

Revista SAM

30 µm

www.materiales-sam.org.ar

Registro Nº ISSN 1668-4788 Volumen 1 – Año 2022

A la memoria de la Dra. Marta Granovsky

Foto: Microesferas de vidrio de sílice porosas Andrea Lucero, Irina Viatela, Oscar Grizzi y Miguel Prado. Centro Atómico Bariloche

Asociación Argentina de Materiales

Comisión Directiva de la SAM

Presidenta: Sonia Brühl (Concepción del Uruguay

Vice Presidenta: Alicia Ares (Misiones)

Secretaria: María Cecilia Marinelli (Rosario)

Pro Secretario: Roberto Lucci (Córdoba)

Tesorera: Ana Velia Druker (Rosario)

Pro Tesorera: Eugenia Dalibon (Concepción del Uruguay)

Vocales Titulares: Ana Florencia Forte Giacobone (Buenos Aires) Nora Pellegri (Rosario) Amadeo Daniel Sosa (Mar del Plata)

Vocales Suplentes: Matías Ramirez (San Nicolás) Josefina Dib (Rosario) María Emilia Furno (Mar del Plata

Revisor de Cuentas: Claudio Arenas (Buenos Aires)

Revisor de Cuentas Suplente: Silvana Sommadossi (Neuquén)

Revista SAM

Editora: Elena Brandaleze (San Nicolás)

Comité Editorial: Alicia Ares (Misiones) Edgardo Benavidez (San Nicolás)

INDICE

Editorial

Elena Brandaleze

• Sección: Trabajos Técnicos

Desarrollo de bioinsumos para su aplicación en la agricultura moderna.	1
D. Merino; Y.A. Mansilla; M.F. Salcedo; M.J. Iglesias; T.J. Gutiérrez; C.A. Casalongué; V.A. Álvarez.	
Gasification of simulated low-level radioactive wastes using DC thermal plasma.	13
F.E. Benedetto; I.A. Gana Watkins; I.J. Van der Walt; M.O. Prado.	
Yerba Mate soluble como inhibidor de la corrosión del Zinc en medio ácido.	24
P.B. Silva; G. Pozzi; A.E. Ares; C.M. Mendez.	
Comparación de la reactividad de MgH ₂ con dos fuentes de CO ₂ para la producción de combustibles sintéticos. <i>M.L. Grasso; G. Amica; F.C. Gennari.</i>	36
TOF-SIMS Characterization of Porous Glass Microspheres. A.M. Lucero Manzano; I. Viatela; O. Grizzi; M.O. Prado.	47
Análisis de homogeneidad en piezocerámicos libres de plomo de Ba _{0.85} Ca _{0.15} Zr _{0.1} Ti _{0.9} O ₃ y Ba _{0.85} Ca _{0.15} Hf _{0.1} Ti _{0.9} O ₃ por Tomografía de Rayos X.	57
A. Di Loreto; A. Frattini; R. Machado; M.E. Peralta; F.P.	

A. Di Loreto; A. Frattini; R. Machado; M.E. Peralta; F. Díaz; M.G. Stachiotti.

• Sección: Recuerdos

A la memoria de la Dra. Marta Granovsky.			
Delia Arias; Liliana Roberti; Hilda Lanza; Carmelo Rocco.			

Revista SAM

ISSN 1668-4788, N°1 (2022) p.36-46

Comparación de la reactividad de MgH₂ con dos fuentes de CO₂ para la producción de combustibles sintéticos

M.L. Grasso¹; G. Amica^{*1}; F. C. Gennari^{1,2}

(1) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Atómico Bariloche (CNEA), Av. Bustillo 9500, R8402AGP S.C. de Bariloche, Río Negro, Argentina.

(2) Universidad Nacional de Cuyo (Instituto Balseiro), Centro Atómico Bariloche (CNEA), Av. Bustillo 9500, R8402AGP S.C. de Bariloche, Río Negro, Argentina.

* e-mail: guillerminaamica@gmail.com.

