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Decidualization is considered a distinctive feature of eutherian pregnancy, and has
appeared during evolution along with the development of invasive forms of
placentation, as the endotheliochorial placenta. Although decidualization is not
massive in carnivores, as it is in most species developing hemochorial placentas,
isolated or grouped cells regarded as decidual have been documented and
characterized, mainly in bitches and queens. For the majority of the remaining
species of the order, data in the bibliography are fragmentary. In this article,
general morphological aspects of decidual stromal cells (DSCs), their time of
appearance and lasting, data about the expression of cytoskeletal proteins and
molecules considered asmarkers of decidualization were reviewed. From the data
reviewed, it follows that carnivoran DSCs take part either in the secretion of
progesterone, prostaglandins, relaxin, among other substances, or at least in the
signaling pathways triggered by them. Beyond their physiological roles, some of
those molecules are already being used, or are yet under study, for the non-
invasive endocrine monitoring and reproductive control of domestic and wild
carnivores. Only insulin-like growth factor binding protein 1, among the main
decidual markers, has been undoubtedly demonstrated in both species. Laminin,
on the contrary, was found only in feline DSCs, and prolactin was preliminary
reported in dogs and cats. Prolactin receptor, on the other hand, was found in both
species. While canine DSCs are the only placental cell type expressing the nuclear
progesterone receptor (PGR), that receptor has not been demonstrated neither in
feline DSCs, nor in any other cell in the queen placenta, although the use of PGR
blockers leads to abortion. Against this background, and from the data gathered so
far, it is unquestionable that DSCs in carnivorans do play a pivotal role in placental
development and health. The knowledge about placental physiology is critical for
medical care and breedingmanagement, primarily in domestic carnivores; it is also
absolutely crucial for a conservation approach in the management of endangered
carnivore species.
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1 Introduction

Placentation in mammals appeared as a single event, which occurred before the
divergence of Theria into Metatheria and Eutheria. The tight contact between maternal
tissues and fetal trophoblast (TB), however, is only typical of the eutherian line (Wagner
et al., 2014); morphological and molecular studies carried out in the last decades agree on the
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invasive nature of eutherian basal placenta (Carter, 2001; Wildman
et al., 2006; Mess and Carter, 2007). In fact, according to the most
recent transcriptomic analysis, it is more likely that it was
hemochorial (Mika et al., 2022). As it is reviewed in Wagner
et al. (2014), along with an invasive placentation, the origin of
decidual cells -and the early recognition of pregnancy with long-
lasting luteal progesterone production-were the three evolutionary
innovations already present in stem eutherians. Development of
decidual cells is, therefore, a distinct feature of eutherian pregnancy,
absent in placental marsupials and Squamata (Wagner et al., 2014).

The transcriptome of eutherian endometrial stromal cells, when
compared to that in marsupials and reptiles, shows a loss or lower
expression of genes involved in inflammation, immune response,
and resistance to tissue invasion; conversely, genes related to cell
cycle progression, proliferation, and insensitivity to estrogens at the
beginning of pregnancy show higher expression in eutherians (Kin
et al., 2016; Marinić et al., 2021). Those findings are in agreement
with the proven roles of decidual cells in the regulation of the local
immune response and the prevention of excessive trophoblast
invasion (Chavan et al., 2016). Although an inflammatory
process occurs in the endometrium of all viviparous mammals at
implantation, the proinflammatory cytokine IL17 was not found at
that stage in the uterus of any of the three major eutherian clades,
unlike what was demonstrated in marsupials. This cytokine recruits
neutrophils to the area where it is expressed, among other functions
(Chavan et al., 2021).

Although decidualization is triggered by the presence of the
conceptus, it can also occur in the non-pregnant uterus in
catarrhines primates, some chiropters, the elephant shrew (Emera
et al., 2012b) and the spiny mouse (Bellofiore et al., 2021). This
pregnancy-independent decidualization occurs during the luteal
phase of the cycle and leads ultimately to the recurring partial
shedding of the endometrium, that is, to menstruation (Jarrell,
2018).

Considering the association between trophoblast
invasiveness and decidualization of the stroma, it is
understandable that the latter does not usually occur in
species with non-invasive placentas. These variants appeared
later in the evolution of eutherian mammals, along with
pregnancy lengthening and birth of precocial offspring (Mess
and Carter, 2006). In ungulates and cetaceans, without close
contact at the maternal-fetal interface, decidual cells have not
been found (Wooding and Burton, 2008), to such an extent that
gene expression of Bos taurus’ uterine fibroblasts is more
comparable to that in marsupials than to gene expression in
the eutherians with invasive placentas (Kin et al., 2016). It was
considered for some time that the mare was an exception, based
on Amoroso´s references to the endometrial cups as being
composed of decidual cells (Amoroso, 1950; Amoroso, 1959).
Given that, W.R. Allen wrongly concluded that the equine
chorionic gonadotropin (eCG) produced by the cups was
maternal, despite it being named as “chorionic”; in a later
work of his own, the trophoblastic nature of those cells, and,
therefore, the fetal origin of eCG, was demonstrated (reviewed in
Antczak et al., 2013). In the ewe, during placentation, the uterine
luminal epithelium is eroded and fuses with trophectoderm cells.
This higher degree of invasiveness as compared to the remaining
ungulates is associated with differentiation of endometrial

stromal cells, which has been regarded as a decidualization-
like process (Johnson et al., 2003).

The expressions “decidua” and “decidual”, used in comparative
placental studies for more than 150 years, have given rise to
misinterpretations, as they may describe species, placentas,
specific regions in the endometrium, as well as cells.
Furthermore, the discovery of several types of uterine stromal
cells (which have not been studied in species with
endotheliochorial placentas so far) leads to a confusing
designation of the endometrial cells undergoing decidualization
(Ruiz-Magaña et al., 2022). The term “decidual” was used, since
the XIX century, to refer to the tissues shed during birth in many
eutherians, and led to an obstetric classification of placentas into
decidual and non-decidual ones (Huxley, 1864). This decidual tissue
is the modified endometrial stroma (Wooding and Burton, 2008).

Decidualization currently refers to a hormone-dependent
process by which endometrial stromal fibroblasts differentiate
into the so-called decidual stromal cells (DSCs) (Wooding and
Burton, 2008; Chavan et al., 2016). This process involves
reprogramming of endometrial fibroblasts gene expression with
epigenetic modifications (Tamura et al., 2014). It leads to the
activation of the progesterone receptor pathway, and a PGE2-
dependent activation of PKA pathway (Erkenbrack et al., 2018).
This genetic reprogramming generates morphological and
functional changes such as larger size, acquisition of a round
shape, ability to store glycogen and lipids (Chavan et al., 2016),
as well as the expression of different substances considered as
decidual markers, such as prolactin receptor and IGFBP-1 (Dunn
et al., 2003; Aghajanova et al., 2010). In addition to the
transformation of endometrial fibroblasts into decidual cells,
modification of the extracellular matrix (ECM), vascularization,
and in some species, appearance of uterine natural killer cells,
also occur (Wooding and Burton, 2008).

DSCs have been related not only to the successful establishment
of the pregnancy but also to its maintenance over time; however, in
many species much of pregnancy takes place with little or no DSCs.
Several results support the hypothesis that the decidualization that
develops at implantation and lasts only early pregnancy is the basal
state in eutherians, as it has been reported in species of Xenarthra
(Dasypus: Chavan and Wagner, 2016; Chavan, 2018), Afrotheria
(Procavia: Thursby-Pelham, 1925; Chavan et al., 2016; Echinops:
Carter et al., 2004; 2005) and Boreoeutheria (hedgehog: Chavan
et al., 2016). In these species, there is a limited decidual reaction
mainly during implantation, the decidual tissue gradually thins out
and it disappears at advanced pregnancy stages. In some
Boreoeutherians, decidualization is prolonged during gestation,
although decidual cell number frequently decreases along
pregnancy (Chavan et al., 2021).

