator:
or zero input u(t), no differentiator can distinguish between the two illustrated
signals f (t), leading to a worst-case error of at least |ḟ (T )| = 2

√
NL at time

nstant T .

roof. Suppose to the contrary that ML,1
0 (t) = 0 for all t > 0 and

that Q L,0(0) = 0. Consider the function g(t) = t . Clearly, g ∈ F1
L ,

and hence [Dg](t) = 1 for all t > 0 due to exactness. Let N > 0,
and choose the signal f = 0 ∈ F0

L and noise η(t) = min{N, t}.
This yields u(t) = f (t) + η(t) = g(t) for t ∈ [0,N], and hence
[Du](N) = 1. Consequently, Q f

N (0) ≥ Q f
N (N) ≥ 1, for all N > 0,

which yields the contradiction Q L,0(0) ≥ 1. ■

The next proposition shows the well-known fact (cf. Levant,
1998) that linear differentiators cannot be both robust and exact
over FL for L > 0.

Proposition 2.6. Let L > 0 and let D be a linear differentiator.
Then, D is either not robust or not exact over FL.

Proof. Suppose to the contrary that D is robust and exact over FL
in finite time. Let T ≥ 1 be such that ML,0

0 (T ) = 0 and Q L,0(T ) = 0.
Let ωk = 2πk for k = 1, 2, . . . and consider the sequence of
noise inputs ηk(t) = min{1, t2} sin(ωkt)/ωk. One verifies that
ηk(0) = η̇k(0) = 0. Since L > 0, there furthermore exists an
αk > 0 for each ηk such that αkηk ∈ F0

L , since η̈k is uniformly
bounded. Due to linearity, D then differentiates also ηk exactly
for t ≥ T . Thus, for f = 0 and all k,

Q f
1/ωk

(T ) ≥ sup
τ≥T

|[Dηk](τ )| = sup
τ≥T

|η̇k(τ )| = 1. (9)

Since 1/ωk → 0 as k → ∞, this contradicts Q L,0(T ) = 0. ■

3. Performance limits and differentiation accuracy

To motivate the notion of optimal differentiation accuracy,
worst-case error lower bounds of causal and causal exact differ-
entiators are shown next.

3.1. Worst-case error lower bound of causal differentiators

The main limitation of the worst-case differentiation error of
any causal differentiator is shown in the following proposition.
It stems from the fact that the differentiator, when fed zero
input u = 0, cannot distinguish between the zero function and
a parabola arc Lt2/2 − N staying within the noise bound. In
Section 4, a differentiator is constructed that attains this lower
bound.

Proposition 3.1. LetD be a causal differentiator and let L,N, R ≥ 0.
Then, ML,R

N (τ ) ≥ 2
√
NL for all τ ≥ 0.

emark 3.2. The rationale of the proof is sketched in Fig. 1. ◦
4

Fig. 2. Input signal limiting the worst-case error of any causal and exact
differentiator: for differentiable input u(t) = −f (t), a causal exact differentiator
makes an error of at least 2|ḟ (T )| = 2

√
2NL at time instant T .

Proof. If L = 0 or N = 0, then there is nothing to prove.
Otherwise, define hκ : [0, 2κ] → [0, Lκ2

] as

hκ (t) =

{
L t2

2 t ∈ [0, κ)

Lκ2
− L (t−2κ)2

2 t ∈ [κ, 2κ]

(10)

nd let κ =
√
N/L. Then, hκ (0) = ḣκ (0) = ḣκ (2κ) = 0 and

κ (2κ) = N . Let T = τ + 4κ and consider the functions

1(t) =

⎧⎪⎪⎨⎪⎪⎩
0 t ∈ [0, τ )

−hκ (t − τ ) t ∈ [τ , τ + 2κ)

−N + L (t−τ−2κ)2
2 t ≥ τ + 2κ,

(11a)

2(t) =

{
−g1(t) t ≤ T

−N otherwise
(11b)

t is straightforward to verify that for all t ≥ 0, |g̈1(t)| ≤ L a.e. and
g2(t)| ≤ N hold, so that g1 ∈ F0

L ⊆ FR
L and g2 ∈ EN . Choosing

ither f = g1 and η = g2 or f = −g1 and η = −g2 results
n identical (zero) input for all t ≤ T . Since the differentiator is
ausal, its output y(T ) must be the same in either case. We have
imt→T− 2ġ1(t) = 4

√
NL. Hence, max{Mg1

N (τ ),M−g1
N (τ )} ≥ 2

√
NL

since τ ≤ T and, as a consequence, ML,R
N (τ ) ≥ 2

√
NL. ■

3.2. Worst-case error lower bound of exact differentiators

Exact differentiators have a more restrictive bound on their
worst-case differentiation error than the bound in Proposition 3.1.
This is due to the fact that also some noise signals are differen-
tiated exactly, as also noted by Levant (1998). Section 5 shows a
differentiator that attains this bound.

Proposition 3.3. LetD be a causal differentiator and let L,N, R ≥ 0.
f D is exact in finite time over FL, then ML,R

N (τ ) ≥ 2
√
2NL for

all τ ≥ 0.

Remark 3.4. The rationale of the proof is sketched in Fig. 2. ◦

Remark 3.5. A similar bound is shown in Levant et al. (2017,
Proposition 1) for arbitrary differentiation orders. However, that
bound is also valid for acausal differentiators, and hence the lower
bound 2

√
NL is obtained there for a first-order differentiator. A

tighter bound based on Levant (1998) is mentioned by Fraguela
et al. (2012) in a footnote. ◦

Proof. For N = 0 or L = 0, the statement is trivial. Consider
hence arbitrary L,N > 0, let t0 be such that ML,0

0 (t0) = 0
rom Definition 2.3, and consider any τ ≥ t0. It will be shown
hat ML,0

N (τ ) ≥ 2
√
2NL, from which the claim follows from the

fact that ML,R
N (t) is non-decreasing with respect to R and non-

increasing with respect to t . Define h : [0, 2κ] → [0, Lκ2
] as
κ
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n (10) with κ =
√
N/L. Let T = τ + (2 +

√
2)κ and consider the

unctions

1(t) =

⎧⎪⎪⎨⎪⎪⎩
0 t ∈ [0, τ )

−
hκ (t−τ )

2 t ∈ [τ , τ + 2κ)

−
N
2 + L (t−τ−2κ)2

2 t ≥ τ + 2κ,

(12a)

2(t) =

{
2g1(t) t ≤ T

N otherwise
(12b)

It is straightforward to verify that |g̈1(t)| ≤ L a.e. for t ≥ 0, that
g1 ∈ F0

L , and that g2 ∈ EN . From exactness, [Dg1](t) = ġ1(t) for all
t ≥ τ . Choosing f = −g1, η = g2 yields u(t) = f (t) + η(t) = g1(t)
for t ∈ [0, T ]; hence, also [Du](t) = ġ1(t) for t ∈ [τ , T ], since the
differentiator is causal. Consequently, [Du](T ) =

√
2NL whereas

˙(T ) = −
√
2NL. This establishes that M f

N (τ ) ≥ 2
√
2NL with

f ∈ F0
L . Therefore, M

L,0
N (τ ) ≥ 2

√
2NL. ■

.3. Differentiation accuracy

As one can see from Proposition 3.1, the lower bound of the
orst-case differentiation error is proportional to

√
NL. In Vasil-

jevic and Khalil (2008), the HGD is also shown to achieve a
similar proportionality with properly chosen parameters which,
however, depend on N .