RESUMEN

En este trabajo se evaluó el uso de MgH₂ como fuente segura de H₂ para la conversión termoquímica de CO₂ a combustibles sintéticos, empleando CO₂ gaseoso o un sólido portador del mismo (Li₂CO₃), en ausencia y presencia de Ni como catalizador. Sin fase catalítica activa, a través de mecanismos de reducción directa con co-formación de hidrocarburos superiores, se obtuvieron rendimientos de CH₄ de 46,4 y 68%, considerando CO₂ gaseoso (400 °C, 24 h, relación molar MgH₂:CO₂ de 2:1) y partiendo de Li₂CO₃ (450 °C, 5 h, relación molar relación molar MgH₂: Li₂CO₃ de 4:1), respectivamente. En presencia de Ni, se observó una mejora en los valores de conversión y selectividad de CH₄. Los mayores valores de rendimiento de metano obtenidos fueron 74,2 y 90% para el sistema 4MgH₂-CO₂ luego de un calentamiento a 350 °C por 48 horas y para el sistema 2MgH₂-Li₂CO₃ a 400 °C por 5 horas, respectivamente. Esto se debe a que la presencia de especies con función catalítica favorece la ocurrencia del proceso de Sabatier como ruta complementaria. Por un lado, reciclando CO₂ gaseoso es factible generar mezclas combustibles CH₄-H₂ (aproximadamente de composición 70%-30%) y, por otro lado, empleando un carbonato como fuente sólida, obtener CH₄ como fase gaseosa altamente mayoritaria.

Palabras clave: Dióxido de carbono, metanación, hidruros, hidrógeno.

ABSTRACT

In this work, the use of MgH₂ as a safe source of H₂ for the thermochemical conversion of CO₂ to synthetic fuels was evaluated, using gaseous CO₂ or a solid carrier (Li₂CO₃), in the absence and presence of Ni as catalyst. Without an active catalytic phase, through direct reduction mechanisms with co-formation of higher hydrocarbons, CH₄ yields of 46.4 and 68% were obtained, considering gaseous CO₂ (400 °C, 24 h, MgH₂:CO₂ molar ratio of 2:1) and starting from Li₂CO₃ (450 °C, 5 h, molar ratio MgH2:Li₂CO3 molar ratio of 4:1), respectively. In the presence of Ni, an improvement in CO₂ conversion and CH₄ selectivity values was observed. The highest methane yield values obtained were 74.2 and 90% for the 4MgH₂-CO₂ system after heating at 350 °C for 48 hours and for the 2MgH₂-Li₂CO₃ system at 400 °C for 5 hours, respectively. The presence of species with a catalytic function favors the occurrence of the Sabatier process as a complementary route. On the one hand, by recycling gaseous CO₂ it is possible to generate CH₄-H₂ fuel mixtures (approximately 70%-30% composition) and, on the other hand, by using a carbonate as a solid source, it is possible to obtain CH₄ as the main gaseous component.

Keywords: Carbon dioxide, methanation, hydrides, hydrogen.

INTRODUCCIÓN

Desde la revolución industrial, el crecimiento económico mundial ha sido sostenido por la producción de energía a bajo costo basada en la explotación de recursos fósiles, primero carbón y luego, gas natural, petróleo y sus derivados. La matriz energética mundial basada en el uso de hidrocarburos, fuentes primarias no renovables, ha generado un fuerte impacto ambiental. Las emisiones de gases de efecto invernadero, donde el CO_2 representa el 66% [1], causan efectos negativos en el medio ambiente ya que hay una relación directa entre las emisiones excesivas y el aumento de la temperatura global [2]. A fin de limitar y revertir esta problemática y lograr un desarrollo sostenible resulta necesaria la implementación de tecnologías de captura, almacenamiento y transformación del CO_2 en productos de valor agregado [3, 4]. La opción de convertir el CO_2 mediante procesos catalíticos a combustibles sintéticos es atractiva tanto desde el punto ambiental como económico, ya que implica su reutilización y valorización como materia prima. El proceso de Sabatier, el