Endotheliochorial placentas are typical of species grouped in the
three abovementioned clades. In regard to decidualization in
endotheliochorial placentas, the presence of decidual cells as a
state of the character “differentiation of endometrial stroma” is
considered typical of several genera developing this type of
maternal-fetal interface. For instance, it was reported in Sorex,
Suncus and Talpa (shrews and moles; Boreoeutheria,
Laurasiatheria, Eulipotyphla), Bradypus (sloths; Xenarthra),
Micropotamogale and Trichechus (otter shrews and manatee,
respectively; Afrotheria) (Mess and Carter, 2006; Carter and
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Enders, 2010; Ferner et al., 2014). Despite this state was not reported
as typical of any genera comprised in Carnivora (Carter and Mess,
2017), isolated or grouped cells regarded as decidual have been
documented and characterized in carnivores (citations registered in
section 2).

Most carnivores develop an endotheliochorial interface in their
definitive placenta (with or without syncytial trophoblast), the
exception being the hyena (Crocuta crocuta) that has a
hemochorial placenta with decidual cells. However, early stages
of placental formation have not been studied; it is not known
whether or not the hemochorial condition is preceded by an
endotheliochorial condition (Enders et al., 2006; Wooding and
Burton, 2008).

Decades ago, Mossman stated that, as nothing was known about
the function of these cells in carnivores and they were not in the
position of the “typical” decidua, naming them “decidual” was
unfortunate and they must be regarded as “maternal giant cells”
(Mossman, 1987). That expression does not reflect the aspect of
decidual cells in bitches, which are not giant; besides, vast knowledge
has been gained so as to currently refer to them as decidual stromal
cells (DSCs), which is the acronym chosen in this review.

2 DSCs in Carnivora

2.1 Cytoskeletal proteins and origin of DSCs

Several works dealt with aspects of the cytoskeleton phenotype
of DSCs; they contributed to the knowledge of both their origin
and the value of certain cytoskeletal molecules as decidual markers.
Despite their epithelioid appearance, decidual cells are derived
from mesenchymal cells of the uterine stroma. As such, they are
negative for cytokeratins and positive for vimentin. It was reported
that vimentin expression, related to total protein expression,
remains unaltered during decidualization in rats (Glasser and
Julian, 1986); however, a change in the packaging and position
of the vimentin intermediate filaments was observed in mice
(Oliveira et al., 2000). Although the protein alpha smooth
muscle actin (α-SMA) was considered a marker of human
decidual cells (Oliver et al., 1999), recently it was stated that its
gene (ACTA2) is expressed in endometrial stromal fibroblasts in a
pre-DSC state, named by the authors as “activated endometrial
stromal fibroblasts”, rather than in a canonical decidual state
(Stadtmauer and Wagner, 2022).

Desmin protein was detected in DSCs in mice, rats, humans,
among others. It has been shown that desmin is selectively induced
in the rat decidualizing stroma (and it is copolymerized with
vimentin within the same intermediate filaments) compared to
its hormonally sensitized but yet non-decidualized counterpart,
where it was not -or barely-detected (Glasser and Julian, 1986).
In addition to humans and rodents, co-expression of vimentin and
desmin in intermediate filaments was also found in the bat Carollia
perspicillata (Rasweiler et al., 2000).

Ever since then, desmin has been widely reported as a marker for
the decidual differentiation in other rodents, bats, and humans
(Oliveira et al., 2000; Rasweiler et al., 2000). Can et al. (1995)
regarded desmin expression in human decidual cells as
“temporary”, attributing this early switch-on of desmin synthesis

to the structural plasticity of stromal cells during decidualization. He
stated that desmin protein expression gradually decreases (Can et al.,
1995); the same tendency was verified in mice and rats, to such an
extent that in advanced pregnancy desmin could not be detected
(Glasser and Julian, 1986; Oliveira et al., 2000).

Over the years, stromal cell identity and origin during
decidualization have been discussed, and the use of different
terms to refer to the same cells resulted in considerable
misunderstandings (Ruiz-Magaña et al., 2022). The existence of
stromal resident progenitor cells in the perivascular niche of the
human endometrium has been documented years ago and
extensively studied (revised in Gargett et al., 2016). Later, an
equivalent cell population in mice was identified and
characterized; besides, different subpopulations of endometrial
fibroblasts and perivascular cells were described in this species
(Kirkwood et al., 2021). Several features of decidual cells, such as
expression of α-SMA, in addition to their contractile capacity, led to
consider that they were related to myofibroblasts and pericytes
(Oliver et al., 1999; Muñoz-Fernández et al., 2018; Ruiz-Magaña
et al., 2022). Whereas α-SMA presence is the defining property of
myofibroblasts in all tissue types, and thus a reliable marker of
myofibroblast differentiation (Watsky et al., 2010), desmin is not a
feature of these cells (Eyden, 2008). On the other hand, pericytes
express vimentin, α-SMA and desmin, although there may be a shift
between desmin (+) and (−) cells, and some heterogeneity among

FIGURE 1
Decidual stromal cells (DSCs) in the canine placenta. Histological
(HE) and immunohistochemical staining. (A, B). HE. (A) 10X; (B) 40X.
(C). Vimentin (Clone V9, RTU, Code: IS630. Dako) (10X). (D). Desmin
(Clone D33, RTU, Code: IS606. Dako) (100X). (E). α-SMA (Code:
NCL-L-SMA. Novocastra) (40X). (F). IGFBP-1 (40X) (Code: PAAH1.
Novozimes GroPep Ltd.). Black arrowheads: DSCs. IHC. DAB.
Hernández et al., 2017.
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subtypes of pericytes (reviewed in Zhu et al., 2022). As many
similarities have been found between endometrial pericytes and
predecidual stromal cells in humans, they are proposed to be the
same cell (Muñoz-Fernández et al., 2018).

The mesenchymal origin of the decidual cells is also confirmed
in carnivores; as in other species, DSCs of bitches and queens are
negative for cytokeratins and positive for vimentin, both in vivo and
in vitro (Walter and Schönkypi, 2006; Fernández et al., 2014; Kautz
et al., 2015; Schäfer-Somi et al., 2015; Graubner et al., 2017) (Figures
1, 3A). This basic profile is certainly shared by the non-decidualized
endometrial stromal cells. The epithelioid appearance, and the
upregulation of some ECM or cell-to-cell adhesion proteins
in vitro DSCs might indicate some degree of mesenchymal-
epithelial transition of these cells, although retaining the
cytokeratin-vimentin pattern of mesenchymal lineage (Graubner
et al., 2020; Kazemian et al., 2022; Tavares Pereira et al., 2022). The
protein α-SMA is not expressed or only weakly present in uterine
stromal cells of non-pregnant bitches and in pregnant ones at the
preimplantation stage. Following placentation, or in vitro
decidualization, its expression markedly increases (Kautz et al.,
2015; Graubner et al., 2018). In the cat, α-SMA has been
detected in decidualized cells both in the labyrinth and in the
junctional zone (Walter and Schönkypl, 2006; Hernández et al.,
2017) (Figures 1E, 3B–D). In minks and Southern elephant seals
perivascular cells share this pattern (see 2.2) (Winther H et al., 1999;
Diessler et al., 2020). DSCs of the bitch were also positive for desmin
(Vermeirsch et al., 2000; Hernández et al., 2017) (Figure 1), whereas
in the queen DSCs were negative, at least in >45 days post coitum
(dpc) placentas (Fernández et al., 2014). In view of the dynamics of
desmin staining in humans and rodents, this result in late placentas
might obey to a decrease in desmin expression with time (Fernández
et al., 2014). Future studies may determine whether or not DSCs are
related to pericytes in these species.