If the noise bound is unknown, it is desirable that this pro-
portionality be maintained either for all or sufficiently small N .
This motivates the following notions of global or asymptotic
differentiation accuracy, respectively. The latter notion is loosely
consistent with similar notions in the context of sliding mode
differentiatiors, where asymptotic accuracy also refers to the
asymptotic behavior of the differentiation error with respect to
(small) noise bounds N .

Definition 3.6. A differentiator D is said to have

(a) asymptotic accuracy CL ∈ R≥0 ∪ {∞} for signals in FL, if
CL is the infimum of all numbers C with the property that
there exist ϵ > 0 and a function T : R≥0 × [0, ϵ] → R≥0
continuous in its second argument such that

ML,R
N [T (R,N)] ≤ C

√
NL (13)

for all N ∈ [0, ϵ] and R ≥ 0;
(b) global accuracy C L ∈ R≥0 ∪ {∞} for signals in FL, if C L is

the infimum of all numbers C with the property that there
exists a function T : R2

≥0 → R≥0 continuous in its second
argument such that (13) holds for all R,N ≥ 0.

Note that T in this definition can be considered as a kind
f convergence-time function. For given initial value bound R
nd noise bound N , it yields the time T (R,N) after which the

worst-case differentiation error is bounded by C
√
NL. Asymptotic

accuracy is a property pertaining to small values of the noise
amplitude, whereas global accuracy applies to all noise ampli-
tudes and is suitable when N is unknown. Clearly, C L ≥ CL
olds by definition, and it is also possible that CL is finite when

C L is infinite. Important differentiators with a finite asymptotic
accuracy are the RED and the URED. The former also has finite
global accuracy due to its homogeneity properties, while the
latter does not.

The connection between robustness, exactness and accuracy is
stablished by the following proposition, which shows that finite
symptotic accuracy implies robustness and exactness.

roposition 3.7. Let L ≥ 0 and let D be a differentiator with
symptotic accuracy CL ∈ R≥0. Then, D is both robust and exact
n finite time over F .
L

5

emark 3.8. From (13), one can see that tR = T (R, 0) in
Definition 2.3 with any T as in Definition 3.6. ◦

Proof. In order to prove robustness in finite time, note that
Q f
N (t) ≤ M f

N (t) + M f
0(t) for all t and f ∈ FL. Let R ≥ 0, ϵ > 0,

nd let T be the function from Definition 3.6 for some C > CL.
onsider the image I = T (R, [0, ϵ]), which is a compact interval
ue to continuity of T with respect to its second argument, and
et tR = max I. For all N ∈ [0, ϵ], then ML,R

N (tR) ≤ C
√
NL since

ML,R
N (·) is non-increasing with respect to its argument. Hence,

sup
f∈FR

L

Q f
N (tR) ≤ ML,R

N (tR) + ML,R
0 (tR) ≤ C

√
NL, (14)

holds for all N ∈ [0, ϵ], proving that Q L,R(tR) = 0. Exactness
follows by noting that also ML,R

0 (tR) = 0. ■

Note that, although only robustness in finite time may be
concluded from finite asymptotic accuracy, most existing dif-
ferentiators in fact exhibit robustness from the beginning. In
contrast, exactness from the beginning, as pointed out before, is
a very strong property which is not known to be obtained by any
existing robust differentiators up to now.

An immediate consequence of the previous proposition along
with Proposition 2.6 is the fact that linear differentiators cannot
have finite asymptotic accuracy.

Proposition 3.9. Let L > 0 and let D be a linear differentiator.
Then, C L = CL = ∞.

Proof. Since C L ≥ CL, assume to the contrary that CL is finite.
Then, D is robust and exact in finite time over FL by Proposi-
tion 3.7, contradicting Proposition 2.6. ■

From Proposition 3.1 it is clear that CL ≥ 2 bounds the
asymptotic accuracy of any causal differentiator from below. This
bound is too conservative, however; a tighter lower bound, which
will be shown to be achievable in Section 5, is obtained from
Propositions 3.7 and 3.3.

Proposition 3.10. Let L > 0 and let D be a causal differentiator.
Then, its global and asymptotic accuracy satisfy C L ≥ CL ≥ 2

√
2.

Proof. It is sufficient to show CL ≥ 2
√
2. To that end, assume

to the contrary that CL < 2
√
2. Then, CL is finite and D is exact

in finite time according to Proposition 3.7. From Proposition 3.3,
then ML,R

N (t) ≥ 2
√
2NL for all N > 0, yielding the contradiction

CL ≥ 2
√
2. ■

For L = 0, finally, it is impossible to achieve finite accuracy.

Proposition 3.11. Let D be a causal differentiator. Then, its global
and asymptotic accuracy satisfy C0 = C0 = ∞.

Proof. Suppose to the contrary that CL < ∞ for L = 0 and let
R > 0. From (13), then N, τ ∈ R>0 exist such that M0,R

N (τ ) = 0.
Let δ = min{N/τ , R} and consider g(t) = δt . Clearly, g ∈ FR

0 ,
and hence [Dg](τ ) = ġ(τ ) = δ. Now choose f = 0 ∈ FR

0 and
η(t) = min{g(t),N} to obtain u(t) = f (t) + η(t) = g(t) for t ≤ τ ,
leading to the contradiction [Du](τ ) − ḟ (τ ) = δ due to causality,
i.e., M0,R

N (τ ) ≥ δ > 0. ■

4. Linear differentiators with best worst-case error

As a preliminary result for ultimately constructing a robust
exact differentiator with optimal differentiation accuracy, this
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ection shows how a linear differentiator with lowest possi-
le worst-case error 2

√
NL, as given by Proposition 3.1, can be

constructed.
Consider the following differentiator D with a positive param-

eter T and output y = Du given by

y(t) =

{
u(t)−u(t−T )

T if t ≥ T

0 otherwise.
(15)

If the noise bound N is precisely known, then this differentiator
achieves the best possible worst-case differentiation error by
suitable selection of T .

Theorem 4.1. Let N > 0, L > 0 and consider the differentiator
(15) with T = 2

√
N/L. Then, ML,R

N (τ ) = 2
√
NL for all R ≥ 0 and all

≥ T . △

The proof uses the following two lemmata.

emma 4.2. Let L ∈ R≥0 and f ∈ FL. Then,⏐⏐f (t − σ ) − f (t) + ḟ (t)σ
⏐⏐ ≤

Lσ 2

2
(16)

olds for all t ≥ 0 and all σ ∈ [0, t].

roof. Consider an arbitrary t ≥ 0 and define the function
(σ ) = f (t−σ )−f (t)+ ḟ (t)σ . Clearly, g is a.e. twice differentiable,
ts second derivative satisfies g̈(σ ) = f̈ (t − σ ) a.e. in [0, t], and
g(0) = ġ(0) = 0. The lemma’s claim |g(σ )| ≤ Lσ 2/2 follows by
ouble integration of g̈ using the bound |g̈(σ )| ≤ L starting from
= 0. ■

emma 4.3. Let T > 0 and consider the differentiator D with
utput y = Du defined in (15). Suppose that f ∈ FL and η ∈ EN .
hen, |y(t) − ḟ (t)| ≤

2N
T +

LT
2 holds for all t ≥ T .

emark 4.4. As will be shown later, the bound is also valid when
he parameter T is time varying. This motivates the adaptation of
hat parameter to eventually obtain a robust exact differentiator
n Section 5. A related approach is proposed by Levant (2007),
here finite differences with adaptation of the sampling time are
sed in a closed-loop sliding mode control scheme. ◦

roof. From (15), |u(t − T ) − u(t) + y(t)T | = 0 for t ≥ T , and
hence |f (t − T ) − f (t) + y(t)T | ≤ 2N , since |u(τ ) − f (τ )| ≤ N for
ll τ . Setting σ = T in (16) in Lemma 4.2 and combining the
wo inequalities yields

⏐⏐y(t)T − ḟ (t)T
⏐⏐ ≤ LT 2/2 + 2N. The claim

ollows after dividing by T . ■

Using Lemma 4.3, the optimal worst-case accuracy of the
inear differentiator (15) may now be shown.

