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The phase space formulation of double field theory (DFT) indicates that statistical matter can be included
in terms of (T-)duality multiplets. We propose the inclusion of a perfect fluid in the geometry of DFT
through a generalized energy-momentum tensor written in terms of a DFT pressure, energy density, and
velocity. The latter is an OðD;DÞ vector and satisfies two invariant constraints in agreement with the on-
shell constraints for the generalized momentum. We compute the conservation laws associated to the
energy-momentum tensor considering general DFT backgrounds. Then we study cosmological back-
grounds and we find an expression for the DFT cosmological dynamics with the perfect fluid coupled. This
proposal reproduces the equations of string cosmology with nontrivial fixed dilaton charge upon
parametrization of the DFT Einstein equations.
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I. INTRODUCTION

String theory (ST) is a very good candidate to describe
nature from first principles. One of the cornerstones of ST
is duality, which is necessary to show the equivalence
between their different formulations. Moreover, T duality
can be used as a guiding principle to construct a double
geometry that describes strings in an OðD;DÞ invariant
way, OðD;DÞ being an exact symmetry of ST. One
possible framework to study the interplay between T
duality and the low energy limit of ST is double field
theory [1–3] (DFT).1 The main idea of DFT is to accom-
plish OðD;DÞ as a symmetry of the effective (or super-
gravity) action. The fundamental dimension of OðD;DÞ is
2D and therefore the dimensions of the target space must be
doubled as X̂M ¼ ðx̃μ; xμÞ with μ ¼ 0;…; D − 1.
The minimal formulation of DFT includes an invariant

group (nondynamical) metric, η̂M̂ N̂ , and a field content
given by a generalized metric ĤM̂ N̂ðX̂Þ and a generalized

dilaton d̂ðX̂Þ, which are multiplets of the duality group.
Standard diffeomorphisms and Abelian gauge transforma-
tions of the b field are replaced by generalized diffeo-
morphisms in order to preserve the invariance of the group
metric, i.e., δξ̂η̂M̂ N̂ ¼ 0. This formulation describes the
universal NS-NS (Neveu-Schwarz) sector of the low energy
limit of ST upon suitable parametrization of the fields and
parameters and imposing the strong constraint. The latter
ensures the closure of the generalized diffeomorphisms and
removes the dependence on half of the coordinates.
The construction of DFT is inspired in toroidal com-

pactifications where T-duality transformations appear as a
symmetry and the fundamental fields can be cast in
multiplets of the duality group. These compactifications,
in turn, are compatible with string cosmology [6], string
gas cosmology [7], and other scenarios with matter
terms [8]. At the level of the worldsheet, this issue was
addressed in [9] for cosmological vacuum solutions and
in [10,11] considering matter contributions and their
relation with T duality. Moreover in [8] a duality covariant
formulation was obtained for string cosmology. With these
results, it is expected that matter fields can be coupled to
the standard formulation of DFT, as it was recently stressed
in [12].
When coupling matter fields to the vacuum DFT at the

level of the action, the equations of motion derived from
the variational principle can be recast into the form of a
generalized Einstein equation [13]
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ĜM̂ N̂ ¼ T̂ M̂ N̂ ; ð1:1Þ

where ĜM̂ N̂ is the symmetric DFT Einstein tensor,

T̂ M̂ N̂ ¼ ĤM̂ N̂

�
Lm −

1

2

δLm

δd̂

�

− 2½P̄M̂ K̂PN̂ L̂þ P̄N̂ K̂PM̂ L̂�
�
δLm

δPK̂ L̂
−

δLm

δP̄K̂ L̂

�
ð1:2Þ

is the corresponding energy-momentum tensor with Lm
the matter Lagrangian coupled to the double geometry and
PM̂ N̂ , P̄M̂ N̂ are the usual DFT projectors [Eq. (2.8)].
Additionally the generalized Bianchi identities imply a
vanishing divergence of the Einstein tensor, ∇M̂ĜM̂ N̂ ¼ 0,
and in turn the on-shell condition dictates a conservation
law for matter, namely

∇M̂T̂ M̂ N̂ ¼ 0: ð1:3Þ

The vacuum solutions for the DFT cosmological ansatz
were studied in [14] and further solutions with matter were
explored in [13,15]. Moreover, higher-derivative terms
were included in [12,16–18] as well. Here again we observe
that these works suggest that matter can be coupled to the
standard construction of DFT. In turn having a well-
understood framework of matter coupled to DFT would
allow us to generalize the current computations of α0
corrections using, for example, the results of [19] where
a systematic procedure to access higher-derivative terms for
vacuum DFT was introduced.
If onewants to describematter from a statistical approach,

as a gas or fluid in the double geometry, then it is possible
to proceed from a double kinetic perspective [20].2

Considering the phase space construction of DFT through

the coordinates ðX̂M̂; P̂M̂Þ, with P̂M̂ being a generalized
momentum vector, the analogous equation to (1.2) is
given by

T̂ M̂ N̂ðX̂Þ ¼
Z

d2DP̂ e−2d̂P̂M̂P̂N̂F̂; ð1:4Þ

where F̂ ¼ F̂ðX̂; P̂Þ is a generalized one-particle distribu-
tion function. In this double kinetic framework, the con-
servation law (1.3) for the energy-momentum tensor (1.4)
can be obtained from the transfer equations related to the
generalized Boltzmann equation for the evolution of F̂.
While in general relativity (GR) the explicit form of the

energy-momentum tensor is well known for several stat-
istical scenarios, e.g., the perfect fluid obtained by the
integration of the relativistic version of the Maxwell-
Boltzmann distribution function

Tμν ¼ ðpþ eÞuμuν þ pgμν; ð1:5Þ

this is not the case for DFT where both the generalized
distribution function and the generalized tensor are not
known. Moreover, the thermodynamics properties of this
system and their equilibrium states are not fully under-
stood. For this reason in this work we construct the energy-
momentum tensor of the perfect fluid in the double
geometry starting from a general ansatz in terms of the
DFT metrics and a suitable generalization of the velocity of
the fluid. The proposal for this tensor brings new features to
rewrite the matter dynamics from a double geometry
perspective and suggests new directions to construct a
duality invariant thermodynamics, as we stress in Sec. V.