2.2 Decidual cells in Caniformia

Within this suborder, microscopical studies of the placenta of
seven families have been published. There are reports on Ailuridae
(Benirschke, 2011), Mustelidae (Rau, 1925; Wislocki and Amoroso,
1956; Lawn AM and Chiquoine AD, 1965; Pfarrer et al., 1999;
Winther H et al., 1999; Lindeberg, 2008), Otariidae and Phocidae
(Harrison and Young, 1966; Sinha and Erickson, 1974; Diessler et al.,
2020; Gomez Castro et al., 2022b; Hernández et al., 2022),
Procyonidae (Creed and Biggers, 1963; Favaron et al., 2014),
Ursidae (Rau, 1925; Young, 1969; Wimsatt, 1974), and Canidae
(Kehrer, 1973; Zybina et al., 2001; main citations about Canis lupus
familiaris are registered in Section 2.2.1).

Only in the American mink (Neogale vison, formerly Mustela
vison) and in the Southern elephant seal (Mirounga leonina),
vimentin and α-SMA positive periendothelial cells have been
reported (Winther H et al., 1999; Diessler et al., 2020).

In microscopic descriptions of Ictonyx striatus (striped polecat,
formerly Zorrilla striata), Procyon Lotor (raccoon), Gulo gulo luscus
(wolverine), Ursus americanus and Ursus arctos (American black
bear and brown bear, respectively), and in an ultrastructural study in
Mustela putorius furo (ferret), it is explicitly stated that their
placentas lack giant cells as those found in cats (Rau, 1925;

Wislocki and Amoroso, 1956; Creed and Biggers, 1963; Lawn
AM and Chiquoine AD, 1965; Wimsatt, 1974). Many other
articles do not mention decidual cells whatsoever.

Leaving aside Canis lupus familiaris, and among other canid
species, there are only a few reports of placental microscopical
features. Therefore, in this review we use expressions such as
“canine placenta” to refer specifically to the placenta of the bitch.
In the silver fox, Zybina et al. mentioned a few round stromal cells to
which they referred as “probably decidual” (Zybina et al., 2001).
Numerous giant cells compressed between the chorionic leaves were
described in a fox (Kehrer, 1973).

2.2.1 DSCs in Canis lupus familiaris
2.2.1.1 Discovery and characterization

Although the functional differentiation of the bitch uterus
following implantation has been recognized around the mid XIX
century, the actual finding of decidual cells occurred many years
later. Wynn and Corbett, in 1969, affirmed after an ultrastructural
study that giant cells of endometrial origin were absent in the canine
placenta (Wynn and Corbett, 1969). Just a few months after, John
Anderson, rectifying a preliminary study of his own authorship,
mentioned that dog and cats were similar regarding the persistence
of maternal decidual cells, a finding that he characterized as
“unsuspected” (Anderson, 1966; Anderson, 1969). However, he
also stated that they could not be account unequivocally as
maternal, and that they were impossible to identify in paraffin
sections. For more than 30 years after Anderson’s work, only rare
mentions of decidual cells, or inconclusive findings concerned with
their existence in this species, were published. Afterward, more
advanced techniques and growing knowledge allowed Vermeirsch
et al. (2000) to report that those cells could be referred to as decidual
cells. It was not until a little over the last decade when those cells
were undoubtedly evidenced at a structural level and characterized
in regard to several morphological and biochemical aspects,
described below. Also, physiological implications of those
observations began to be elucidated.

Along with the data obtained from immunohistochemical and
molecular analyses of placental tissue in vivo, a substantial
contribution to the knowledge about canine DSCs comes from
the in vitro decidualization of canine uterine stromal cells (Kautz
et al., 2015), and from the establishment of an immortalized cell line
from those cells (Graubner et al., 2017).

In an ultrastructural study, decidual cells were reported as
present and mitotically active as early as 16 dpc, before
placentation takes place (Barrau et al., 1975). In HE stained
specimens, morphological differentiation of stromal endometrial
cells (namely, rounding and enlarging) was reported from 17 dpc,
being the changes in genetic expression induced by free-floating
embryos (Graubner et al., 2017).

Besides the identification of DSCs and the characterization
by their cytoskeletal proteins, many other molecules have been
proven to be strongly induced or, at least, upregulated in canine
DSCs, compared to their precursors. Some of them are hormone
receptors, as prolactin receptor (PRLR), progesterone receptor
(PGR), estrogen receptor α (ERα), and oxytocin receptor
(OTR). Other molecules detected in DSCs are insulin-like
growth factors (IGFs), IGF binding protein 1 (IGFBP-1), and
PTGES (Kautz et al., 2014; Kautz et al., 2015; Graubner et al.,
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TABLE 1 Proteins detected in carnivoran DSCs in vivo.

Canine DSCs Feline DSCs

Cytokeratins —a —

Vimentin +b +

α-SMA +b +

Desmin +c —

PRL +d +d

PRLR + +d

PGR + —

ERα + —

OTR +

RLN — +e

RXFP2 +

GnRH-R -/weak

GR/NR3C1 -/weak

OXA — +

OX1R +

OX2R — —

Leptin/LEPR weak +

PTGS2 -/weak +

PGFS +

IGFs +

IGFBP-1 + +

EGF/EGFR +

TGFα +

VEGF-A/R-2 +d

e-cadherin —

β-catenin —

FN1 weak

TIMP2 weak

Laminin — +

MMP2 +

MMP1,9,13 —

Galectins Gal 1, 3, 9 +

transporters: GLUT1/3; AQP2/AQP8 —

α-SMA, smooth muscle actin; AQPs, aquaporins; EGF/EGFR, epidermal growth factor/receptor; ERα, estrogen receptor alpha; FN1, fibronectin; GLUT, glucose transporter; GnRH,

gonadotropin releasing hormone; GR/NR3C1, glucocorticoid receptor; IGFBP-1, IGF binding protein 1; IGFs, insulin-like growth factors; LEPR, leptin receptor; MMPs, metalloproteinases;

OTR, oxytocin receptor; OX1R, orexin type 1 receptor; OX2R, orexin type 2 receptor; OXA, orexin A; PGR, progesterone receptor; PRL, prolactin; PRLR, prolactin receptor; PGFS,

prostaglandin F2α—synthase; PTGES, prostaglandin E synthase; RLN, relaxin; RXFP2, the relaxin family peptide receptor 2; TGFα, transforming growth factor alpha; TIMP2, tissue inhibitor of

metalloproteinase 2; VEGF-A/R-2, vascular endothelial growth factor A and receptor 2.
aAlso negative in Southern elephants.
bAlso positive in American minks and Southern elephants.
cNegative in Southern elephants.
dPreliminary study.
eAlso positive in Iberian lynxes.
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2017; Hernández et al., 2017) (Figure 1F). Conversely, although
targeted to the canine placenta as a whole, other substances were
not significantly labeled in decidual cells. That is the case of
prolactin (PRL), vascular endothelial growth factor A (VEGF-
A), gonadotropin releasing hormone receptor (GnRH-R),
glucocorticoid receptor (GR/NR3C1), orexin A (OXA),
orexin type 2 receptor (OX2R), leptin, e-cadherin, β-catenin,
FN1, TIMP2 (Dall’Aglio et al., 2014; Kautz et al., 2014; Kautz
et al., 2015; Balogh et al., 2015; Schäfer-Somi et al., 2015; Gram
et al., 2016; Payan-Carreira et al., 2016; Graubner et al., 2018)
(Table 1).