ROOF of Theorem 4.1. Set T = 2
√
N/L in Lemma 4.3 to obtain

L,R
N (t) ≤

2N
T

+
LT
2

= 2
√
NL (17)

or t ≥ T . Equality is concluded by noting that ML,R
N (t) ≥ 2

√
NL

ue to Proposition 3.1. ■

5. Robust exact differentiators with optimal accuracy

The problem with differentiator (15) is that its tuning requires
knowledge of the noise amplitude. If the noise affecting its input
is actually of lower amplitude than the design parameter N used
n the differentiator’s construction, achieving an optimal worst-
ase differentiation error cannot be ensured. The main idea for
 p

6

obtaining an optimal differentiator based on knowledge of only
an upper bound on the noise amplitude or directly without any
knowledge on the noise amplitude is to obtain a reasonable
estimate N̂ for this amplitude.

5.1. Proposed differentiator

From the above considerations, a robust exact differentiator
with best possible worst-case accuracy is constructed as the
linear time-varying differentiator1

y(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if t = 0

limT→0+

u(t) − u(t − T )
T

if t > 0, T̂ (t) = 0

u(t) − u(t − T̂ (t))

T̂ (t)
if t > 0, T̂ (t) > 0

(18a)

with an adaptation of the time difference T̂ (t) according to

T̂ (t) = min
{
t, T , 2γ (t)

√
N̂(t)
L

}
(18b)

wherein the parameter T ∈ R>0 ∪ {∞} constrains the time
difference from above, γ : R≥0 → [1, γ ] is an arbitrary function
constrained by a constant parameter γ ≥ 1, i.e.,

γ (t) ∈ [1, γ ] for all t , (18c)

and N̂(t) is an estimate for the noise amplitude determined from
he measurement u according to

ˆ (t) =
1
2

sup
T∈(0,T ]

T≤t
σ∈[0,T ]

(
|Q (t, T , σ )| −

Lσ (T − σ )
2

)
(18d)

ith the abbreviation Q (t, T , σ ) defined as

(t, T , σ ) = u(t − σ ) − u(t) +
u(t) − u(t − T )

T
σ . (18e)

Note that N̂(t) ≥ 0 since Q (t, T , 0) = 0 and hence the argument
f the supremum is zero for σ = 0.
The parameter T may be considered to be a window-length

parameter, since computing y(t) requires evaluation of u only on
the interval [t−T , t]. If a finite value is chosen for this parameter,
it allows to limit the proposed differentiator’s computational
complexity.

The function γ satisfying 1 ≤ γ (t) ≤ γ for all t is a degree
f freedom parametrizing a whole family of optimal robust exact
ifferentiators. In the presence of sampled measurements, in
ection 7.1, this degree of freedom will be exploited to choose

ˆ (t) as a multiple of the sampling time, yielding a straightforward
iscrete-time implementation.
The next main theorem, which is proven in Section 5.5, es-

ablishes that (i) the output y(t) of this differentiator is always
ell-defined and, in particular, the one-sided limit occurring in
18a) exists whenever T̂ (t) = 0 and t > 0, (ii) this differentiator
s exact from the beginning and robust almost from the beginning
ith any γ ≥ 1, and (iii) it has optimal asymptotic accuracy

CL = 2
√
2 for γ ∈ [1, 1+

√
2] and also optimal global accuracy if

moreover T = ∞.

Theorem 5.1. Let L ∈ R>0 and consider the differentiator D
with output y = Du defined by (18) with parameters γ ≥ 1
T ∈ R>0 ∪ {∞} and an arbitrary function γ : R≥0 → [1, γ ]. Then,
the following statements are true:

1 See Section 7 for the practical, sample-based implementation of the
roposed continuous-time differentiator.



R. Seeber and H. Haimovich Automatica 148 (2023) 110725

R
a
b

o

u

h

P

m

o

e
b
f

a

T
i⏐⏐

a
e

|

b
I
c
0

m
T

P

f

(a) The output y = Du is well-defined for all u ∈ U .
(b) D is robust almost from the beginning and exact from the

beginning over FL.
(c) If γ ∈ [1, 1 +

√
2], then D achieves optimal asymptotic

accuracy CL = 2
√
2; specifically, ML,R

N (t) ≤ 2
√
2NL holds for

all N ∈ [0, LT
2
/2) and all t >

√
2N/L.

(d) If γ ∈ [1, 1 +
√
2] and T = ∞, then D achieves optimal

global accuracy C L = 2
√
2. △

emark 5.2 (Tuning). If a (crude) upper bound N for the noise
mplitude is known, then a robust exact differentiator with
ounded complexity that is optimal for all N < N may be

btained by choosing the parameters γ = 1 and T =

√
2N/L. ◦

Remark 5.3. The proposed differentiator achieves the best pos-
sible exactness and robustness features, given that it is impossi-
ble to achieve both properties from the beginning, according to
Proposition 2.6, as well as the best possible accuracy, according
to Proposition 3.10. ◦

The proof of Theorem 5.1 requires the analysis of several
properties, as performed in the next subsections. The proof itself
is given afterwards, in Section 5.5.

5.2. Adaptation of the time-difference parameter

To motivate the adaptation of T̂ (t) in (18b), the following
lemma is obtained essentially as a corollary of Lemma 4.3.

Lemma 5.4. Let N, L ∈ R≥0 and consider the differentiator D with
output y = Du defined in (18). Suppose that f ∈ FL, η ∈ EN , and

= f + η. Then,⏐⏐y(t) − ḟ (t)
⏐⏐ ≤

2N

T̂ (t)
+

LT̂ (t)
2

(19)

olds whenever t ≥ T̂ (t) > 0.

roof. Replace T by T̂ (t) in the proof of Lemma 4.3. ■

It is straightforward to verify that this lemma yields the opti-
al error bound |y(t) − ḟ (t)| ≤ 2

√
2NL if T̂ (t) = 2γ (t)

√
N/L with

γ (t) ∈ [
√
2−1, 1+

√
2] for all t . This fact motivates the structure

f T̂ (t) in (18b).
Since N is not available, an estimate N̂(t), given in (18d), is

used instead of N in the actual computation of T̂ (t). The prop-
rties of this noise amplitude estimate are analyzed next. It will
e shown that it is not necessarily equal to, but always bounded
rom above by N; this fact intuitively explains the restriction of
γ (t) to the interval [1, γ ] with γ ≤ 1 +

√
2 as opposed to also

llowing values γ (t) < 1 as above.

5.3. Properties of the noise estimate

This section discusses upper and lower bounds on the noise
estimate (18d) and shows its relation to differentiability and
growth bound of the measurements.

5.3.1. Upper and lower bounds for N̂
To illuminate the noise amplitude estimation in (18d)–(18e)

and to obtain an upper bound for N̂ , the following lemma shows
how Q in (18e) is related to the noise bound N .
7

Lemma 5.5. Let L,N ∈ R≥0. For any t ∈ R>0, consider Q (t, T , σ )
as defined in (18e) with u ∈ FL + EN . Then,

|Q (t, T , σ )| ≤ 2N +
Lσ (T − σ )

2
(20)

holds for all T ∈ (0, t] and all σ ∈ [0, T ].