A. Main results

We consider a top-down perspective to build up a
generalized energy-momentum tensor for the perfect fluid,
proposing an effective construction based on symmetries, a
generalized velocity of the fluid, and the fundamental fields
of DFT.
First, we define a generalized version of the velocity for a

point particle in the double geometry as [21]

ÛM̂ ¼ DX̂M̂

Dτ
; ð1:6Þ

where τ is an affine parameter in the double geometry,
which reduces to the standard proper time upon para-
metrization. In turn, this generalized velocity ÛM̂ can be
parametrized as

ÛM̂ ¼ ðũμ; uμÞ; ð1:7Þ

with ũμ a dual velocity.
Besides, both the generalized momentum P̂M̂ corre-

sponding to the trajectory of a point particle and its
generalized velocity ÛM̂ are vectors that indicate the same
geometric direction in the tangent space and then they must
be proportional. Choosing the proportionality constant is,
in fact, defining a specific affine parameter τ in (1.6).
Indeed, we take the relation

P̂M̂ ¼ mÛM̂ ¼ mDX̂M̂=Dτ; ð1:8Þ

with m the invariant mass. Since the generalized momenta
satisfy a mass-shell condition and a strong constraintlike
equation,

P̂M̂ĤM̂ N̂P̂
N̂ ¼ −m2; ð1:9Þ

P̂M̂η̂M̂ N̂P̂
N̂ ¼ 0; ð1:10Þ

the generalized velocity inherits the following relations
2See also [8,15] where a different procedure to include matter

was implemented.
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ÛM̂Ĥ
M̂ N̂ÛN̂ ¼ −1; ð1:11Þ

ÛM̂η̂
M̂ N̂ÛN̂ ¼ 0: ð1:12Þ

The constraints (1.10) and (1.12) get rid of half of the
components of the generalized velocity/momentum in
agreement with their actual number of degrees of freedom.
Moreover, (1.11) and (1.12) allow one to consider a rest
frame that basically sets the temporal direction upon a
space-time splitting of the DFT coordinates.
Second, we introduce the index structure of the sym-

metric energy-momentum tensor of the perfect fluid con-
sidering the contributions of all the DFT projections of the
generalized velocity vector ÛM̂ and the fundamental
metrics of DFT HM̂ N̂ and η̂M̂ N̂ , namely

T̂ M̂ N̂ ¼ b1UM̂UN̂ þ b2UM̂
U

N̂
þ b3ðUM̂UN̂

þ U
M̂
UN̂Þ

þ CĤM̂ N̂ þDη̂M̂ N̂ : ð1:13Þ

In the present analysis we do not allow nonvanishing off-
diagonal components in the temporal sector after a space-
time splitting; hence, the term proportional to the group
metric is discarded (D ¼ 0). Furthermore, in this first step
we can simplify the expression (1.13) comparing with the
generalized energy-momentum tensor for a generalized
scalar field3 in which only mixed components are present,
consequently we discard the contributions coming from b1
or b2.

Finally and for later convenience we fix the remaining
coefficients such that (1.13) yields

T̂ M̂ N̂ ¼ 2ðẽþ p̃ÞÛM̂ÛN̂ þ 2ðẽþ p̃ÞÛMÛN̂

þ p̃ĤM̂ N̂ ; ð1:14Þ

where ẽðX̂Þ ¼ ẽ and p̃ðX̂Þ ¼ p̃ are defined as the gener-
alized energy density and pressure.
The expression (1.14) resembles the structure of the

ordinary energy-momentum tensor in GR, which represents
the metric sources [Eq. (1.5)]. However, its DFT generali-
zation T̂ M̂ N̂ , includes not only the generalized metric
sources but also the contributions from the generalized
dilaton source [see Eq. (1.2)]; furthermore, the velocity
term cannot be straightforwardly generalized due to the
already mentioned DFT projections.
In addition to the construction of the generalization of

the energy-momentum tensor for the perfect fluid (1.14) in
the double geometry, we also explore the conservation
equations derived from (1.3) and we elaborate on the DFT
Einstein-type equations (1.1) sourced by (1.14) for a
cosmological ansatz and their parametrization. As we have
explained, this proposal must agree with the previous
cosmological DFT constructions, such as [13,14], upon
parametrization. Considering the space-time split and a rest
frame indicating the temporal direction, the nontrivial
equations coming from the generalized Einstein equation
are given by

−p̃ ¼ 2ð∂0dÞ2 − 2∂00d −
1

16
∂0AMN

∂0AMN þ ð∂0 ↔ ∂̃
0Þ;

1

2
ðẽþ p̃Þ ¼ ∂00dþ 1

16
∂0AKL

∂0AKL − ð∂0 ↔ ∂̃
0Þ;

0 ¼ −PM
P
h1
4
∂00APQ −

1

2
∂0d∂0APQ þ ð∂0 ↔ ∂̃

0Þ
i
PQ

N þ ðP ↔ PÞ:

ð1:15Þ

These equations determine the set of DFT cosmologies whose matter source corresponds to (1.14) and their parametrization
reads

−2p̃ ¼ 2ðD − 1Þ _H þDðD − 1ÞH2 − 4ϕ̈þ 4 _ϕ2 − 4ðD − 1ÞH _ϕþ 1

4a4
δijδkl _bik _bjl;

ẽþ p̃ ¼ 2ϕ̈ − ðD − 1Þð _H þH2Þ − 1

4a4
δijδkl _bik _bjl;

0 ¼ ð _H þ ðD − 1ÞH2 − 2H _ϕÞδij þ 1

2a4
δikδjlδmn _bkm _bln;

0 ¼ δjlb̈il þ ½ðD − 5ÞH − 2 _ϕ�δjk _bik:

ð1:16Þ

3A formal correspondence for these tensors exists in GR [22].
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Here we keep the usual coordinates and eliminate the dual
ones. However, other T-dual solutions can be easily
obtained from (1.15). These cosmologies reduce to the
results of [14] when the matter and the b field are neglected.
Furthermore since DFT encodes the low energy limit of ST,
this proposal is related to the fundamental equations of
string cosmology. Particularly, it is possible to describe
string cosmologies scenarios [6] by implementing the
following field redefinitions:

p̃ ¼ e2ϕp; ẽ ¼ e2ϕe: ð1:17Þ
The succeed of DFTwith matter yields in the fact that it

is possible to obtain string cosmologies from the double
geometry, whose only stringy ingredient is given by the
duality group invariance. As we discuss in Sec. IV C, it is
worth noting that the proposal (1.14) is a first step in the
description of the generalized perfect fluid in the double
geometry, which reproduces string cosmologies with a
fixed dilaton source σ [cf. (4.18)] upon a suitable para-
metrization and imposing the strong constraint.