Trophoblast and maternal decidual cells are embedded in the
ECM at the maternal-fetal interface, and ECM might be involved
in decidual cell avoidance of trophoblast invasion. It has been
proven that murine and human decidual cells in vitro secrete
ECM components as entactin, fibronectin, type IV collagen,
heparan sulphate, and laminin, being the last one a decidual
marker (Wewer et al., 1986; Dunn et al., 2003). Regarding canine
DSCs, some molecules targeted to them as FN-1 or TIMP2 were
only weakly labeled, and laminin could not be evidenced
(Graubner et al., 2018). ECM1, COL4A1 transcripts abundance
was increased during in vitro decidualization; that rise was
blocked by the action of antigestagens (Kazemian et al., 2022;
Tavares Pereira et al., 2022).

From the abovementioned findings, some speculations have
been made and some uncertainties remain; they are discussed
below within the framework of their relevance to some biological
processes peculiar or relevant to canine reproduction.

2.2.1.2 Steroidogenesis and signaling through
progesterone (P4)

One of the peculiar features of canine reproduction is that no
placental steroidogenesis has been detected in this species.
Progesterone, therefore, is exclusively secreted by luteal cells
(reviewed in Kowalewski et al., 2021). Since Vermeirsh et al.,
2000 reported that DSCs are the only cells in the canine placenta
expressing the progesterone receptor it became increasingly clear
their crucial role in maintaining canine pregnancy (Vermeirsch
et al., 2000). In their work the results are expressed in terms of
positivity for ER and PGR in “desmin positive cells”.

The receptor identified is PGR, a member of the nuclear
receptor superfamily of transcription factors; upon binding P4,
it dimerizes, enters the nucleus and binds DNA (Wetendorf and
DeMayo, 2012). PGR gene is expressed in pregnant uteri as early
as at the preimplantation stage (10 dpc) (Schäfer-Somi et al.,
2008; Kowalewski et al., 2010) and it decreases onwards
(Kowalewski et al., 2010). P4 induces endometrial stromal
cell differentiation, and influences the cycle, survival,
junctions, and secretory activity of the cell, by activating and
repressing a multitude of gene pathways (Wetendorf and
DeMayo, 2012; Patel et al., 2015). In addition to the classical
signaling pathway, it is also known that P4 exerts several
additional effects through membrane receptors, or through
the monomeric form of PGR (which exert, initially, non-
nuclear actions). Progesterone has also receptor-independent
actions, e.g., the regulation of cholesterol metabolism (revised
in Bishop, 2013). Canine DSCs also express, to a lesser extent,
ER-a (Vermeirsch et al., 2000; Graubner et al., 2017).

2.2.1.3 DSCs and prepartal luteolysis: Oxytocin and
prostaglandins

Other foci of the research on canine reproductive physiology
have been the mechanism of prepartal luteolysis, and the role of
decidual and trophoblast cells regarding that matter. On these
topics, molecules related to oxytocin signaling and prostaglandin
synthesis, and their relation to serum P4 levels, have been studied
(Kowalewski et al., 2010; 2020; 2021; Kowalewski, 2012; Gram et al.,
2014a; Gram et al., 2014b). Given the similarities found between
natural prepartal and antigestagen-induced luteolysis, the pivotal
involvement of DSCs in this process, as the only cell target for
P4 within the labyrinth, was inferred (Kowalewski et al., 2010;
Nowak et al., 2019).

In non-pregnant bitches, a gradual luteal regression occurs, as
they lack a classical mechanism of maternal recognition of
pregnancy, e.g., the luteolytic action of uterine PGF2-α as ewes,
cows, does, sows, and mares, among other females, have
(Kowalewski et al., 2015; Noakes et al., 2018). However, in
pregnant bitches, prepartal luteolysis does depend on
upregulation of the prostaglandin system, in the scenario of the
withdrawal of P4. Paracrine crosstalk between DSCs and trophoblast
cells induces that crucial prepartum PGF2-α release (Kowalewski,
2012; Kowalewski et al., 2020).

The expression of OTR in the placenta has been evaluated to
better understand endocrine mechanisms leading to PGF2-α output
near term. Placental OTR was detected in DSCc both at protein and
mRNA levels, being its signal markedly stronger during the
prepartum luteolysis (Gram et al., 2014a). This higher availability
of OTR near term might obey to the steep decline in P4 and the
changes in the cell´s plasma membrane triggered by that decrease
(Gimpl and Fahrenholz, 2001; Bishop, 2013). OTR is a membrane
bound G-protein coupled receptor (GPCR), although most of it is
internalized upon ligand-binding (this might be one plausible reason
for its usual cytoplasmic immunolabeling) (Gimpl and Fahrenholz,
2001). High P4 levels may block OTR signaling by several
mechanisms, namely, the binding to a membrane protein that
interacts with the receptor, or the alteration in cholesterol-
phospholipid ratio induced by progesterone (Bishop, 2013).
Cholesterol abundance in the plasma membrane is inversely
proportional to P4 levels; this is partly due to the non-genomic
effect of P4 in triggering a state of cholesterol auxotrophy, that is, the
cell inability to synthesize cholesterol, by blocking its intracellular
trafficking (Gimpl and Fahrenholz, 2001; Bishop, 2013). Therefore,
during placental development (under high P4 levels) membrane
cholesterol is low. As cholesterol enhances oxytocin high affinity
binding to OTR, downstream signaling is reduced at that stage.
Conversely, near term, coinciding with P4 withdrawal, plasma
membrane cholesterol and oxytocin-OTR binding increase,
signaling downstream OTR leads to phospholipase C activation,
rise in arachidonic acid and, finally, prostaglandin synthesis (Gimpl
and Fahrenholz, 2001).

In relative gene expression studies of the bitch placenta, it was
shown that PTGS2 (that is, the gene for prostaglandin-endoperoxide
synthase 2, the common prostaglandin precursor synthase, also
known as COX2) and PTGES (gene for PGE2 synthase) were
increased towards prepartum, whereas PGFS (gene for PGF2-α
synthase) reached its peak at mid-gestation and decreased
afterward. Given that decrease, the abundance of prepartal PGF2-
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α might obey to the fact that it can also be produced by alternative
pathways. PGFS and PTGES mRNA, and PTGS2, were strongly
labeled in trophoblast cells. Decidual cells, however, only showed
weak or sporadic signals (Kowalewski et al., 2010; Gram et al., 2014b;
Kautz et al., 2014). During in vitro decidualization, however,
PTGS2 and PTGES were upregulated and clearly detected in
DSCs (Kautz et al., 2015). In humans OTR and prostaglandins
were both detected in decidual cells (Wilson et al., 1988).

2.2.1.4 Prolactin and prolactin receptor
The decidua produces a prolactin-like molecule, named simply

as prolactin as it is indistinguishable from pituitary prolactin in
humans, although it is somewhat dissimilar in rats (Freeman et al.,
2000). It binds to PRLR, and its secretion is locally regulated. Some
of the potential roles of placental prolactin are its involvement in the
regulation of angiogenesis, apoptosis, immune status, and the
stimulation of TB invasion (Rana et al., 2022). In the bitch,
prolactin (mainly pituitary prolactin) is considered to be
luteotropic (Kowalewski, 2012). Although prolactin is known to
be the strongest decidualization marker in humans and rodents
(Dunn et al., 2003), it is frequently below detection limits in canine
decidual cells. The evolution of regulatory mechanisms of prolactin
gene (Prl) expression, mainly by transposable-elements, has been
studied in humans, orangutans, Old and New World monkeys,
tarsiers, mice, rabbits, pigs, dogs, armadillos, and elephants (Emera
et al., 2012a; Emera andWagner, 2012). Emera et al. have concluded
that endometrial Prl expression is not a shared derived character of
all placental mammals, but rather it is a case of convergent evolution
of gene expression, as it evolved independently in several eutherian
lineages; this might explain the diversity between primates and
carnivores. It has been demonstrated that Prl was independently
recruited into uterine expression in primates, mice and elephants,
while it is not expressed in rabbits, pigs, dogs or armadillos (Emera
et al., 2012a). The study of evolution of human dPrl promoter
allowed the authors to hypothesize that the upregulation of the
expression of prolactin was a maternal response to the interstitial
invasion which evolved in the stem lineage of apes (Emera and
Wagner, 2012).