Proof. For arbitrary, fixed t > 0 and any function w ∈ {u, f , η},
define

aw
T (σ ) = w(t − σ ) − w(t) +

w(t) − w(t − T )
T

σ . (21)

hen, Q (t, T , σ ) = auT (σ ) = aη

T (σ )+ afT (σ ). An upper bound for aη

T
s given by

aη

T (σ )
⏐⏐ ≤ |η(t − σ )| +

(
1 −

σ

T

)
|η(t)| +

σ

T
|η(t − T )|

≤ N +

(
1 −

σ

T

)
N +

σ

T
N = 2N. (22)

Moreover, afT is continuously differentiable and satisfies

afT (0) = afT (T ) = 0, äfT (σ ) = f̈ (t − σ ), (23)

nd hence a.e. |äfT (σ )| ≤ L. Subject to these constraints, the
xtremal is given by

afT (σ ) =
Lσ (T − σ )

2
(24)

i.e., |afT (σ )| ≤ afT (σ ). The proof is concluded by noting that
auT (σ )| ≤ |aη

T (σ )| + |afT (σ )| ≤ 2N + afT (σ ). ■

Lemma 5.5 suggests that an estimate for N may be obtained
y subtracting the parabola arc Lσ (T − σ )/2 from |Q (t, T , σ )|.
ndeed, the proposed estimate N̂(t) in (18d) can be seen to be
onstructed by taking the supremum of this difference over all
< σ ≤ T ≤ T .
Clearly N̂(t) is bounded by N from above by construction;

oreover, discontinuities in the noise impose a lower bound.
hese properties are summarized in the following lemma.

roposition 5.6. Let L,N ∈ R≥0, T ∈ R>0∪{∞}, suppose u = f +η

with f ∈ FL and η ∈ EN , and consider a fixed t ∈ R>0. Define the
(right-sided) discontinuity of η at t0 as

D(t0) = lim sup
τ→t+0

|η(τ ) − η(t0)|. (25)

Then, N̂(t) as defined in (18d) satisfies

D(t0)
2

≤ N̂(t) ≤ N (26)

or all t0 ∈ [0, t) with t0 ≥ t − T .

Proof. The inequality N̂(t) ≤ N follows from the upper bound
on |Q (t, T , σ )| from Lemma 5.5. To show also D(t0) ≤ 2N̂(t), fix
t0 ∈ [0, t) with t0 ≥ t−T , and let (τk) be a sequence with τk → t0,
τk ∈ [t0, t), and |η(τk) − η(t0)| → D(t0). Let σk = t − τk ≥ 0,
T = t − t0 > 0 and define aw

T as in (21) for w ∈ {u, f , η}, allowing
to write Q (t, T , σ ) = aη

T (σ ) + afT (σ ). Then, σk → T ≤ T and due
to the continuity of f (and thus of afT ), one has

lim afT (σk) = 0 = lim
Lσk(T − σk)

. (27)

k→∞ k→∞ 2
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ence, 2N̂(t) is bounded from below by

2N̂(t) ≥ lim
k→∞

⏐⏐aη

T (σk)
⏐⏐ = lim

k→∞

|η(t − σk) − η(t − T )|

= lim
k→∞

|η(τk) − η(t0)| = D(t0), (28)

concluding the proof. ■

Depending on whether N̂(t) at a given time instant t > 0 is
zero or nonzero, two cases need to be distinguished.

5.3.2. Differentiability and growth bound for N̂ = 0
If N̂(t) is zero, then the estimation (at time instant t) does not

detect the presence of noise. In this case, Q in (18e) satisfies

|Q (t, T , σ )| ≤
Lσ (T − σ )

2
(29)

for 0 < σ ≤ T ≤ T by definition of N̂ in (18d). In the following, it
will be shown that a (one-sided) derivative of the measurement
u exists in this case, and that u satisfies a similar growth bound
as f in Lemma 4.2.

The following lemma shows that N̂(t) = 0 implies left-sided
differentiability of the noisy measurement u at t .

Lemma 5.7. Let L ∈ R≥0, suppose that u ∈ U , and consider a fixed
∈ R>0. Let µ ∈ (0, t] and suppose Q as defined in (18e) satisfies

(29) for all T ∈ (0, µ] and all σ ∈ [0, T ]. Then, the limit

:= lim
T→0+

u(t) − u(t − T )
T

(30)

xists.

roof. Consider the function h : (0, µ] → R defined by

h(σ ) =
u(t) − u(t − σ )

σ
. (31)

rom (18e), one obtains Q (t, T , σ ) =
(
h(σ ) − h(T )

)
σ . For given

ϵ > 0, consider arbitrary σ and T satisfying the inequalities
min(ϵ, µ) > T > σ > 0. Then,

|h(σ ) − h(T )| =
|Q (t, T , σ )|

σ
≤

L(T − σ )
2

<
Lϵ
2

(32)

hich implies existence of the limit β = limσ→0+ h(σ ). ■

The next lemma shows that the measurements satisfy a simi-
ar growth bound as f in Lemma 4.2.

emma 5.8. Suppose that the conditions of Lemma 5.7 are fulfilled
nd let β be defined as in (30) in that lemma. Then,

|u(t − σ ) + βσ − u(t)| ≤
Lσ 2

2
(33)

olds for all σ ∈ [0, µ].

roof. Consider the function h : [0, µ] → R defined by (31)
for σ > 0 and h(0) = β . According to Lemma 5.7, this function
is continuous at σ = 0 and by definition fulfills the relation
u(t − σ ) + βσ − u(t) = σ

(
h(0) − h(σ )

)
. Using (29), one thus

btains

h(0) − h(σ )| =

⏐⏐⏐⏐⏐
∞∑
i=0

h(σ/2i+1) − h(σ/2i)

⏐⏐⏐⏐⏐
≤

∞∑
i=0

⏐⏐Q (t, σ/2i+1, σ/2i)
⏐⏐

σ/2i

≤

∞∑
i=0

L
2

[
σ/2i

− σ/2i+1]
=

Lσ
2

(34)

or σ ∈ [0, µ], yielding the claimed inequality. ■
8

5.3.3. Growth bound for N̂ > 0
If N̂(t) is non-zero, then the measurements allow to distin-

uish noise, whose magnitude N is at least N̂ . In this case, it is
either possible nor necessary to compute an exact derivative of
at time instant t .
The following lemma shows that a similar inequality as in

emma 5.8 may nonetheless be obtained with a suitable value
f β .

emma 5.9. Let L, N̂ ∈ R>0, let u ∈ U , and consider a fixed

∈ R>0. Let T̂ ≥ 2
√
N̂/L, define

β :=
u(t) − u(t − T̂ )

T̂
, (35)

and suppose that Q as defined in (18e) satisfies⏐⏐⏐Q (t, σ̂ , T̂ )
⏐⏐⏐ ≤ 2N̂ +

LT̂ (σ̂ − T̂ )
2

(36)

for some σ̂ ∈ [T̂ , t]. Then, (33) holds for σ = σ̂ .

Remark 5.10. Note that for N̂ = N̂(t) as defined in (18d),
condition (36) of this lemma is fulfilled for every σ̂ ∈ [T̂ , t]
satisfying σ̂ ≤ T . ◦

Proof. Consider the function h : (0, t] → R defined by (31). Then,
β = h(T̂ ) and⏐⏐u(t − σ̂ ) + βσ̂ − u(t)

⏐⏐
σ̂

=

⏐⏐⏐h(T̂ ) − h(σ̂ )
⏐⏐⏐ ≤

|Q (t, σ̂ , T̂ )|

T̂

≤
2N̂

T̂
+

L(σ̂ − T̂ )
2

≤
Lσ̂
2

(37)

ince T̂ 2
≥ 4N̂/L implies 2N̂/T̂ ≤ LT̂/2. ■

5.4. Worst-case error upper bound

To prove the optimal accuracy, the following lemma shows
how a bound for the differentiation error may be obtained from
the growth bounds proven in Lemmata 5.8 and 5.9.