B. Outline

This paper is organized as follows: In Sec. II we introduce
the basics of DFT and we describe the space-time split
decomposition. In Sec. III we incorporate matter into DFT:
First, we describe the construction of the DFT phase space
from a kinetic theory point of view. Second, we propose an
explicit form for the generalized energy-momentum tensor
related to a perfect fluid in the double geometry. Finally we
study the conservation laws from the divergence equation.
We analyze the cosmological ansatz of DFT with matter
given by the generalized Einstein equation, in Sec. IV. We
also show the agreement with string cosmology considering
field redefinitions of the DFT energy density and pressure.
Conclusions are given in Sec. V.

II. VACUUM DOUBLE FIELD THEORY

In this section we introduce the basic aspects of the
vacuum sector of DFT. We start by considering a formu-
lation where the fundamental fields are the generalized
metric and the generalized dilaton, which are in OðD;DÞ
representations. Then, we describe the space-time split
framework. In both cases, the fundamental fields depend on
both the ordinary coordinates and the dual ones.

A. Basics

DFT [1–3] is a proposal to rewrite the low energy limit of
ST as a manifestly OðD;DÞ invariant theory. All the DFT
fields and parameters are duality covariant objects. The
double geometry consists in a 2D-dimensional space
with coordinates X̂M̂ ¼ ðx̃μ; xμÞ, M̂ ¼ 1;…; 2D. Here xμ

are coordinates on an embedded supergravity, and x̃μ are
dual coordinates. Considering a solution to the weak and
strong constraints, namely

∂M̂ð∂M̂⋆Þ ¼ 0;

ð∂M̂⋆Þð∂M̂⋆Þ ¼ 0; ð2:1Þ
where ⋆ is a generic field/parameter, half of the coordinates
are taken away. For instance, simple solutions are ∂̃μ ¼ 0 or
∂μ ¼ 0 in which the fundamental fields depend only on xμ

or x̃μ, respectively. In (2.1), contractions are given by the
OðD;DÞ invariant metric, η̂M̂ N̂ .
The DFT action principle is invariant under a global

OðD;DÞ symmetry, which infinitesimally reads

δVM̂ ¼ VN̂ΩN̂
M̂; ð2:2Þ

where VM̂ is a genericOðD;DÞmultiplet andΩ ∈ OðD;DÞ
is the generic parameter of the transformation. A generalized
notion of diffeomorphisms can be defined in the double
space. These are given by the generalized Lie derivative,

δξ̂V
M̂ ¼Lξ̂V

M̂

¼ ξ̂N̂∂N̂V
M̂þð∂M̂ ξ̂P̂−∂P̂ξ̂

M̂ÞVP̂þω∂N̂ ξ̂
N̂VM̂; ð2:3Þ

where ξ̂M̂ a generic parameter and ω a density weight
factor. The closure of these transformations is given by the
C bracket

½δξ̂1 ; δξ̂2 �VM̂ ¼ δξ̂21V
M̂; ð2:4Þ

where

ξ̂M̂12 ¼ ξ̂P̂1
∂ξ̂M̂2

∂X̂P̂
−
1

2
ξ̂P̂1

∂ξ̂2P̂
∂X̂M̂

− ð1 ↔ 2Þ: ð2:5Þ

The fundamental fields are the generalized dilaton d̂ and
the generalized metric ĤM̂ N̂ . In this work we consider that
these fields integrate the vacuum sector of DFT. While the
generalized metric transforms as a tensor under OðD;DÞ
transformations and generalized diffeomorphisms (ω ¼ 0),
and it is an element of the duality group, i.e.,

ĤM̂ P̂η̂
P̂ Q̂ĤQ̂ N̂ ¼ η̂M̂ N̂ ; ð2:6Þ

the generalized dilaton is anOðD;DÞ scalar and transforms
noncovariantly under generalized diffeomorphisms

δξ̂d̂ ¼ ξ̂N̂∂N̂ d̂ −
1

2
∂M̂ ξ̂

M̂: ð2:7Þ

Both ĤMN and η̂MN can be used to construct DFT
projectors

PM̂N̂¼
1

2
ðη̂M̂N̂−ĤM̂N̂Þ and P̄M̂N̂¼

1

2
ðη̂M̂N̂þĤM̂N̂Þ: ð2:8Þ

The action principle of DFT is given by

SDFT ¼ 1

2

Z
d2DX̂e−2d̂R̂; ð2:9Þ
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with R̂ as the generalized version of the Ricci scalar

R̂ ¼ 1

8
ĤM̂ N̂

∂M̂Ĥ
K̂ L̂

∂N̂ĤK̂ L̂ −
1

2
ĤM̂ N̂

∂N̂Ĥ
K̂ L̂

∂L̂ĤM̂ K̂

þ 4ĤM̂ N̂
∂M̂∂N̂ d̂þ 4∂M̂Ĥ

M̂ N̂
∂N̂ d̂ − 4ĤM̂ N̂

∂M̂d̂∂N̂ d̂

− ∂M̂∂N̂Ĥ
M̂ N̂ ; ð2:10Þ

which is a duality invariant scalar. Since this Lagrangian
also transforms as a scalar under generalized diffeomor-
phisms, the action principle of DFT is fully invariant up to
total derivatives.
In DFT it is also possible to construct a generalized Ricci

tensor

R̂M̂ N̂ ¼ PM̂
P̂K̂P̂ Q̂P̄

Q̂
N̂ þ P̄M̂

P̂K̂P̂ Q̂P
Q̂
N̂; ð2:11Þ

where

K̂M̂ N̂ ¼ 1

8
∂M̂Ĥ

K̂ L̂
∂N̂ĤK̂ L̂ −

1

4
ð∂L̂ − 2∂L̂d̂ÞðĤL̂ K̂

∂K̂ĤM̂ N̂Þ

þ 2∂M̂∂N̂ d̂ −
1

2
∂ðM̂Ĥ

K̂ L̂
∂L̂ĤN̂ÞK̂

þ 1

2
ð∂L̂ − 2∂L̂d̂ÞðĤK̂ L̂

∂ðM̂ĤN̂ÞK̂ þ ĤK̂
ðM̂∂K̂H

L̂
N̂ÞÞ:

It is straightforward to verify that these objects are fully
covariant. Moreover, they can be constructed from a
generalized Riemann tensor, but the latter cannot be

entirely expressed in terms of the fundamental fields of
DFT [23].