PRL mRNA was investigated in canine placenta homogenates,
and no statistical differences were found between non-pregnant and
pregnant bitches in this regard, being PRL generally expressed at a
very low level (Kautz et al., 2014). In vitro decidualized cells also
exhibited very low expression of PRL (Kautz et al., 2015), even after
having achieved high intracellular cAMP concentrations, which
appears to be required to obtain maximal PRL expression under
the influence of progestins (Dunn et al., 2003). No data regarding
immunohistochemical analysis of PRL in decidual cells has been
communicated so far, although endometrial stromal cells were
immunostained for PRL in a preliminary study (Hernández et al.,
2019).

Contrary to the shortage in PRL placental expression, it was
reported that PRLR is early induced in the canine placenta by free
floating embryos, around 10–12 dpc (Kautz et al., 2014). After
in vitro decidualization, PRLR mRNA was highly upregulated
(Kautz et al., 2015; Graubner et al., 2017). The highly
upregulated expression of this receptor, together with the low
expression of its ligand might constitute a feature of a species-
specific regulatory mechanism (Kautz et al., 2015).

2.2.1.5 Relaxin and relaxin receptors
Relaxin (RLN) is a polypeptide hormone secreted by the

trophoblast in the canine placenta, and it is, so far, the only
available marker of pregnancy in the dog (Nowak et al., 2017;
Nowak et al., 2018). This molecule signals through the relaxin
family peptide receptors 1 and 2, (RXFP1, RXFP2), two GPCRs.
Both its intracellular signaling pathways and the physiological
functions differ widely across a variety of tissues and cell types
(Sherwood, 2004; Valkovic et al., 2019). In the canine placenta,
relaxin labeling was targeted mainly to cytotrophoblast cells. Nowak
et al.´s article shows positivity for RXFP1 receptor in the
preimplantation endometrium. After placentation, maternal
endothelium was strongly reactive to this receptor, whereas the
cytotrophoblast cells were slighter stained. Decidual cells reacted to
RXFP2 (Nowak)1. mRNA expression of both receptors in the
placenta decreased toward term.

The biological significance of RXFP1 expression in endometrial
stromal cells and of RXFP2 expression in the decidual cells, with its
highest concentration during preimplantation and mid-gestation
stages, may be related to the decidualization process. In human
endometrial stromal cells (ESCs), sustained cAMP activity induced
by relaxin mainly through RXFP1 is associated with decidualization,
as it is inferred from the increase in human decidualization markers
such as prolactin (Bartsch et al., 2004). There are some differences,
though, in the mechanisms by which each receptor triggers cAMP,
and the length of the response; in addition, RXFP2 may also bind
INSL3 (Halls et al., 2006). Besides the role in decidualization, other
local actions of relaxin around term, and its relation to/with P4 levels
and the eventual prolactin increase in canine decidual cells were not
established yet.

2.3 Decidual cells in Feliformia

With the exception of the hyenas, feliforms develop
endotheliochorial placentas; up to our knowledge, they have been
described only in members of the Felidae family. Moreover, as there
are only a few descriptions of placentas in species other than Felis
catus, all the findings will be described in the Section 2.3.1. From the
section title on, the queen´s placenta will be qualified as “feline”.

2.3.1 Feline DSCs
2.3.1.1 Discovery and characterization

Half way through the 20th century, Wislocki and Dempsey for
the first time regarded the giant cells in the cores of the lamellae as
“decidual in nature and of maternal origin”, mainly based on
histochemical reactions (Wislocki and Dempsey, 1946). This
influential paper contradicted the previous opinion given by Otto
Grosser who, though referring to those cells as decidual-like,
considered them as being a third type of trophoblast: the “inner
cells” (revised inWislocki and Dempsey, 1946). They also stated that
the ECM that set those cells off from the trophoblast was continuous

1 Given thewide differences regarding relaxin aminoacidic sequence among
species, it is worth mentioning that in the referred work
immunohistochemistry was conducted using canine-specific,
custom-made antibodies.
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with the collagenous matrix of the subjacent mucosa (Wislocki and
Dempsey, 1946). The stromal origin of those cells was later
confirmed by immunohistochemical analysis of the intermediate
filaments’ proteins (section 2.1). Subsequent research allowed
gaining knowledge into morphological and functional
characteristics of feline decidual cells. Besides the domestic cat,
these cells have been also found in Iberian lynxes (Lynx pardinus)
(Braun et al., 2012a). According to Srivastava (1952), DSCs are not
found in the placenta of the tiger (Panthera tigris tigris).

The appearance of recognizable decidual cells in the queen´s
placental junctional zone (JZ) is not described until post
implantation stages, although changes in the ECM quality are
obvious before morphological evidence of cell differentiation
(Boomsma et al., 1991; Walter and Schönkypl, 2006; Diessler
et al., 2014). Stromal cells in the JZ, beginning their
morphological differentiation, have been mentioned as
“predecidual” (Amoroso, 1959; Boomsma et al., 1991; Leiser and
Koob, 1993). Their cytoplasm is pale and more or less abundant and
they are arranged in groups, forming a compact area or plaque,
which is set out as a palisade between the labyrinth and the glandular
“spongy” zone (Amoroso, 1959; Leiser and Koob, 1993; Diessler
et al., 2014) (Figures 2A, D; Figures 3B,C). This area shrinks as
gestation advances and DSCc are gradually incorporated into the
labyrinth, where they are lodged between maternal capillaries within
the lamellae (Wislocki and Dempsey, 1946; Amoroso, 1959; Leiser
and Koob, 1993; Wooding and Burton, 2008). Once in the lamellae,
DSCs are displayed first in rows and then become conspicuously
larger and solitary, constituting the typical giant cells; their number

decreases with time (Amoroso, 1959; Malassiné A, 1974; Walter and
Schönkypl, 2006). In the last years, while some authors name as
decidual the entire cell population (the more or less differentiated
cells), others refer to larger cells within the lamellae as “giant cells”
and reserve terms as “decidual” or “decidualized” for those in the JZ
plaque. In this review, unless otherwise stated, the former option is
adopted; therefore, cells in the JZ plaque and in the lamellae will be
referred to as DSCs.

During their development, DSCs are oval to round, vary from
15 to 50 µm, and have one to three spherical and increasingly
euchromatic nuclei, with well-defined nucleoli (Wislocki and
Dempsey, 1946; Dempsey and Wislocki, 1956; Malassiné, 1974;
Wooding and Burton, 2008). Nearly 20% of the DSCs are
binucleated (Fernández et al., 2014), and mitotic figures are often
seen, although there are not available records of telophase figures or
cleavage furrows (Wislocki and Dempsey, 1946; Walter and
Schönkypl, 2006) (Figures 2B, C). Therefore, binucleation is
likely to occur as a consequence of truncated cytokinesis rather
than of cell fusion. Varying degrees of polyploidy, with or without
binucleation, has been reported in decidual cells in mice and human,
in physiologic conditions (Sroga et al., 2012; Peterson and Fox,
2021). Those cells become polyploid as a result of either a switch
from a mitotic cycle to an endoreduplication cycle, or, being
endomitotic, the progression to anaphase and then an incomplete
cytokinesis. Decidual polyploid cells are considered to be terminally
differentiated (revised in Sroga et al., 2012). Multinucleate polyploid
cells may allow slightly larger cell size than equivalently polyploid
mononucleate cells, and maintain the nuclear-cytoplasmic ratio in
spite of their hypertrophy conditions (Sroga et al., 2012; Peterson
and Fox, 2021). As regards the carnivore placenta, polyploidy has
been described only in trophoblast cells in the silver fox (Zybina
et al., 2001).