Lemma 5.11. Let L ∈ R>0, N ∈ R>0 and β ∈ R. Define
ℓ :=

√
2N/L, let t ≥ ℓ and suppose that u = f + η with f ∈ FL and

∈ EN satisfies

u(t − σ ) − u(t) + βσ | ≤
Lσ 2

2
(38)

or σ = ℓ + x with x ∈ [0, ∆] for some ∆ ∈ [0, ℓ]. Then,

|β − ḟ (t)| ≤ 2
√
2NL + L

∆

2
.

Remark 5.12. The degree of freedom ∆ introduced in this lemma
is zero in the continuous-time case, which yields the desired
optimal bound (cf. Proposition 3.3). Later, ∆ will be used to derive
an error bound also for a discrete-time implementation of the
differentiator. ◦

Proof. According to Lemma 4.2, f satisfies the inequality (16)
for all σ ∈ [0, t]. From (38), one moreover has the inequality
|f (t − σ ) − f (t) + βσ | ≤ Lσ 2/2 + 2N for σ = ℓ + x due to the
fact that f = u − η and |η(t)| ≤ N . By combining the inequalities
and dividing by σ , one obtains⏐⏐β − ḟ (t)

⏐⏐ ≤ Lσ +
2N

(39)

σ
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i

or σ = ℓ+x. Next, the right-hand side of (39) is shown to be less
han or equal to 2

√
2NL + L∆/2. Since x ∈ [0, ∆] and ∆ ∈ [0, ℓ],

t follows that

≥ (x + ∆/2)(x − ∆) = x2 −
∆

2
x −

∆2

2

≥ x2 −
∆

2
x −

∆

2
ℓ = σ 2

− 2ℓσ + ℓ2 −
∆

2
σ . (40)

Adding 2ℓσ + ∆σ/2 and multiplying by L/σ then yields

2Lℓ + L
∆

2
≥ Lσ + L

ℓ2

σ
(41)

which gives 2
√
2NL + L∆/2 ≥ Lσ + 2N/σ by definition of ℓ.

ombining this with (39) establishes the result. ■

Using Lemmata 5.4 and 5.11, an upper bound for the worst-
ase differentiation error is now proven.

roposition 5.13. Let L, ϵ > 0 and consider the differentiator D
efined by (18) with parameters γ ≥ 1 and T ∈ R>0 ∪ {∞}. Let

N = LT
2
/2 and define the function T : R≥0 × [0,N) → R>0 as

T (R,N) = max
{√

2N/L, ϵ
}

. (42)

Then, ML,R
N [T (R,N)] ≤ max{2

√
2, γ + γ −1

}
√
NL holds for all noise

bounds N ∈ (0,N) and all R ≥ 0.

roof. Let N ∈ (0,N), R ∈ R≥0 and consider a fixed positive
≥ T (R,N) ≥

√
2N/L. Relation (18b) along with N̂(t) ≤ N and

(t) ≤ γ imply T̂ (t) ≤ 2γ
√
N/L. Distinguish hence the cases

ˆ (t) ∈ [
√
2N/L, 2γ

√
N/L] and T̂ (t) ∈ [0,

√
2N/L).

In the first case, according to Lemma 5.4,

y(t) − ḟ (t)
⏐⏐ ≤

2N

T̂ (t)
+

LT̂ (t)
2

≤ max
{ 2

√
2

+

√
2
2

,
1
γ

+ γ

}√
NL (43)

hen holds, wherein
√
2 +

√
2

−1
< 2

√
2.

Otherwise, T̂ (t) ≥ 2
√
N̂(t)/L follows from (18b), because

T̂ (t) <
√
2N/L ≤ t and hence having both T̂ (t) = t and

ˆ (t) = T >
√
2N/L is impossible, and γ (t) ≥ 1. Now distinguish

the cases T̂ (t) > 0 and T̂ (t) = 0. For T̂ (t) > 0, use Lemma 5.9
to find that (38) holds for β = y(t) and σ =

√
2N/L, because

T ≥ σ ≥ T̂ (t). For T̂ (t) = 0, conclude that also N̂(t) = 0 and
deduce from Lemma 5.8 with µ = min{t, T } that (38) holds for

= y(t) and all σ ∈ [0,
√
2N/L]. The bound |y(t) − ḟ (t)| ≤ 2

√
2NL

then follows from Lemma 5.11 setting ∆ = 0. ■

5.5. Proof of the main Theorem 5.1

Proof of Theorem 5.1(a). It is clear that the differentiator is well-
defined if T̂ (t) > 0. If T̂ (t) = 0, then also N̂(t) = 0 and hence Q
as defined in (18e) satisfies (29). Existence of the limit in (18a)
for all u ∈ U then follows from Lemma 5.7.

Proof of Theorem 5.1(b). If N = 0, then T̂ (t) = 0 due to
Proposition 5.6. Thus, (18a) with u = f implies y(t) = ḟ (t),
i.e., ML,R

0 (t) = 0, for all t > 0, proving exactness from the
beginning over FL. For robustness, fix t > 0 and set ϵ = t in
Proposition 5.13. For all N ∈ (0, Lt2/8] with N ≤ LT

2
/2, then
 D

9

T (R,N) = t in that proposition, and hence

sup
f∈FR

L

Q f
N (t) ≤ ML,R

N (t) + ML,R
0 (t) = ML,R

N (t)

≤ max{2
√
2, γ + γ −1

}
√
NL, (44)

hich implies Q L,R(t) = limN→0 supf∈FR
L
Q f
N (t) = 0, proving

robustness almost from the beginning over FL.

Proof of Theorem 5.1(c). Note that γ + γ −1
≤ 2

√
2 holds

for γ ∈ [1, 1 +
√
2]. Then, for every t >

√
2N/L find that the

inequality ML,R
N (t) ≤ 2

√
2NL holds for all N ∈ (0, LT

2
/4) due

o Proposition 5.13 with ϵ = t as well as for N = 0 due to
heorem 5.1(b). Consequently, CL ≤ 2

√
2. Equality follows from

the fact that CL ≥ 2
√
2 for all causal differentiators according to

Proposition 3.10.

Proof of Theorem 5.1(d). Theorem 5.1(c) with T = ∞ yields
ML,R

N (t) ≤ 2
√
2NL for all N ∈ [0, ∞); hence, C L ≤ 2

√
2, with

equality again due to Proposition 3.10. ■

6. Sample-based differentiation

When only sampled information is available, the worst-case
error between any estimate and the true derivative can never
be better than if measurements are available continuously over
time. Therefore, some degree of error additional to that obtained
in the continuous-time case is to be expected. Taking this fact into
account, it will be shown in this section that sampled versions
of the proposed differentiators achieve best possible accuracy.
Differentiators operating on signal samples will henceforth be
called sample-based differentiators.

In the following, suppose that only sampled measurements of
u = f + η are available, at times tk = k∆, where ∆ > 0 is the
sampling period and k ∈ N0. Such a differentiator, which takes
the samples u(tj) from j = 0 to j = k as input to produce the
estimate yk of the derivative ḟ (tk) is hereafter denoted by D∆, so
that2 [D∆u](tk) = yk.