B. Space-time split of double field theory

We start by splitting the DFT coordinates as

X̂M̂ ¼ ðx̃0; x0; XMÞ; ð2:12Þ

where M ¼ 3;…; 2D, x̃0 ¼ t̃, x0 ¼ t and the partial deriv-
atives are

∂M̂ ¼ ð∂̃0; ∂0; ∂MÞ: ð2:13Þ

The weak constraint now implies

∂M∂
M⋆ ¼ −2∂̃0∂0⋆; ð2:14Þ

while the strong constraint is

∂M□∂
M⋆ ¼ −∂0□∂̃

0⋆ − ∂0⋆∂̃0□; ð2:15Þ

where ⋆ and □ are arbitrary fields/parameters. The
OðD;DÞ invariant metric decomposes as

η̂M̂ N̂ ¼

0
B@

η̂00 η̂00 η̂0N

η̂0
0 η̂00 η̂0N

η̂M
0 η̂M0 η̂MN

1
CA¼

0
B@

0 1 0

1 0 0

0 0 ηMN

1
CA; ð2:16Þ

while the generalized metric is given by

ĤM̂ N̂ ¼

0
B@

−N−2 α N−2N N

α − 1
2
αN KN K − N2 þHPKN PN K −αN N þHNKN K

N−2NM −αNM þHMKN K HMN − N−2NMN N

1
CA; ð2:17Þ

where α ¼ 1
2
N−2NMNM [24]. In (2.17) NM is a gener-

alized shift vector and N is a generalized lapse function.
The generalized dilaton, d̂, can be redefined in terms of the
generalized lapse function,

e−2d̂ ¼ Ne−2d: ð2:18Þ

Since we are interested in cosmological ansatz, we consider
NM ¼ 0 and N ¼ 1. So far, the line element is given by

dS2 ¼ −dt̃2 − dt2 þHMNdXMdXN; ð2:19Þ

with HMN ¼ HMNðt̃; t; XÞ. The dependence in all the dual
coordinates is crucial to preserve the OðD;DÞ invariance.

Since we are considering N ¼ 1, the generalized dilaton is
not redefined and we get d̂ðX̂Þ ¼ dðt̃; t; XÞ.
We can easily decompose both the DFT Lagrangian

LDFT ¼ 1

8
HPQ

∂PHMN
∂QHMN −

1

8
∂0HMN

∂0HMN

−
1

8
∂̃
0HMN

∂̃
0HMN −

1

2
HPQ

∂QHMN
∂NHPM

þ 4HMN
∂Md∂Nd − 4∂0d∂0d − 4∂̃0d∂̃0d

− 2∂MHMN
∂Nd; ð2:20Þ

and the generalized curvatures
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R̂ ¼ 1

8
HPQ

∂PHMN
∂QHMN −

1

8
∂0HMN

∂0HMN

−
1

8
∂̃
0HMN

∂̃
0HMN −

1

2
HPQ

∂QHMN
∂NHPM

þ 4HMN
∂MNd − 4∂00d − 4∂̃00dþ 4∂MHMN

∂Nd

− 4HMN
∂Md∂Ndþ 4∂0d∂0dþ 4∂̃0d∂̃0d − ∂MNHMN;

ð2:21Þ

K̂00 ¼
1

8
∂0HKL

∂0HKL þ 2∂00d; ð2:22Þ

K̂00 ¼ 1

8
∂̃
0HKL

∂̃
0HKL þ 2∂̃00d; ð2:23Þ

K̂0
0 ¼ K̂0

0 ¼ 1

8
∂̃
0HKL

∂0HKL þ 2∂̃0∂0d; ð2:24Þ

and

K̂MN ¼ 1

8
∂MHKL

∂NHKL −
1

4
∂LHKL

∂KHMN þ 1

4
∂00HMN þ 1

4
∂̃
00HMN −

1

4
HLK

∂LKHMN −
1

2
∂0d∂0HMN −

1

2
∂̃
0d∂0HMN

þ 1

2
∂LdHLK

∂KHMN þ 2∂MNd −
1

2
∂ðMHKL

∂LHNÞK þ 1

2
∂LHKL

∂ðMHNÞK þ 1

2
HKL

∂LðMHNÞK − ∂LdHKL
∂ðMHNÞK

þ 1

2
∂LHKðM∂KHL

NÞ þ
1

2
H0ðM∂L∂̃0HL

NÞ þ
1

2
H0ðM∂L∂0HL

NÞ þ
1

2
HKðM∂LKHL

NÞ −
1

2
∂LdH0ðM∂0HL

NÞ

−
1

2
∂LdH0ðM∂̃0HL

NÞ −
1

2
∂LdHKðM∂KHL

NÞ; ð2:25Þ

where the rounded brackets in the indexes mean symmet-
rization and ∂MNð⋆Þ ¼ ∂Mð∂Nð⋆ÞÞ. The previous expres-
sions (2.21)–(2.25) are useful to obtain closed expressions
for rewriting cosmological solutions from the DFT frame-
work with matter. Moreover, considering a cosmological
principle [14], we can impose HMNðt̃; t; XÞ ¼ AMNðt̃; tÞ
and dðt̃; t; XÞ ¼ dðt̃; tÞ and the expressions for the curva-
tures drastically simplify. In this case, the remaining
symmetry is Oð1; 1Þ ×OðD − 1; D − 1Þ. We discuss about
this point in Sec. IV.

III. INCORPORATING MATTER
INTO DOUBLE FIELD THEORY

The original construction of DFT [2] is based on a
rewriting of the low energy limit of STwhere the invariance
underOðD;DÞ is accomplished before compactification. In
fact, the dynamics of the supergravity NS-NS vacuum
sector regarding the metric gμν, the b field and the dilaton ϕ
can be completely rewritten within the framework of DFT
and, particularly, in terms of OðD;DÞ multiplets. In this
case a generalized vacuum Einstein equation can be
constructed as

ĜM̂ N̂ ¼ 0; ð3:1Þ

where the lhs is given by the symmetric generalized
Einstein tensor

ĜM̂ N̂ ¼ −
1

2
ĤM̂ N̂R̂ − 2R̂M̂ N̂ ; ð3:2Þ

with R̂ and R̂M̂ N̂ given in Eqs. (2.10) and (2.11),
respectively. In order to get the full dynamics, Eq. (3.1)
must be complemented with the equation of motion coming

from the variation of the vacuum action (2.9) with respect to
the dilaton, namely R̂ ¼ 0 [4,23].
The inclusion of matter in the dynamics at the level of

supergravity is also well understood both through a varia-
tional principle from an specific matter action or through the
usual Einstein equation with a proper energy-momentum
tensor. While the relation between supergravity, matter, and
T duality was studied in several works, the generalized
Einstein equation in terms of OðD;DÞ multiplets was
constructed in [13] and takes the following form:

ĜM̂ N̂ ¼ T̂ M̂ N̂ ; ð3:3Þ

where T̂ M̂ N̂ is the generalized symmetric energy-momen-
tum tensor that incorporates the effects of matter into the
dynamics at the level of DFT.
The aim of this section is to find an explicit expression

for T̂ M̂ N̂ written only in terms of manifestly OðD;DÞ-
covariant quantities that recovers the well-known string
cosmology equations upon suitable parametrization. So
that we propose the inclusion of matter into the DFT
formulation based on kinetic theory extending the results
of [20], where the generalized energy-momentum tensor
was defined as the second moment of a generalized one-
particle distribution function.
In the first part of this section we give a brief review of

the phase space for the point particle in the double
geometry. Then we construct the generalized energy-
momentum tensor for a perfect fluid in the double geom-
etry. This proposal is given in terms of a generalized
velocity, which is consistently constrained. We present the
conservation laws for the generalized energy-momentum
tensor, which are given by the generalized Euler equations

ERIC LESCANO and NAHUEL MIRÓN-GRANESE PHYS. REV. D 107, 046016 (2023)

046016-6



and the generalized relativistic energy conservation
equation.

A. Double phase space and the point particle

The phase space of DFT can be constructed considering
an extension of the double geometry with coordinates

fX̂M̂; P̂M̂g; ð3:4Þ

where P̂M̂ is the generalized momentum. These coordinates
transform as vectors with respect to OðD;DÞ and satisfy

∂P̂M̂

∂X̂N̂
¼ 0: ð3:5Þ

The strong constraint must also be extended as

�
∂

∂P̂M̂
⋆
��

∂

∂P̂M̂

⋆
�

¼ ∂

∂P̂M̂

�
∂

∂P̂M̂

⋆
�

¼ 0; ð3:6Þ

�
∂

∂X̂M̂
⋆
��

∂

∂P̂M̂

⋆
�

¼ ∂

∂X̂M̂

�
∂

∂P̂M̂

⋆
�

¼ 0: ð3:7Þ

Equations (3.6) and (3.7) guarantee that the generalized
diffeomorphisms on the phase space,

δξ̂V
Q̂ðX̂; P̂Þ ¼ Lξ̂V

Q̂ðX̂; P̂Þ þ P̂N̂ ∂ξ̂M̂

∂X̂N̂

∂V̂Q̂ðX̂; P̂Þ
∂P̂M̂

− P̂N̂ ∂ξ̂N̂
∂X̂M̂

∂VQ̂ðX̂; P̂Þ
∂P̂M̂

; ð3:8Þ

satisfy a closure condition,

½δξ̂1 ; δξ̂2 �VM̂ðX̂; P̂Þ ¼ −δξ̂12V
M̂ðX̂; P̂Þ; ð3:9Þ

where ξ̂M12ðX̂Þ is given by the C bracket [Eq. (2.5)]. In (3.8)
each diffeomorphism parameter depends only on the space-

time coordinates, ξ̂M̂ ¼ ξ̂M̂ðX̂Þ, and VQ̂ðX̂; P̂Þ is a generic
vector on the double phase space.
The generalized energy-momentum tensor is a tensor in

the double space,

T̂ M̂ N̂ðX̂Þ ¼
Z

P̂M̂P̂N̂F̂e−2d̂d2DP̂; ð3:10Þ

where F̂ ¼ F̂ðX̂; P̂Þ is the one-particle generalized distri-
bution function. This function transforms as a phase space
scalar. Indeed the generalized energy-momentum tensor
fulfills a conservationlike equation

∇M̂T̂
M̂ N̂ ¼ 0; ð3:11Þ

as it is shown in [20] by computing the divergence of the
second moment of the generalized Boltzmann equation for
an equilibrium state.
On the other hand, the generalized momentum of a

particle encodes the physics of an ordinary D-dimensional
momentum pμ ¼ gμνpν so we need to impose a strong-
constraint-like equation,

P̂M̂η̂M̂ N̂P̂
N̂ ¼ 0; ð3:12Þ

in order to get the correct number of degrees of freedom
when parametrizing. Furthermore, we also impose a mass-
shell-like condition for the particle in the double geometry
given by

−P̂M̂ĤM̂ N̂P̂
N̂ ¼ m2: ð3:13Þ

In fact Eqs. (3.12) and (3.13) are analogous to the level
matching condition and the mass-squared operator in toroi-
dal compactifications [4]. Despite this analogy, the con-
straints for the DFT momentum presented here are
conceptually different. In otherwords, a generalizedmomen-
tum can be used to arrange the D-dimensional momentum
and winding modes for a closed string in a toroidal back-
ground, the generalized momentum being an OðD;D; ZÞ
multiplet [25] andEq. (3.13) reproducing the spectrum of the
massless states of the string.Here the generalizedmomentum
describes themomentumof a particle in the double geometry
and, therefore, it is an OðD;D; RÞ multiplet. Furthermore,
the parametrization of the phase-space diffeomorphism (3.8)

requires P̂M̂ ¼ ðp̃μ; pμÞ ¼ ð0; pμÞ, which is a solution of
(3.12) and it is also in agreement with the strong constraint
in the phase space (3.6) and (3.7). Additionally the gener-
alized velocity for the particle in the doublegeometry is given
by [21]

ÛM̂ ¼ DX̂M̂

Dτ
; ð3:14Þ

and τ is an affine parameter in the double geometry, which
reduces to the standard proper time upon parametrization.

Both the generalized momentum P̂M̂, evaluated on the
trajectory of a point particle, and the generalized velocity

ÛM̂ are vectors that indicate the same geometric direction in
the tangent space and then they must be proportional.
Choosing the proportionality constant is, in fact, defining
an specific affine parameter τ in (3.14). Indeed, we take the
relation

P̂M̂ ¼ mÛM̂ ¼ mDX̂M̂=Dτ; ð3:15Þ

where m is the invariant mass in (3.13), with the gener-
alized velocity parametrized as
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ÛM̂ ¼ ðũμ; uμÞ; ð3:16Þ

with ũμ a dual velocity. It is straightforward to rewrite the
properties of the generalized momentum in terms of the
generalized velocity as

ÛM̂Ĥ
M̂ N̂ÛN̂ ¼ −1 ð3:17Þ

ÛM̂η̂
M̂ N̂ÛN̂ ¼ 0: ð3:18Þ

In the next part of this section we take advantage of the
phase-space construction of DFTand we give a proposal for
the generalized energy-momentum tensor of a perfect fluid
in the double space. This is a simple proposal to effectively
describe matter contributions in DFT such as fermionic
[26] or Ramond-Ramond contributions [27], among others.