Ultrastructurally, two zones can be recognized in the cytoplasm:
a dense, eccentric zone around the nucleus where membranous
organelles are abundant, being the endoplasmic reticulum
particularly well-developed, and a peripheric one almost entirely
free of organelles (Wislocki and Dempsey, 1946; Wynn and
Björkman, 1968; Malassiné A, 1974). Some dense bodies
described as “continuous with the extracellular matrix” were
described (Malassiné A, 1974). Cytosolic inclusions as lipidic
droplets and the so called “glycogen bodies” are present in DSCs
and increase with time; microvilli extend towards the endothelial
cells, and through the ECM towards the STB (Malassiné A, 1974).

Several molecules were targeted to feline DSCs; some of those
findings are mentioned or discussed below, and summarized in
Table1.

2.3.1.2 Extracellular matrix in the labyrinth
ECM surrounds DSCs as a capsule and shows positivity for

Periodic acid-Schiff (PAS) method and type IV collagen (Figures 2B,
C); this matrix is partially continuous, though thinner, with the basal
lamina (or “interstitial membrane”) of maternal vessels (Dempsey
and Wislocki, 1956; Wynn and Björkman, 1968; Malassiné A, 1974;
Leiser and Koob, 1993; Walter and Schönkypl, 2006; Diessler et al.,
2014). The presence of reticular fibers might be inferred from the
silver deposits around DSCs (Wislocki and Dempsey, 1946);
however, by fluorescent immunohistochemistry, Walter and
Schönkypl (2006) could not detect type III collagen within the

FIGURE 2
Feline placenta. (A). Structure of the feline placenta. HE. Laminar
arrangement of maternal and fetal structures (4X). (B). Labyrinth. The
black arrowhead points to a mitotic figure in a DSC. HE. (40X). Inset:
prominent ECM surrounding a binucleated DSC (100X). (C).
Labyrinth. Mono- and binucleated labyrinthine DSCs. Periodic acid-
Schiff (PAS) method (100X). (D). Plaque of DSCs at the junctional zone.
Alcian blue-PAS technique (40X) (Diessler et al., 2014). Black
arrowheads: DSCs; empty arrowheads: small DSCs.
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maternal lamellae. On the other hand, laminin, which is a
decidualization marker, was targeted to decidual cells, both
within the labyrinth and in the junctional zone. In placentas
from early gestation, MMP-2 was identified in DSCs, while
MMP-1, -9 and -13 were not (Walter and Schönkypl, 2006).

2.3.1.3 Glycosylation patterns and galectins
The glycocode of a cell constitutes a kind of biological

information, spatiotemporally regulated. It has been
demonstrated that glycosylation pattern of decidual cells differ
among species; for instance, sialic acids and highly branched
N-linked oligosaccharides, which characterize mice and rats
DSCs, were not demonstrated in cats (Bulmer and Peel, 1996;
Jones et al., 1996; Fernández et al., 2014). This differential
pattern might obey to both a species-specific glycan expression
and distinct maternal-fetal interfaces (placental barrier types). In
addition, residues forming the oligosaccharides also change during
DSCs feline differentiation: while mature cells already express α-
GlcNac as well as mannose and fucose in their oligosaccharides, still
undifferentiated stromal cells do not (Fernández et al., 2014).
Besides through growth and differentiation, in which glycans
have crucial roles, changes in glycosylation pattern were reported
likewise as a feature of the cellular response to microenvironmental
challenges, e.g., changes in redox imbalance (Blois et al., 2021;
Menkhorst et al., 2021).

Members of the galectin family are glycan binding proteins,
regarded as important dynamic translators of the glycocode. They
influence signaling processes cross-linking glycans, mainly
membrane bound (Wisnovsky and Bertozzi, 2022). Alternatively,
they may be translocated to the nucleus and participate in mRNA

splicing (Than et al., 2012). Galectin research become relevant to
reproductive sciences as these proteins are highly expressed at the
maternal–fetal interface, and their dysregulated expression is
observed in the ‘great obstetrical syndromes’ in human beings
(Than et al., 2012; Menkhorst et al., 2021). During pregnancy,
galectins are involved mainly in the regulation of angiogenesis
and contribute to the development of an immune-privileged
environment at the maternal-fetal interface; their expression in
the endometrium and decidua is strictly regulated by sex steroids.
Galectins 1, 3 and 9 are the main galectins expressed in endometrial
and decidual cells (reviewed in Than et al., 2012; Menkhorst et al.,
2021). Gal 1and gal 3 are involved in the downregulation of local
inflammatory pathways; in the maternal-fetal human interface, their
expression decreases during labor (El-Azzamy et al., 2017). Gal-1,
-3 and -9 were immunolabeled in the feline placenta; they were
targeted to DSCs, besides being also strongly positive in trophoblast
cells (Conrad et al., 2016). The stronger labeling of galectins in DSCs
corresponded to that of Gal-9 (Figure 4A). Regarding temporal
modifications in galectin detection, Gal-1staining was markedly
increased from earlier to later placentas. An according significant
change in LGALS1 (gene for Gal-1) was reported in humans, being
LGALS1 and IGFBP1 the two highest expressed genes in the decidua
at term (El-Azzamy et al., 2017). In addition to changes regarding
staining intensity, another remarkable finding was that Gal-1 and
Gal-9 were detected not only in the cytoplasm but also in the nuclei
in late placentas. This finding suggests that they might exert a role in
mRNA processing; this shift could be related to changes in hormone
profiles at the time. All in all, decidual galectin expression appears to
be lower in endothelial placentas than in more invasive hemochorial
placentas (of mice and humans, e.g.,) where immunotolerance is, to

FIGURE 3
Decidual stromal cells (DSCs) in the feline placenta. Immunohistochemical staining of cytoskeletal proteins. (A). Vimentin-positive DSCs in the
labyrinth (40X) (Clone V9, RTU, Code: IS630. Dako). (B). α-SMA (Code: NCL-L-SMA. Novocastra) (4X). Black arrowheads: DSCs in the lamellae; empty
arrowheads: small DSCs at the junctional zone (JZ). (C, D) magnification of (B). (C). Plaque of DSCs at the JZ (40X). (D). Labyrinth (40X). IHC. DAB.
Hernández et al., 2017.
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some extent, more required for a successful pregnancy (Conrad
et al., 2016).

2.3.1.4 Progesterone synthesis
Several questions have arisen for decades regarding

steroidogenesis in the feline placenta: its capacity to produce
steroids as progesterone (de novo or from pregnenolone), the
source of intermediate molecules, the contribution of placental
P4 to progesteronemia, the cell source of the placental
progesterone and, finally, the sufficiency of such progesterone to
support pregnancy in the event of ovariectomy. Although some data
was gathered to enlighten such issues (including reports of variable
proportions of successful pregnancies after ovariectomy) a number
of those controversies remains unsolved.

It was stated that the feline placenta meets the basic requirement
for the last step in steroid biogenesis, as 3β-HSD activity (leading to
conversion of pregnenolone to progesterone) was detected
(Malassiné and Ferré, 1979). Later on, the histochemical
distribution of 3β-HSD was described (Ito et al., 1986), and
mRNA expression of several steroidogenic enzymes, including
3β-HSD, and detectable levels of P4 and E2 in placental tissues
were reported (Braun et al., 2012b). Total enzymatic activity was
shown to be clearly increased during the second half of pregnancy,
specially from 40 to 45 dpc (Malassiné and Ferré, 1979; Braun et al.,

2012b). Nevertheless, at that stage, peripheral concentration of
placental P4 is extremely low or even lies below the detection
threshold, therefore it is assumed that placental P4 does not
influence serum P4 levels (Braun et al., 2012b). Taking into
account that notion, a paracrine role in supporting placental
function, if such, may well be assumed; this influence in
pregnancy success might be only significant after 40 dpc (Tsutsui
et al., 2009). However, neither ER nor PGR were detected in the
placenta by Li et al. who studied placentas up to 28 dpc (Li et al.,
1992).