cual permite producir metano y agua en presencia de un catalizador mediante la combinación de dióxido de carbono con hidrógeno entre 150 y 300 °C en un amplio rango de presiones [5], puede ser una alternativa para almacenar el exceso de energía renovable producida durante los períodos de máxima generación [6, 7]. Las tecnologías *Power-to-gas* buscan la transformación del excedente de energía renovable en un gas compatible con la red, que se puede utilizar en un pico de demanda futuro. Por un lado, existe una gran infraestructura de distribución de gas metano en muchos países que permite su inyección directa en las redes de gas existente. Por otro lado, se ha demostrado que el uso de la mezcla combustible hidrógeno-metano en dispositivos móviles permite evitar las dificultades relacionadas con la energía intensiva necesaria para la ignición de vehículos propulsados solo por metano [8-10]. Debido a las restricciones cinéticas de la reacción, la aplicación industrial del proceso de metanación es limitada debido a la falta de catalizadores eficientes y estables que permitan lograr altas tasas de conversión con alta selectividad. Además de los metales nobles, se ha demostrado que los metales de transición (Ni, Co, Fe) son catalizadores activos y su desempeño (efecto sobre los procesos de adsorción, activación y reducción de CO₂) depende de la naturaleza del metal, la estructura de *clusters*, soporte, etc. [11-13].

Estudios recientes han demostrado que es posible reducir CO₂ gaseoso en la superficie de diferentes tipos de hidruros mediante procesos termoquímicos a temperatura y presión moderadas. Esto permite el uso de H2 almacenado de forma segura en una matriz sólida para la transformación de CO2 en gas sintético. En comparación con el hidrógeno molecular, el átomo de hidrógeno cargado negativamente de los hidruros metálicos tiene una mayor capacidad de reducción. Para este enfoque de aplicación, se ha explorado la reactividad de diversas familias de hidruros con CO₂ gaseoso: alanatos (LiAlH₄, NaAlH₄) [14, 15], borohidruros ($Mg(BH_4)_2$ y KBH₄) [16, 17], hidruros complejos de metal basados en magnesio que contienen Ni o Fe (Mg₂NiH₄, Mg₂FeH₆) [18-20], hidruros alcalinos (LiH, NaH) [21], hidruros alcalinos térreos (MgH₂, CaH₂) [22-24]. Hemos demostrado que el mecanismo de metanación depende de la presencia de un catalizador y su naturaleza [19, 20, 23, 24]. Otros factores como el grado de refinamiento microestructural, la relación molar H₂:CO₂, el tiempo de reacción y la temperatura también tienen influencia [14-24]. Por otro lado, algunas investigaciones recientes presentaron métodos eficientes para sintetizar mezclas de H₂-CH₄ por reacción sin catalizador entre hidruros metálicos y carbonatos como fuentes de H2 y CO2, respectivamente [25-27]. Para ello se analizó la reactividad mediante procesos mecanoquímicos (molienda mecánica a temperatura ambiente) de los sistemas MH-M₂CO₃ (M = Mg o Ca) [25] y MgH₂-Li₂CO₃ [26], y la reactividad por procesos termoquímicos de los sistemas MH-M₂CO₃ (M = Li, Na, Mg o Ca) [27].

Esta investigación evaluará, en forma comparativa, la reactividad de sistemas basados en hidruro de magnesio como fuente segura de hidrógeno empleando dos fuentes diferentes de dióxido de carbono, una gaseosa y otra sólida. La elección de MgH₂ responde a que se trata de una materia prima barata y disponible, asequible mediante el reciclado de descartes de la industria automotriz. Bajo condiciones experimentales adecuadas se analizará la factibilidad de generar cantidades significativas de metano o mezclas metano-hidrógeno libres de CO₂, mediante procesos a temperatura de operación moderada y con rápida cinética de reacción. Por un lado, el enfoque que involucra la conversión de CO_2 gaseoso busca emplear matrices sólidas para capturar/transformar in-situ el gas liberado en grandes cantidades como residuo de un proceso industrial, evitando las etapas de captura y transporte del CO_2 para ser tratado en otro sitio, reduciendo la infraestructura necesaria. Por otro lado, los carbonatos inorgánicos son económicos, abundantes y fáciles de manipular en atmósfera de aire. Además, algunos carbonatos son el principal producto obtenido después de la captura de CO_2 por absorbentes como Li₄SiO₄ o Na₂ZrO₃, por lo que su uso como fuente de CO_2 podría permitir el reciclaje de absorbentes degradados después de largos períodos de operación [28].