B. The perfect fluid in the double geometry

A relevant ingredient for including a perfect fluid in DFT
is the generalized symmetric energy-momentum tensor
T M̂ N̂ . In our case its index structure is given only by
the fundamental 2-index tensors of DFT, ĤM̂ N̂ and η̂M̂ N̂ ,
and the generalized velocity vector of the fluid ÛM̂, which
defines the temporal direction upon the split (2.12). Hence
considering every projection of the velocity separately
we have

T̂ M̂ N̂ ¼ b1UM̂UN̂ þ b2UM̂
U

N̂
þ b3ðUM̂UN̂

þ U
M̂
UN̂Þ

þ CĤM̂ N̂ þDη̂M̂ N̂ : ð3:19Þ

In this work we analyze a first proposal for the perfect fluid
and therefore we do not include nonvanishing off-diagonal
components in the temporal sector, and consequently we
consider D ¼ 0.
The expression (3.19) resembles the structure of the

ordinary energy-momentum tensor in GR, namely

Tμν ¼ ðpþ eÞuμuν þ pgμν; ð3:20Þ

which takes into account metric sources. However, its DFT
generalization T̂ M̂ N̂ , include not only generalized metric
sources but also contributions form the generalized dilaton
source [see Eq. (1.2)]. Furthermore, the velocity term
cannot be straightforwardly generalized due to the DFT
projections.
The dynamics of the perfect fluid in Riemannian

geometries is equivalent to the dynamics of a scalar field
[22]. Since the dynamics for the generalized scalar field is
given by a straightforward generalization of the Klein-
Gordon equation it is expected that the minimal proposal
for the generalized energy-momentum tensor of the perfect
fluid contains only nontrivial b3, thus including the mixed
projections present in the generalized energy-momentum

tensor of the generalized scalar field [see Eq. (4.24) in
[20]]. Therefore our proposal for the generalized energy-
momentum tensor reads

T̂ M̂ N̂ ¼ BðÛM̂ÛN̂
þ Û

M̂
ÛN̂Þ þ CĤM̂ N̂ ; ð3:21Þ

where we have neglected the b1 and b2. Each term of (3.21)
transforms covariantly under T duality through (2.2), so
these transformations mix the components of the energy-
momentum tensor as pointed out in [11]. The expression
(3.21) hence captures all these (T-dual) tensors in a unified
approach.
Using the space-time split formulation of DFT, the

generalized velocity ÛM̂ splits according to

ÛM̂ ¼ ðũ0; u0; UMÞ: ð3:22Þ

Furthermore, from the relations (3.17)–(3.18) we get

Û
M̂
ÛM̂ ¼ −

1

2
; ÛM̂Û

M̂ ¼ 1

2
: ð3:23Þ

Finally, we identify the quantities B and C in the gener-
alized energy-momentum tensor (3.21) as

B ¼ 2½ẽðXÞ þ p̃ðXÞ�;
C ¼ p̃ðXÞ: ð3:24Þ

Here we define ẽðXÞ and p̃ðXÞ as the generalized notions of
the energy density and pressure from a formal analogy
between (3.21) and the structure of the usual energy-
momentum tensor of the relativistic perfect fluid (3.20).
The tilded variables in these expressions may be related to
the ordinary energy density and pressure through a field
redefinition as we show in Sec. IV C.
On the other hand, we extend the DFT projectors in the

following way,

h̄M̂ N̂ ¼ PM̂ N̂ þ 2PM̂
P̂PN̂

Q̂ÛP̂ÛQ̂; ð3:25Þ

hM̂ N̂ ¼ PM̂ N̂ − 2PM̂
P̂PN̂

Q̂ÛP̂ÛQ̂: ð3:26Þ

The new projectors satisfy h̄M̂ P̂h̄
P̂
N̂ ¼ h̄M̂ N̂ and hM̂ P̂h

P̂
N̂ ¼

hM̂ N̂ . These projectors also satisfy the orthogonality
conditions

h̄M̂ N̂Û
M̂ ¼ 0; ð3:27Þ

hM̂ N̂Û
M̂ ¼ 0: ð3:28Þ

The conservation law for the generalized energy-
momentum tensor was deduced in [20] and takes the
form
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∇M̂ð2ðẽþ p̃ÞÛM̂ÛN̂ þ 2ðẽþ p̃ÞÛM̂ÛN̂ þ p̃ĤM̂ N̂Þ ¼ 0:

ð3:29Þ

We can extract the generalization of the energy conserva-
tion equation for a perfect fluid and the generalization of
the relativistic Euler equation in the double space from
(3.29). Indeed the Eq. (3.29) may be projected using
the generalized velocities, Û

N̂
; ÛN̂ and the projectors

h̄N̂ P̂; hN̂ P̂. Thus we get four equations, one per each type
of projection.
First we project (3.29) using the different projections of

the generalized velocity and we get

Û
N̂
∇M̂ð2ðẽþ p̃ÞÛM̂ÛN̂ þ 2ðẽþ p̃ÞÛM̂ÛN̂ þ p̃ĤM̂ N̂Þ ¼ 0;

ð3:30Þ

ÛN̂∇M̂ð2ðẽþ p̃ÞÛM̂ÛN̂ þ 2ðẽþ p̃ÞÛM̂ÛN̂ þ p̃ĤM̂ N̂Þ ¼ 0:

ð3:31Þ

Therefore, the generalized relativistic energy conservation
equation reads

− ðẽþ p̃Þ∇M̂Û
M̂ −UM̂∇M̂ðẽþ p̃Þ

þ 2ðẽþ p̃ÞÛ
N̂
ðÛM̂∇

M̂
UN̂ þ ÛM̂∇M̂U

N̂Þ ¼ −ÛM̂∇
M̂
p̃;

− ðẽþ p̃Þ∇
M̂
ÛM̂ −UM̂∇

M̂
ðẽþ p̃Þ

− 2ðẽþ p̃ÞÛN̂ðÛM̂∇M̂U
N̂ þ ÛM̂∇

M̂
UN̂Þ ¼ −ÛM̂∇M̂p̃:

On the other hand the projection (3.29) with h̄N̂ P̂ is

h̄N̂ P̂∇M̂ð2ðẽþ p̃ÞÛM̂ÛN̂ þ 2ðẽþ p̃ÞÛM̂ÛN̂ þ p̃ĤM̂ N̂Þ ¼ 0:

ð3:32Þ

Consequently, the generalized Euler equation projected
onto h̄N̂ P̂, written in a duality covariant way, is

2ðẽþ p̃Þh̄N̂ P̂ðÛM̂∇
M̂
ÛN̂ þ ÛM̂∇M̂Û

N̂Þ ¼ −h̄N̂ P̂∇N̂p̃:

ð3:33Þ

Analogously we obtain the complementary generalized
Euler equation projected with hN̂ P̂,

2ðẽþ p̃ÞhN̂ P̂ðÛM̂∇
M̂
ÛN̂ þ ÛM̂∇M̂Û

N̂Þ ¼ hN̂ P̂∇N̂p̃:

ð3:34Þ

So far we have described how to incorporate matter into
the standard formulation of DFT through the generalized
energy-momentum tensor for a perfect fluid. In the next

section we use this framework to explore the cosmological
ansatz with matter.