The finding of STAR mRNA and its protein in feline placentas
allowed inferring that P4 may potentially be synthesized de novo
from cholesterol in this species, as it regulates cholesterol transfer
within the mitochondria, and this is the rate-limiting step in
steroidogenesis (Siemieniuch et al., 2012). As far as the role of
feline decidual cells in steroidogenesis or steroid signaling is
concerned, while Ito et al. concluded, based on a histochemical
study, that enzymatic activity of 3β-HSD was restricted to
trophoblast cells, Siemieniuch et al. (2012) reported that
immunolabeling was localized to decidual cells.

2.3.1.5 Growth factors (GFs)
Besides steroid hormones, and among other substances, growth

factors and their receptors are required for the establishment and
progression of pregnancy (Guzeloglu-Kayisli et al., 2009). It is
considered that EGF/TGFα/EGFR system is upregulated during
decidualization and are involved in the regulation of proliferation
and differentiation in diverse placental cell populations in baboons
(Fazleabas et al., 1994). TGF is involved in trophoblast
differentiation and might also, through its downstream target
Kisspeptin, have a role in decidualization and in restraining
trophoblast invasion (Cao et al., 2019; Fang et al., 2022). EGF,
TGFα and EGFR have been immunohistochemically studied in the
feline placenta. While EGF and TGFα were demonstrated in the
syncytiotrophoblast until the 6th week pc, from 24 dpc onwards they
were targeted to decidual cells. Interestingly, the receptor (which
binds both ligands) was detected in the trophoblast cells for a short
period, then it was stained both in cytotrophoblast and decidual
cells, and finally it was restricted to decidual cells (from the 7th week
onwards) (Fazleabas et al., 1994; Boomsma et al., 1997). From these
results, it could be inferred that until the 6th week of gestation,
autocrine and paracrine signaling take place; afterward, signaling
goes on, by an autocrine mechanism, only in decidual cells.

Taken together with the lack of steroid receptors during almost
the first half of gestation, the finding of reactivity to TGF and EGF
led to the speculation that, at that stage, development and
maintenance of the placenta might depend more on GFs than on
sex steroids (Fazleabas et al., 1994; Boomsma et al., 1997). Almost a
decade after, several studies about pregnancy termination using PGR
inhibitors began to be conducted by different research groups. As a
result, induced abortion was observed after treatment with
aglepristone in early and mid-pregnancy, showing the crucial role
of progesterone in gestation maintenance (Fieni et al., 2006;
Georgiev and Wehrend, 2006; Georgiev et al., 2010; García
Mitacek et al., 2012). Therefore, further studies on placental PGR
detection and localization become necessary.

IGF/IGFBP-1/IGF1R is another system essential for
placentation, and particularly, for decidualization of the uterine

FIGURE 4
Decidual stromal cells (DSCs) in the feline placenta.
Immunohistochemical staining of: (A). Galectin-9 (Code: sc-19292.
Santa Cruz Biotechnology, Diessler et al., 2014) (10X), (B). VEGFR-2
(Clone 55B11, Code: 2479S. Cell Signaling Technology, Gomez
Castro et al., 2022a) (4X), (C). IGFBP-1 (40X) (Code: PAAH1. Novozimes
GroPep Ltd., Hernández et al., 2017), (D). Prolactin (100X), and (E).
Prolactin receptor (100X). Black arrowheads: DSCs in the labyrinth;
empty arrowheads: small DSCs at the junctional zone (Codes:
AB186522 and AB2772. Abcam, Hernández et al., 2019). IHC. DAB.
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stroma. IGFBP-1 is considered, together with prolactin, a major
decidual marker in humans and baboons (Fazleabas et al., 1989;
Dunn et al., 2003; Tang et al., 2005). IGFBP-1 was evidenced by
culture medium immunoblotting from feline placental explants;
additionally, it was localized to DSCs (Boomsma et al., 1994;
Hernández et al., 2017) (Figure 4C). To a lesser extent, in a
preliminary study, it was also detected in the endometrial
fibroblasts in close proximity to small decidual cells in the JZ
plaque (Hernández et al., 2017). In another initial analysis,
Hernández et al. reported the detection in DSCs of the other
major decidualization marker, prolactin, as well as its receptor
(Hernández et al., 2019) (Figures 4D, E).

VEGF system plays a crucial role during decidual angiogenesis
through the action of VEGFR-2 (Douglas et al., 2009). Feline DSCs,
together with the syncytiotrophoblast, were strongly labeled for
VEGF-A in placentas at different stages of pregnancy. Its main
receptor, VEGFR-2, showed an irregular staining in DSCs of early
placentas (from negative to strongly positive), becoming
consistently positive in the later ones in those cells (Figure 4B);
conversely, it was regularly detected throughout pregnancy in the
syncytiotrophoblast (Gomez Castro et al., 2022a). This spatial-
temporal pattern in a way resembles that of EGF, TGFα and
EGFR, which reflects an increasing involvement of decidual cells
in these pathways.

2.3.1.6 Relaxin
The first studies about relaxin (RLN) in the feline placenta were

conducted by Dr. Stabenfelt´s research group in the ´80s. Based on
their results, it was established that relaxin is a pregnancy-specific
signal in feline species (Stewart and Stabenfeldt, 1985; Addiego et al.,
1987). Lacking a species-specific antibody, those studies were
performed using antisera developed against porcine relaxin
which, at that time, allowed determining the source of the
hormone and providing a profile of its secretion along
pregnancy. RLN immunoactivity greatly increased by day 28 pc,
and the higher amount was detected on day 35 pc; in later stages,
although still high, immunoreactivity was lower than on previous
days (Stewart and Stabenfeldt, 1985; Addiego et al., 1987).

Klonish et al., in 1999, after performing ISH and IHQ on cryocut
sections of a 35 dpc placenta, reported that the sole source of RLN
and relaxin mRNA transcripts were the trophoblast cells in the
labyrinth (Klonisch et al., 1999). Later on, Braun et al. reported
positivity for RLN not only in the trophoblast cells but also in fetal
vessels and in DSCs, both in cats and in placentas from two Iberian
lynxes (Lynx pardinus) (Braun et al., 2012a). It has been reported
that this apparently decidual product is useful as a pregnancymarker
in cats, in the leopard (Panthera pardus) (de Haas Van Dorsser et al.,
2007) and in the Iberian lynx (Braun et al., 2012a).

2.3.1.7 Orexin and leptin
According to immunohistochemical studies performed in feline

placentas from 55 to 60 days, DSCs were strongly stained for orexin-
A (OXA), leptin (LEP, also Ob), and their receptors (OX1R and
LEPR, respectively); OX2R, on the other hand, was not detected
(Dall’Aglio et al., 2012b; Dall’Aglio et al., 2012a). STB was also
positive, though inconsistently, to the same substances; this finding
supports that the neuropeptide orexin and leptin protein participate
in the paracrine dialogue between neighboring cells in the lamellae.

The detection of OXA, OX1R, LEP, LEPR in the feline placenta
might imply that this organ is a peripheric source and target in both
systems. OXA and LEP have been also detected in human placental
cells (Masuzaki et al., 1997; Nakabayashi et al., 2003). It was reported
that orexin inhibits LEP expression in mice in vivo and in vitro (Shin
et al., 2019). Their physiological functions outside the brain and the
adipocytes, and so their role in pregnancy, remain poorly defined.