En síntesis, en este trabajo, se comparará el uso de MgH_2 , sin dopar y dopado con níquel como fase catalítica activa, para la conversión termoquímica de CO_2 a combustibles sintéticos, a partir de (1) una fuente gaseosa de CO_2 y (2) una fuente sólida de CO_2 , almacenado químicamente en carbonato de litio.

MATERIALES Y MÉTODOS

Preparación de las muestras

Para los experimentos, se emplearon los siguientes reactivos comerciales: Hidruro de magnesio (MgH₂, 98%, Sigma-Aldrich), Níquel metálico (Ni, 99,99 %, Sigma-Aldrich), Dióxido de carbono gas (CO₂, Pureza 4.6, Linde), y Carbonato de litio (Li₂CO₃, Cicarelli P.A). Debido a la reactividad del MgH₂, las muestras se manipularon en una caja de guantes MBraun Unilab con atmósfera de argón, con oxígeno y niveles de humedad inferiores a 10 ppm. Para todos los estudios, se utilizó argón de alta pureza (Ar, 99,999%, Linde). Para lograr mezclas homogéneas de reactivos y a su vez, activar los reactivos comerciales, se empleó un molino de bolas tipo planetario (Fritsch Pulverisette 6). A partir de los reactivos químicos descriptos, se prepararon las siguientes muestras sólidas de estudio: 1) MgH₂, 2) MgH₂-10%p/p Ni, 3) 4MgH₂-Li₂CO₃, 4)

2MgH₂-Li₂CO₃, 5) 4MgH₂-1Li₂CO₃-10%p/p Ni y 6) 2MgH₂-1Li₂CO₃-10%p/p Ni. Las muestras 1 y 2 fueron molidas durante 5 h a 500 rpm con una relación de masa de bola a polvo de 53:1 usando una secuencia de molienda de 10 min y una pausa de 15 min. Las muestras 3, 4, 5 y 6 fueron procesadas mecánicamente a 400 rpm, relación masa de bola a polvo de 80:1 y atmósfera de argón durante 1 hora (15 min molienda y 10 min pausa). La manipulación de todas las muestras se realizó dentro de caja de guantes para evitar su contaminación con oxígeno y/o la humedad del aire.

Para evaluar la reacción de metanación, se analizaron dos fuentes de dióxido de carbono: como gas o almacenado en un sólido (Li₂CO₃). Una masa específica de cada muestra (muestra 1 a 6) se calentó con una rampa de 10°C min-1 a diferentes temperaturas (300 °C, 350 °C, 375 °C, 400 °C y 450°C) durante diferentes tiempos de reacción (1, 5, 24 y 48 horas), empleando un reactor de acero inoxidable acoplado a equipo volumétrico tipo Sieverts, el cual permite la selección y control de la presión y la temperatura. Para analizar el uso de CO₂ gaseoso, el calentamiento de las muestras 1 y 2 se realizó empleando una presión de CO₂ definida, la cual fue previamente calculada para lograr dos relaciones molares MgH₂:CO₂ diferentes (2:1 y 4:1). En el caso de las muestras sólida determina la relación molar MgH₂:Li₂CO₃ (2:1 y 4:1). Dado que la descomposición del MgH₂ involucra la liberación de un mol de H₂ y que la del carbonato implica un mol de CO₂, es importante mencionar que las siguientes relaciones molares son equivalentes: $4H_2$:CO₂, $4MgH_2$:CO₂ y $4MgH_2$:LiCO₃, así como también $2H_2$:CO₂, $2MgH_2$:CO₂ y $2MgH_2$:LiCO₃.