IV. COSMOLOGICAL ANSATZ

DFT is a powerful framework to rewrite the low energy
limit of ST in a T-duality covariant way, and, particularly, it
is possible to make contact with the vacuum solutions of
string cosmology using a suitable parametrization of the
DFT fields and parameters. The pioneer work [14] intro-
duced the cosmological equations for the dilaton and the
metric tensor that came from the generalized Einstein
tensor, while in [13] a generalized energy-momentum
tensor for the matter coupled to the double geometry
was included. Our main goal in this work is to achieve
the manifestly covariant system of equations that couples
the vacuum fields of the double geometry to matter using a
cosmological ansatz at the DFT level. Indeed, in this
section we elaborate on a common cosmological DFT
framework considering the matter source as a perfect fluid
through (3.21).
We first perform a space-time split of all the multiplets

and then we derive the full dynamics regarding the matter
and vacuum DFT fields (4.11). Second, we parametrize the
vacuum fields as usual and write down the parametrized
cosmological equations including gμν, ϕ, and b-field
contributions (4.16). In addition we find a parametrization
of the DFT matter description, (4.22) and (4.23), which is
compatible with the actual pressure and energy density in
the string cosmology limit [6].

A. Space-time split DFT with matter

Considering the space-time split (2.17) with NM ¼ 0,
N ¼ 1 and a cosmological principle for the fundamental
fields, namely HMN ¼ AMNðt̃; tÞ and d ¼ dðt̃; tÞ, it is
straightforward to decompose the generalized Ricci scalar

R̂ ¼ −
1

8
∂0AMN

∂0AMN −
1

8
∂̃
0AMN

∂̃
0AMN − 4∂00d

− 4∂̃00dþ 4∂0d∂0dþ 4∂̃0d∂̃0d; ð4:1Þ

the nonvanishing components of the generalized Ricci
tensor

R̂00 ¼ −R̂00 ¼ −
1

2
K̂00 þ 1

2
K̂00;

R̂MN ¼ PM
PK̂PQP̄Q

N þ P̄M
PK̂PQPQ

N; ð4:2Þ

and the nonvanishing components of KM̂ N̂

K̂00 ¼
1

8
∂0AKL

∂0AKL þ 2∂00d; ð4:3Þ

K̂00 ¼ 1

8
∂̃
0AKL

∂̃
0AKL þ 2∂̃00d; ð4:4Þ
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K̂0
0 ¼ K̂0

0 ¼
1

8
∂0AKL

∂̃
0AKL; ð4:5Þ

K̂MN ¼ 1

4
∂00AMN þ 1

4
∂̃
00AMN −

1

2
∂0d∂0AMN −

1

2
∂̃
0d∂̃0AMN;

ð4:6Þ

with (2.14) already imposed.
On the other hand, we consider that the matter is given

by a perfect fluid in the double space, i.e.,

T̂ M̂N̂¼2ðẽþp̃ÞÛM̂ÛN̂þ2ðẽþp̃ÞÛM̂ÛN̂þp̃ĤM̂N̂ : ð4:7Þ

We choose a rest frame indicating the temporal direc-
tion such that ÛM̂ ¼ ð0; 1; 0Þ and, therefore, the nonvanish-
ing components of the generalized energy-momentum
tensor are

T̂ 00 ¼ ðẽþ p̃Þ − p̃; ð4:8Þ

T̂ 00 ¼ −ðẽþ p̃Þ − p̃; ð4:9Þ

T̂ MN ¼ p̃AMN: ð4:10Þ

From (3.3), we get

−p̃ ¼ 2ð∂0dÞ2 − 2∂00d −
1

16
∂0AMN

∂0AMN þ ð∂0 ↔ ∂̃
0Þ;

1

2
ðẽþ p̃Þ ¼ ∂00dþ 1

16
∂0AKL

∂0AKL − ð∂0 ↔ ∂̃
0Þ;

0 ¼ −PM
P

�
1

4
∂00APQ −

1

2
∂0d∂0APQ þ ð∂0 ↔ ∂̃

0Þ
�
P̄Q

N þ ðP ↔ P̄Þ:

ð4:11Þ

These are the space-time split DFTequations that can be used
to determine cosmological solutions with matter. Strictly
speaking, the expressions (4.11) are combinations of the
different components of the generalized Einstein equation.

B. Parametrization

In this section we parametrize all the fundamental
quantities in order to analyze the dynamics of the usual
supergravity fields. Indeed the parametrization of the
OðD − 1; D − 1Þ generalized metric reads

AMN ¼ 1

a2

�
δij −δikbkj

bikδkj a4δij − bikδklblj

�
; ð4:12Þ

where the spatial indices are i; j ¼ 1;…; D − 1. Every
component only depends on the ordinary time t due to
the solution to the strong constraint ∂̃0 ¼ 0. Naturally, it is
possible to inspect the dual solution imposing ∂0 ¼ 0, or
any other T-dual combination. The parametrization of the
generalized dilaton is given by

e−2d ¼ aD−1e−2ϕ; ð4:13Þ

and, consequently, d ¼ ϕ − ðD−1Þ
2

lnðaÞ. The spatial DFT
projectors reads

PMN ¼1

2
ðηMN−AMNÞ; P̄MN ¼1

2
ðηMNþAMNÞ; ð4:14Þ

while

ηMN ¼
�

0 δij

δji 0

�
: ð4:15Þ

Applying the expressions (4.12)–(4.15) to the system
(4.11) is a straightforward computation, but breaking the
duality group in terms of GlðDÞ representations generates
large expressions that are suitable to manage with a
software for symbolic algebraic tensor manipulation
[28]. Using this code, the parametrization of the dynamical
DFT cosmological equations is given by

−2p̃ ¼ 2ðD − 1Þ _H þDðD − 1ÞH2 − 4ϕ̈þ 4 _ϕ2 − 4ðD − 1ÞH _ϕþ 1

4a4
δijδkl _bik _bjl;

ẽþ p̃ ¼ 2ϕ̈ − ðD − 1Þð _H þH2Þ − 1

4a4
δijδkl _bik _bjl;

0 ¼ ð _H þ ðD − 1ÞH2 − 2H _ϕÞδij þ 1

2a4
δikδjlδmn _bkm _bln;

0 ¼ δjlb̈il þ ½ðD − 5ÞH − 2 _ϕ�δjk _bik;

ð4:16Þ
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where H ¼ _a=a, and we keep the same notation for the
pressure and the energy density at this supergravity level.
The equations in (4.16) describe the family of cosmologies
that can be rewritten in a DFT framework using the
generalized Einstein equation (3.3) with the generalized
energy-momentum tensor (4.7) representing matter. When
ẽ ¼ 0, p̃ ¼ 0, and bij ¼ 0, the vacuum solutions exactly
reproduces the results of [14]. The relation between this
model and string cosmologies with matter is analyzed in
Sec. IV C.