6.1. Worst-case error

The worst-case error in Definition 2.2 can be straightforwardly
adapted to the sampled case, as follows.

Definition 6.1. Let L,N ∈ R≥0 and ∆ > 0. A sample-based
differentiator D∆ is said to have worst-case error ML,R

N (t) from
time t = k∆, k ∈ N0, over the signal class FR

L with noise bound
if
L,R
N (k∆) = sup

u=f+η
η∈EN
f∈FR

L

sup
ℓ∈N0
ℓ≥k

⏐⏐ḟ (ℓ∆) − [D∆u](ℓ∆)
⏐⏐. (45)

It is worth noting that for a sample-based differentiator D∆ the
orst-case error ML,R

N is also only defined at integer multiples of
he sampling time ∆. As in the continuous-time case, ML,R

N (k∆) is
on-increasing with respect to k ∈ N0 and non-decreasing with
espect to N, L, R ∈ R≥0.

.2. Performance limits and quasi-exactness

A lower bound on the additional error introduced by sampling
s given in the following result.

2 Formally, a sample-based differentiator, D∆ with sampling time ∆ > 0
is an operator D∆ : U → (∆ · N0 → R), with the additional property that

(u + u ) = D (u ) whenever u (k∆) = 0 for all k ∈ N .
∆ 1 2 ∆ 1 2 0
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Fig. 3. Black: parabola arc satisfying f̈ (t) ≡ −L, f (0) = 0 and f (∆) = 0. Blue
and green: signals constructed by piecing together shifted (and sign-changed)
copies of the black parabola arc. Black circles: measurements (all zero). (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Proposition 6.2. Let L,N, R ∈ R≥0, ∆ > 0. Then, the worst-case
rror of any sample-based differentiator D∆ satisfies

L,R
N (k∆) ≥

L∆
2

, ∀k ∈ N. (46)

emark 6.3. An illustration of the proof is shown in Fig. 3.
Essentially, piecing together parabola arcs with second derivative
alternately equal to ±L on time intervals of length ∆ yields zero
easurements, making two functions with maximum derivative
L∆/2 indistinguishable to the differentiator from the sampled
easurements alone. ◦

roof. The fact that ML,R
N (k∆) ≥ ML,0

0 (k∆) follows directly from
he definition, hence it suffices to show ML,0

0 (k∆) ≥
L∆
2 . Assume

o the contrary that there exist k0 ∈ N and ϵ > 0 such that
L,0
0 (k∆) < (1 − ϵ) L∆2 for k = k0. By Definition 6.1, this is then

true also for all integers k ≥ k0.
Consider the function ga,b,c : [0, ∆] → R with parameters

a, b ∈ [0, 1] and c ∈ [0, 1
4 ], defined as

a,b,c(t) =

⎧⎪⎪⎨⎪⎪⎩
a L∆

2 t +
Lt2
2 t ∈ [0, c∆)

b L∆2

8 −
L
2 (t −

∆
2 )

2 t ∈ [c∆, ∆
2 )

b L
2 t(∆ − t) t ∈ [

∆
2 , ∆].

(47)

or arbitrary a ∈ [0, 1], b = 1 −
1
2 (1 − a)2, and c =

1
4 (1 − a),

ne verifies that |g̈a,b,c(t)| ≤ L almost everywhere on [0, ∆],
hat ga,b,c(0) = ga,b,c(∆) = 0, that ġa,b,c(0) = a L∆

2 , and that
˙a,b,c(∆) = −b L∆

2 . In particular, g1,1,0(t) =
L
2 t(∆ − t) is the black

arabola arc depicted in Fig. 3.
Recursively define the (strictly increasing) sequence (aj) via

j+1 = 1 −
1
2 (1 − aj)2 with a0 = 0, and set cj = (1 − aj)/4,

bj = aj+1 for all j ∈ N0. Using these sequences, define the function
f : R≥0 → R piece-wise as

f (t) = (−1)jgaj,bj,cj (t − j∆) for t ∈ [j∆, (j + 1)∆). (48)

From the properties of ga,b,c above, it follows that f ∈ F0
L with

(k∆) = 0 for all k ∈ N0. Applying the inputs u = f and u = −f
o the differentiator then produces identical (zero) measurements
t the sampling time instants. Hence, ML,0

0 (k∆) ≥ |ḟ (k∆)| = ak L∆
2 .

ince limj→∞ aj = 1, it is possible to select k ≥ k0 such that
k ≥ 1− ϵ, yielding a contradiction to ML,0

0 (k∆) < (1− ϵ) L∆2 . ■

As the previous result shows, it is clearly impossible to ob-
ain an exact differentiator based on sampled measurements. Ar-
uably, the closest property to exactness in the sampled case is to
chieve equality in (46). This property is called quasi-exactness in
he following. Its formal definition is similar to that of exactness
n Definition 2.3.
 r

10
Definition 6.4. A sample-based differentiator D∆ is said, over
the signal class FL, to be

• quasi-exact in finite time if for every R there exists kR ∈ N
such that ML,R

0 (kR∆) =
L∆
2 ;

• quasi-exact in fixed time if there exists k ∈ N such that
ML,R

0 (k∆) =
L∆
2 for all R ≥ 0;

• quasi-exact from the beginning if ML,R
0 (∆) =

L∆
2 for all

R ≥ 0;
• not quasi-exact if it is not quasi-exact in finite time.

A quasi-exact sample-based differentiator yields the best pos-
sible estimate for the derivative in the noise-free case based
on the available samples. It is worth noting, however, that the
discretization of an exact continuous-time differentiator does not
necessarily yield a quasi-exact sample-based differentiator.

The simplest quasi-exact differentiator is the first-order differ-
ence yk = [u(tk) − u(tk − ∆)]/∆, as can be seen from Lemma 4.3
etting N = 0. In the presence of noise, however, the worst-
ase error of this simple differentiator may become prohibitively
arge. It is hence desirable to achieve a worst-case error that is
lose to the lower bound of all causal quasi-exact differentiators,
hich is stated in the following proposition that is analogous to
roposition 3.3.

roposition 6.5. Let ∆ > 0, L ≥ 0 and consider a causal
ample-based differentiator D∆. Suppose that D∆ is quasi-exact in
inite-time over FL. Then,

L,R
N (r∆) ≥ 2

√
2NL −

L∆
2

(49)

olds for all R,N ≥ 0 and r ∈ N.

emark 6.6. Sample-based differentiators are trivially limited
lso by the bound ML,R

N (k∆) ≥ 2
√
NL from Proposition 3.1, which

applies to every causal differentiator. Hence, the bound (49) is
nontrivial only if ∆ ≤ 4(

√
2 − 1)

√
N/L. ◦

Proof. For L = 0, (49) is trivial. For L > 0, let k ∈ N be such
that ML,0

0 (k∆) = L∆/2 according to Definition 6.4. Furthermore,
let N ≥ 0, r ∈ N, and define κ =

√
N/L, select ℓ ∈ N such that

ℓ ≥ max{r, k} and ℓ∆ ≥ (2 +
√
2)κ . Define also T = ℓ∆ and

τ = ℓ∆ − (2 +
√
2)κ . For these values of κ, τ , T , consider the

unctions g1 and g2 in (12). Then, g1 ∈ F0
L and g2 ∈ EN . Choosing

f = −g1 and η = g2 yields differentiator input u(t) = g1(t) for all
t ∈ [0, T ]. Since g1 ∈ F0