2.3.1.8 Prostaglandin synthesis
In early feline placentas, PGFS protein and transcripts were

elevated, being localized mainly in trophoblast cells; later on, it was
also detected in decidual cells. Conversely, PTGS2 was only
upregulated in placentas from queens close to term. PTGS, the
enzyme catalyzing PGH2 synthesis, was located in trophoblast as
well as in decidual cells during the last week before labor. PGH2 can
be regarded as the precursor of all other prostaglandins, beside other
molecules. PGF2α (and PGFM, its stable metabolite) was increased
in late placentas, despite the decrease in PGFS, the enzyme that
catalyzes its production. This discrepancymight obey to the eventual
production of PGF2α through other pathways (Siemieniuch et al.,
2014). PGFM was studied in fecal samples of eighteen felids using
enzyme immunoassay to establish its usefulness for the
differentiation between pregnancy and pseudopregnancy in
captive and free-ranging felids, that is, as a non-invasive
pregnancy marker. Animals from the lineages of domestic cat,
leopard cat, puma, lynx, ocelot, caracal, and panthera (based on
phylogenetic analyses in Johnson et al., 2006) were sampled.
Although there were some discrepancies among the species of
the lineage Panthera, all in all fecal detection of PGFM proved to
be a useful tool (Dehnhard et al., 2012). It is not known to what
extent the decidual metabolite could take part in the amount of
PGFM detected by the test.

2.3.1.9 Transporters
Glucose transporters (GLUTs) and aquaporins (AQPs) were

studied in the cat placenta. As far as GTs are concerned, Ferré-
Dolcet et al. reported that not only GLUT1 but also GLUT3 is found
in the feline labyrinth, unlike what was stated by Wooding et al.
some years before. Besides, it was demonstrated a negative
correlation between GLUT3 and P4 levels in the queen. Although
DSCs storage of glycogen is thought to play a role in carbohydrate
metabolism in the placenta, neither of GTs was located in those cells
(Wooding et al., 2007; Ferré-Dolcet et al., 2018). Neither AQP2 nor
8 was detected in DSCs, although they did were demonstrated in
trophoblast cells (Ferré-Dolcet et al., 2020).

3 Discussion

Development of decidual cells is a distinct feature of
eutherian pregnancy; however, the occurrence of
decidualization itself, the dynamics of its development, as
well as morphological and functional features of DSCs vary
widely among eutherians. Within the carnivores known to
develop endotheliochorial placentas, decidual cells could be
evidenced only in a few species.

Placentas of dogs and cats have been more thoroughly studied than
those of any other carnivore (Mossman, 1987; Wooding and Burton,
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2008); from themajority of the remaining species of the order, data in the
bibliography are fragmentary. This may be due to lesser availability of
individuals, sampling difficulties -sometimes in challenging
circumstances-, and the eventual inadequate preservation of tissues. In
addition, placentophagy, the “consumption” of the placenta after birth in
different animals, is especially widespread in carnivores (Benirschke,
2011). Moreover, most of the reports in wild carnivores precede the
advent of immunohistochemical techniques. The in vitro decidualization
of canine uterine stromal cells attained by Kautz et al. (2015), and the
establishment of an immortalized cell line achieved by Graubner et al.
(2017) have boosted research on canine DSCs. More recently, the
promising development of a 3D culture of feline endometrial cells
was reported (Dundon et al., 2019). In this in vitro platform, the
effects of E2 and P4 at physiologically relevant concentrations on
endometrial cells began to be tested, and results regarding epithelial
cells were documented (Wilsterman et al., 2019).

Up to now, fairly abundant data has been collected regarding the
bitch and the queen DSCs. Only IGFBP-1, among the main decidual
markers, has been undoubtedly demonstrated in both species.
Laminin, on the contrary, was found only in feline DSCs, and
prolactin was evidenced in a preliminary report in dogs and cats,
requiring further studies. Prolactin receptor, on the other hand, was
found in both species.

It is currently accepted that P4 synthesis does not occur in
the bitch placenta; conversely, P4 might be produced in the
feline placenta. However, while canine DSCs are the only
placental cell type expressing PGR, these receptors have not
been demonstrated neither feline DSCs, nor in any other cell in
the queen placenta. Striking question arise from the apparently
proven facts that placental P4 does not contribute to serum P4
(Braun et al., 2012b), and that PGRs have not been found up to
now in the feline placenta (Li et al., 1992). From this view,
receptors required for a local communication would be lacking.
As Li et al. studied placentas up to 28 dpc, the analysis of
samples from older pregnancies could shed light on the matter.
Furthermore, as the use of PGR inhibitors leads to abortion both
in early and in mid-gestation (Fieni et al., 2006; Georgiev and
Wehrend, 2006; Georgiev et al., 2010; García Mitacek et al.,
2012), more exhaustive studies in this regard become essential.
In addition, progesterone might act by receptor-independent
pathways and, as it is mentioned above (section 2.3.1.5), during
the early pregnancy, the development and maintenance of the
placenta might be at least in part also supported by GFs.

Growing knowledge about, for instance, specific angiogenic
mediators and other growth factors, metalloproteases, galectins,
glycans, and so forth, will allow to achieve a deeper and substantial
understanding of vascularization and remodeling of the endotheliochorial
interface during placental organogenesis.Most of the analyses reviewed in
this article are novel for domestic animals, and comprehensive studies of a
higher number of placentas are needed to establish the consistency of the
results, particularly to progress on the characterization regarding some
aspects of the DSCs their selves, and also of decidualization as a process.
Besides, placentas from different stages of pregnancy will enable
researchers to establish how molecules change with time and to
robustly speculate about the physiologic significance of the findings.

From the data reviewed, it follows that carnivoran DSCs take
part either in the secretion of progesterone, prostaglandins, relaxin,
among other substances, or at least in the signaling pathways

triggered by them. Beyond their physiological roles, some of
those molecules are already being used, or are yet under study,
for the non-invasive endocrine monitoring and reproductive control
of domestic and wild carnivores. For instance, relaxin is used as the
active principle of canine and feline ELISA pregnancy tests. Besides
its use for companion carnivores, it is being tested as a managing
tool in conservation breeding programs for endangered wild felids,
as the Iberian lynx (Lynx pardinus) and the Arabian leopard
(Panthera pardus nimr) (de Haas Van Dorsser et al., 2006; de
Haas Van Dorsser et al., 2007; Harris et al., 2008; Vargas et al.,
2008; Jewgenow and Songsasen, 2014). It has also been successfully
tested in the following wild canids: gray wolves (C.lupus), Mexican
gray wolves (C. l. baileyi), red wolves (C. rufus), fennec foxes (Vulpes
zerda), African wild dogs (Lycaon pictus), island foxes (Urocyon
littoralis) (Bauman et al., 2008), and coyotes (C. latrans) (Carlson
and Gese, 2007). Measuring of progestogen metabolites has been
studied for monitoring the reproductive status in the cheetah
(Acinonyx jubatus) (Koester et al., 2017). In addition, the
usefulness of PGF2α metabolite PGFM for testing pregnancy has
been studied in felid species from the lineages of domestic cat,
leopard cat, puma, lynx, ocelot, caracal, and panthera (Dehnhard
et al., 2012).

Pharmacological termination of pregnancy for the control of
reproduction has been a growing field of research in veterinary
medicine. Drugs intending to block different molecular targets that
support pregnancy are used in bitches and queens, and the success of
the clinical procedure relies on several factors (Fieni et al., 2006;
Georgiev and Wehrend, 2006; Georgiev et al., 2010; García Mitacek
et al., 2012; Karakas Alkan et al., 2020; Kowalewski et al., 2020; Binli
et al., 2022). Data regarding the sources (including decidual
contribution) of relevant substances, namely, progesterone,
prolactin, and prostaglandins, and the understanding of their
functions and dynamics of secretion along pregnancy, are
required for the improvement of those methods.
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