C. From DFT to string cosmology

Here we analyze the relation between the DFT cosmol-
ogy with matter and string cosmologies. One possible
string cosmology scenario that incorporates matter is based
on the following action

SSC¼
1

2

Z
dDx

ffiffiffiffiffiffiffiffiffi
−jgj

p
e−2ϕ½Rþ4ð∇ϕÞ2�þSM;

¼
Z

dDx
ffiffiffiffiffiffiffiffiffi
−jgj

p
e−2ϕ

�
1

2
ðRþ4ð∇ϕÞ2ÞþLmat

�
; ð4:17Þ

whose fundamental gravitational fields are the metric tensor
gμν and the dilaton ϕ, while bij ¼ 0. Moreover R is the
usual Ricci scalar and SM is the action term of matter.
The equations of motion for the gravitational sector come
from the variation of the action with respect to the metric
tensor δgSSC ¼ 0 and to the dilaton δϕSSC ¼ 0. In both
variations the matter term acts as a source, indeed the
source δgSM is related to the energy-momentum tensor Tμν

and, analogously, a dilaton charge (or a dilaton source) σ is
given by

σ ¼ −1ffiffiffiffiffiffi−gp δSM
δϕ

¼ −e−2ϕ
�
δLmat

δϕ
− 2Lmat

�
: ð4:18Þ

Regarding the usual cosmological ansatz, the equations
of motion in this string cosmology framework with matter
sources become [6]

− e2ϕσ ¼ 2ðD − 1Þ _H þDðD − 1ÞH2 − 4ϕ̈þ 4 _ϕ2

− 4ðD − 1ÞH _ϕ; ð4:19Þ

−e2ϕ
�
eþ σ

2

�
¼ ðD − 1Þð _H þH2Þ − 2ϕ̈; ð4:20Þ

e2ϕ
�
p −

σ

2

�
¼ _H þ ðD − 1ÞH2 − 2H _ϕ; ð4:21Þ

where e and p represent the usual energy density and
pressure of the perfect fluid.

It turns out that these equations can be obtained from our
model of DFT with matter [Eqs. (3.3) and (4.7)] when

p̃ ¼ e2ϕp; ð4:22Þ

ẽ ¼ e2ϕe; ð4:23Þ

and bij ¼ 0. In this case the consistency between both
approaches forces

σ ¼ 2p: ð4:24Þ

In consequence the proposal (4.7) allows one to write string
cosmologies in which their dilaton charge is fixed accord-
ing to (4.24). From the point of view of the action principle,
the interplay between the dilaton charge and the variables
of the fluid is expected since the generalized dilaton is a
fundamental field which takes part of the DFT measure and
indeed guarantees the invariance of the action under
generalized diffeomorphisms. Another equivalent way to
understand this phenomena is that the generalized energy-

momentum tensor, T̂ M̂ N̂ , incorporates both the dilaton and
metric sources contributions at once [see e.g., Eq. (1.22)
in [20]].

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this work we have extended the standard vacuum DFT
construction in order to include matter through a general-
ized energy-momentum tensor, which mimics the dynamics
of a perfect fluid in the double geometry. We propose an
ansatz for this tensor (3.21) in terms of a generalized notion
of pressure, energy density, and velocity, the latter satisfy-
ing a strong constraintlike equation and a mass-shell-like
condition (3.17)–(3.18). We explicitly derive the conser-
vation laws for this tensor (3.32) and (3.33)–(3.34), which
enable us the possibility to explore aspects of hydro-
dynamics at the DFT level.
We perform a space-time split where the dependence of

the fundamental fields over the dual coordinates is pre-
served. We impose that the generalized shift vector and the
generalized lapse function satisfy NM ¼ 0 and N ¼ 1,
respectively, while the generalized metric and the gener-
alized dilaton satisfy a cosmological ansatz according to
HMN ¼ AMNðt̃; tÞ and d ¼ dðt̃; tÞ. This framework pre-
serves the duality group Oð1; 1Þ ×OðD − 1; D − 1Þ and
allows us to rewrite string cosmology equations in a duality
covariant language as shown in (4.11). Interestingly
enough, the matter contributions do not affect all the
components of the generalized Einstein equation, and the
DFT cosmologies can be directly related to string cosmol-
ogies upon field redefinitions of p̃ and ẽ according to (4.22)
and (4.23) when bij ¼ 0. In a more general case, the present
construction (4.11) allows one to obtain a family of duality
covariant b-field contributions to string cosmology as
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in (4.16). The results of this work pave the way for the
understanding of the effective inclusion of statistical matter
in DFT with applications to ST.
We finish this section with a list of possible follow-up

projects:
(1) Duality invariant distribution function: Making

use of the construction given in [20] and considering
a generalization of the Maxwell-Juttner distribution
function, the generalized energy-momentum tensor
for the perfect fluid might be computed from
a kinetic approach. This is a broad line of inves-
tigation since the duality invariant distribution func-
tion would allow the inclusion of thermodynamic
concepts in the double geometry such as the gen-
eralized entropy current or the study of equilibrium
states.

(2) Beyond perfect fluids in DFT: The inclusion
of a generalized entropy current from the phase
space formulation should be the next step to
interpret duality transformations on the generalized

energy-momentum tensor as imperfect terms. At
the level of the low energy limit of string theory,
this issue was studied in [11].

(3) α0 corrections: A systematic way to introduce these
corrections in a DFT background was given in [19].
The corrections are related to higher-derivative terms
that deform the generalized Einstein tensor when
matter terms are neglected. It would be interesting to
test this procedure when matter deformations are
taken into account in the double geometry. This
might bring new perspectives for string cosmology.
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