L , then

L∆
2

≥ ML,0
0 (k∆) ≥ ML,0

0 (T ) ≥ |[D∆u](T ) − ġ1(T )|

≥ 2|ġ1(T )| − |[D∆u](T ) + ġ1(T )|. (50)

ince ḟ (T ) = −ġ1(T ) = −
√
2NL, and ML,R

N (j∆) is non-decreasing
with respect to R and non-increasing with respect to j, this yields

ML,R
N (r∆) ≥ ML,R

N (T ) ≥ |[D∆u](T ) − ḟ (T )|

= |[D∆u](T ) + ġ1(T )| ≥ 2
√
2NL −

L∆
2

, (51)

s claimed. ■

. Sample-based optimal robust exact differentiation

In this section, a sampled version of the proposed optimal
obust exact differentiator is shown.
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.1. Proposed sample-based differentiator

The sampled version of (18) is given by the noise amplitude es-
imation over a time window of length T = k∆ with parameter3
k ∈ N \ {1} according to N̂0 = N̂1 = 0 and

N̂k =
1
2

max
ℓ∈{2,...,k}

ℓ≤k
j∈{1,...,ℓ}

(
|Q (tk, ℓ∆, j∆)| −

L∆2j(ℓ − j)
2

)
, (52a)

or k ≥ 2, the selection of γk according to4

γk ∈ Gk ∩ [1, γ ], with γ ≥ 2 and (52b)

Gk =

⎧⎪⎨⎪⎩
{1} if 2

√
N̂k
L ≤ ∆,{

j∆

2
√

N̂k/L
: j ∈ N

}
otherwise,

(52c)

nd the computation of the differentiator output via

T̂k = min

⎧⎨⎩tk, k∆,max

⎧⎨⎩∆, 2γk

√
N̂k

L

⎫⎬⎭
⎫⎬⎭ (52d)

k =
u(tk) − u(tk − T̂k)

max{T̂k, ∆}
(52e)

with Q in (18e). As will be shown, the restriction γ ≥ 2 ensures
hat the set Gk ∩ [1, γ ] is always non-empty and that, for k ≥ 1,
ˆk/∆ ∈ N and T̂k = ∆ if and only if Gk = {1}. From Lemma 5.5, it
ollows that N̂k ≤ N in analogy to Proposition 5.6.

It will be shown that the sample-based implementation (52) of
he optimal robust exact differentiator in (18) is quasi-exact, and
hat, with appropriately chosen γ , its worst-case differentiation
rror ML,R

N (k∆) is always contained in a band 2
√
2NL ± L∆/2

round its optimal continuous-time value. Considering Proposi-
ions 6.2 and 6.5, one can see that this is the tightest band of
his form one can hope to obtain for a quasi-exact sample-based
ifferentiator. The following main theorem for the sampled case
ormally states these results. The proof is given in Section 7.4.

heorem 7.1. Let L, ∆ ∈ R>0, N ∈ R≥0, and consider the sample-
ased differentiator D∆ as given in (52) with parameters γ ≥ 2 and

k ∈ N \ {1}. Let N = L∆2(k − 1)2/2. Then, the following statements
re true:

(a) D∆ is a well-defined sample-based differentiator; specifically,
yk = 0 for k = 0, and, for all k ∈ N, the set Gk ∩ [1, γ ] is
non-empty and T̂k/∆ ∈ N.

(b) D∆ is quasi-exact from the beginning over FL.
(c) If γ ∈ [2, 1 +

√
2], then

2
√
2NL −

L∆
2

≤ ML,R
N (k∆) ≤ 2

√
2NL +

L∆
2

(53)

for all N ≤ N and for all k ∈ N with k∆ ≥ 2
√
N/L. In

particular, ML,R
N (k∆) = 2

√
2NL+

L∆
2 for N = 0 and all k ∈ N.

(d) If γ ∈ [2, 3/
√
2), then ML,R

N (k∆) = 2
√
2NL −

L∆
2 holds for

N = L∆2/2 and all k ∈ N with k ≥ 2. △

emark 7.2 (Tuning). Analogous to Remark 5.2, the proposed
sample-based differentiator may be tuned using a (crude) noise
amplitude upper bound N by selecting the smallest integer k

atisfying k∆ >

√
2N/L + ∆, setting γ = 2, and choosing the

mallest possible value for γk in every sampling step. ◦

3 Like in the continuous-time case, all formal results also hold with infinite
indow length, i.e., with k = ∞.
4 In practice, the smallest element of G ∩ [1, γ ] may be chosen.
k a

11
Remark 7.3. The theorem reveals that, for fixed L, the upper
differentiation error bound has the same asymptotic behavior of
the order max{

√
N, ∆} with respect to sampling period ∆ and

noise amplitude N as existing robust exact differentiators with
sampled measurements, cf. Livne and Levant (2014, Theorems 1
and 3). ◦

7.2. Worst-case error upper bound

The following result gives an upper bound on the worst-case
error similar to the one in Proposition 5.13.

Proposition 7.4. Let L, ∆ ∈ R>0, u = f + η with f ∈ FL, η ∈ EN ,
and consider the sample-based differentiator D∆ as given in (52)
with parameters γ ≥ 2 and k ∈ N \ {1}. Define N = L∆2(k− 1)2/2.
hen, the bound ML,R

N (k∆) ≤ max{2
√
2, γ + γ −1

}
√
NL + L∆

2 holds
for all N ∈ [0,N] and all k ∈ N with k∆ ≥

√
2N/L.

Proof. Let tk = k∆, N ∈ [0,N] and distinguish cases N ≤ LT̂ 2
k /2

and N > LT̂ 2
k /2. In the first case, T̂k ≥

√
2N/L holds. With the

inequality N̂k ≤ N , which follows from the definition of N̂k and
Lemma 5.5, moreover either T̂k ≤ 2γk

√
N/L or T̂k = ∆ holds.

According to Lemma 5.4,⏐⏐yk − ḟ (tk)
⏐⏐ ≤

2N

T̂k
+

LT̂k
2

(54)

nd if T̂k ≤ 2γk
√
N/L, then

2N

T̂k
+

LT̂k
2

≤ max
{ 2

√
2

+

√
2
2

,
1
γk

+ γk

}√
NL

≤ max{2
√
2, γ + γ −1

}
√
NL. (55)

olds. If T̂k = ∆, then

2N

T̂k
+

LT̂k
2

≤
2N

√
2N/L

+ L
∆

2
=

√
2NL + L

∆

2
. (56)

n the second case, we have T̂k <
√
2N/L ≤ tk. Then, T̂k ≥ 2

√
N̂k/L

follows from (52d), because T̂k = tk and T̂k = k∆ are impossible
due to (k − 1)∆ ≥

√
2N/L, because T̂k = ∆ implies Gk = {1}

and ∆ ≥ 2
√
N̂k/L, and because γk ≥ 1. Define ℓ =

√
2N/L and

let x ∈ [0, ∆) be such that σ̂ := ℓ + x satisfies σ̂ /∆ ∈ N. Then,
moreover σ̂ ≤

√
2N/L+∆ ≤ k∆, and by definition of N̂k in (52a),

⏐⏐⏐Q (tk, σ̂ , T̂k)
⏐⏐⏐ ≤ 2N̂k +

LT̂k(σ̂ − T̂k)
2

(57)

olds because T̂k ≤ σ̂ ≤ tk and σ̂ /∆ ∈ N∩[1, k]. Using Lemma 5.9,
then (33) holds with t = tk and σ = σ̂ . The result then follows
rom Lemma 5.11. ■

.3. Worst-case error lower bound

Proposition 7.4 shows that for N = 0, the worst-case error
ound is equal to L∆/2, corresponding to the noise-free case. This
oise-free bound is tight and cannot be improved, as is shown in
roposition 6.2.
For all N ≥ 0, a lower bound on the worst-case error is given

y Proposition 6.5. The following auxiliary lemma will be used to
how that the proposed sample-based differentiator can actually
ttain this lower bound in some specific cases.
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emma 7.5. Let L ∈ R≥0, ∆ > 0 and N = L∆2/2. Then, the
ample-based differentiator D∆ given in (52) with parameters γ ≥ 2
nd k ∈ N \ {1} achieves

L,R
N (tk) ≤ 2

√
2NL −

L∆
2

(58)

henever tk ≥ T̂k and T̂k ∈ {∆, 2∆}.

roof. According to Lemma 5.4 and provided tk ≥ T̂k, it follows
hat

[D∆u](tk) − ḟ (tk)
⏐⏐ ≤

2N

T̂k
+

LT̂k
2

=
3
2
L∆

= 2
√
2NL −

L∆
2

(59)

for the considered value N = L∆2/2. ■

7.4. Proof of the main Theorem 7.1

Proof of Theorem 7.1(a). For k = 0, T̂k = tk = 0 and hence
yk = 0. For k ∈ N, if N̂k ≤ L∆2/4, then Gk ∩ [1, γ ] = {1}; hence

k = 1 and T̂k = ∆. Otherwise, ∆/

√
4N̂k/L ≤ 1, and thus the

ifference between consecutive elements in Gk is at most one,
roving non-emptiness of Gk ∩ [1, γ ] with γ ≥ 2. In this case,

γk = j∆/

√
4N̂k/L for some j, and hence T̂k/∆ ∈ {k, k, j} ⊂ N. ■

roof of Theorem 7.1(b). Let R ≥ 0 and set N = 0 in
roposition 7.4 to obtain ML,R

0 (k∆) ≤ L∆/2 for all k ∈ N. Hence,
L,R
0 (∆) = L∆/2 by Proposition 6.2. ■

roof of Theorem 7.1(c). The upper bound follows from Proposi-
ion 7.4 and the fact that γ + γ −1

≤ 2
√
2 for all γ ∈ [2, 1+

√
2].

or N = 0, equality to this upper bound follows from Proposi-
ion 6.2. The lower bound is a consequence of Proposition 6.5 and
uasi-exactness shown in Theorem 7.1(b).

roof of Theorem 7.1(d). For γ ∈ [2, 3/
√
2) and with N = L∆2/2

ne has

ˆk ≤ 2γk

√
N̂k

L
≤ 2γ

√
N
L

= γ
√
2∆ < 3∆. (60)

ence T̂k ∈ {∆, 2∆} and k∆ ≥ 2∆ ≥ T̂k. Lemma 7.5 then
ields equality to the lower bound given in Theorem 7.1(c),
.e., ML,R

N (k∆) = 2
√
2NL −

L∆
2 . ■

. Simulation results

For illustration purposes, the proposed optimal robust exact
ifferentiator (52) is compared to the sliding-mode based RED (6).
signal f ∈ FR

L to be differentiated is chosen as the parabola arc
(t) = Lt2/2+Rt . The differentiators are implemented in discrete

time with sampling period ∆ = 0.01. For the RED, the implicit
iscretization described in Mojallizadeh et al. (2021a) is used
ith differentiator output yk = y2,k+1. Two different parameter

settings are used for the RED: λ1 = 1.5, λ2 = 1.1 as suggested
y Levant (1998) and λ1 = 2r , λ2 = r2 obtained using the tuning
rocedure used in the toolbox by Andritsch et al. (2021) with
robustness factor of r = 1.4. For the proposed differentiator,

he discrete-time realization in (52) is used, where the smallest
ossible value for γk ∈ Gk ∩ [1, 2] is selected at every sampling

time instant. Signal and noise parameters are chosen as L = R = 1
and N = 0.08. Computational complexity is limited by selecting
k = 200, corresponding to a continuous-time window length
12
Fig. 4. Simulation results comparing the RED and the proposed optimal robust
exact differentiator with L = 1, N = 0.08, and sampling time ∆ = 0.01. The plots
how the differentiation error |ḟ (tk) − yk| (top), noise signal η(tk) (center), and
oise amplitude estimate N̂k (bottom) obtained by the proposed differentiator.
he optimal error bound is 2

√
2NL = 0.8. Maximum errors for t ≥ 10 of the

roposed differentiator, the RED with λ1 = 1.5, and the RED with λ1 = 2.8 are
.7939, 0.8135, and 0.9374, respectively.

T = k∆ = 2 and guaranteeing optimal performance for noise
mplitudes up to N = L∆2(k − 1)2/2 ≈ 1.98.
Fig. 4 shows the simulation results. The noise signal is shown

in the center portion. Motivated by Fig. 2 and practical consid-
erations, it consists of constant segments, two parabola arcs of
the principal form N − (1 + λ2)Lt2/2, with λ2 taken from the
two RED parameter sets, two step jumps from −N to N , and
white noise obtained by sampling a uniformly distributed random
number from the interval [−N,N]. The top and bottom portions
of Fig. 4 depict the differentiation error |ḟ (tk) − yk| and the noise
amplitude estimate N̂k.

Initially, the noise is constant and the differentiators hence
behave as when differentiating a noise-free signal. One can see
that all differentiators make an error equal to R initially; the
proposed differentiator then immediately attains quasi-exactness
with error bounded by L∆/2 after a single sampling step, while
the RED exhibits a finite convergence time, which decreases with
increasing λ2.

The parabola arcs in the noise lead to peaks in the differen-
tiation error. With the proposed differentiator, they stay below
the optimal worst-case error 2

√
2NL. Each RED, in presence of the

noise parabola constructed using its respective value of λ2, makes
an error that exceeds the optimal error bound, with larger values
of λ2 leading to larger errors. Tuning of the RED thus requires
a tradeoff between worst-case convergence speed and worst-
case error, while the proposed optimal robust exact differentiator
achieves instant convergence with least possible worst-case error
bound.

In the presence of white noise, finally, the frequent step-wise
changes in the noise allow for a very accurate estimation of the
noise amplitude as predicted by Proposition 5.6. However, the
proposed differentiator also exhibits the largest variation in the
error, due to its direct feed-through of the noisy input and the
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esulting absence of any noise filtering. The RED, on the other
and, filters high-frequency components of the noise, leading to
smoother error signal overall. Nevertheless, all differentiators

ead to an error of similar magnitude in this case.

. Conclusion

A first-order differentiator that is robust and exact over a wide
lass of signals and that achieves optimal differentiation accuracy
s proposed for the first time. It is based on the structure of
linear differentiator with a parameter that adapts based on
suitable estimate of the noise amplitude. It is shown that, in

he presence of noise, the proposed differentiator achieves the
owest possible worst-case error among all exact differentiators,
nd that it converges instantaneously to the true derivative in the
bsence of noise, hence outperforming all fixed-time convergent
ifferentiators in terms of convergence speed.
For the sampled-data case, a discrete-time implementation of

he differentiator based on sampled measurements is provided.
his sample-based differentiator is shown to retain the properties
f the optimal continuous-time differentiator in their closest pos-
ible forms. In the absence of noise, the proposed sample-based
ifferentiator has the property that it has the least possible worst-
ase error among all sample-based differentiators; this property
s hence called quasi-exactness. It moreover attains this quasi-
xactness after the least possible convergence time of a single
ampling step. In the presence of noise, the worst-case error is
hown to converge to a band around its continuous-time optimal
alue, whose width is as small as possible and is a linear function
f the sampling time.
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