Caracterización de las muestras

Para determinar la composición de la fase gaseosa resultante después de cada tratamiento térmico, se estudió a través de análisis FTIR en fase gaseosa (FTIR, Perkin Elmer Spectrum 400 con un detector MCT) y cromatografía de gases (GC, Agilent Technologies GC System 7820A). Las mediciones espectroscópicas fueron realizadas al recoger los gases liberados en una celda de cuarzo con ventanas de KBr y longitud óptica de 9 cm. Los espectros en fase gaseosa a temperatura ambiente se tomaron considerando el modo de transmitancia con una resolución de 0,5 cm⁻¹ y 10 escaneos. Por otra parte, para los experimentos de GC, se tomó 1 ml de gas producto con una jeringa, el cual es inyectado en el equipo de GC para su análisis. Las cantidades molares de CO₂, CH₄ y CO gaseosos fueron cuantificadas mediante curvas de calibración. El rendimiento de metano fue calculado como la relación entre los moles de CH₄ producidos y los moles de CO₂ totales al comienzo de la reacción (relativos a cada fuente de carbono). La caracterización de las muestras sólidas fue realizada mediante difracción de polvo de rayos X (XRPD, Bruker D8 Advance), espectroscopia infrarroja por transformada Fourier para sólidos y espectroscopia Raman (LabRAM HR Evolution Raman microscope). Para llevar a cabo las mediciones de XRPD se empleó un portamuestra hermético para evitar cualquier interacción indeseada entre las muestras y aire. También, los espectros de FTIR del estado sólido fueron obtenidos en el rango de 4000-800 cm⁻¹ con una resolución de 4 cm⁻¹, a partir de pastillas preparadas al mezclar en mortero cada muestra con KBr, bajo una atmósfera de Ar, prensadas y colocadas en una celda hermética especialmente diseñada. A fin de identificar C elemental y compuestos con carbono a temperatura ambiente se empleó la espectroscopia Raman utilizando una longitud de onda láser de 514 nm.

RESULTADOS Y DISCUSIÓN

MgH2 no catalizado

Reacción con CO2 gaseoso

Para investigar la conversión de CO₂ en presencia de MgH₂ sin adición de catalizador, el hidruro se sometió a un tratamiento térmico (400 o 350 °C) en condiciones estáticas bajo una atmósfera de CO₂ (durante 5 o 24 h) y se consideraron dos relaciones molares diferentes MgH₂:CO₂ (4:1 y 2:1). Para el conjunto de experimentos realizados [23], los mejores resultados fueron obtenidos para un tratamiento térmico de 24 h a 400 °C considerando una relación molar MgH₂:CO₂ de 2:1 (ver Fig. 1). En estas condiciones, la fase gas estaba compuesta por un 46,4% de CH₄ con un exceso de CO₂ del 0,9% y una pequeña cantidad de CO generado (<1000 ppm) [23]. Además, el análisis de la fase gaseosa por FTIR permitió descartar la presencia de H₂O y detectar hidrocarburos superiores (etano y/o propano: CxHy) debido a los picos de absorción a 1470 y 2968 cm⁻¹ [29] (Fig. 2A). El análisis de la fase sólida resultante por XRPD (Fig.2B) y FTIR (Fig.2C) demostró que el producto estaba compuesto principalmente por Mg y MgO, con carbonatos superficiales sobre la fase oxidada (bandas a 1063, 879 y 1415 cm⁻¹), sin MgH₂ sin reaccionar. Además, la presencia de C fue confirmada por mediciones Raman (Fig. 2D). Cuando la temperatura o el tiempo de reacción se redujeron, los valores de rendimiento de metano cayeron bruscamente y, lógicamente, se registró una disminución del porcentaje molar de CH₄ y un aumento en la cantidad de CO₂, con la identificación clara de CO (alrededor del 6,0%). Teniendo en cuenta las observaciones anteriores, se propone que para una relación molar MgH₂:CO₂ de 2:1 y en ausencia de una fase catalítica, la reacción ocurre a través de un mecanismo de reducción directa de CO₂ por MgH₂, involucrando las reacciones (1) y (2) [23]. En concordancia con la evidencia experimental, la estequiometria de la reacción (1) muestra que la misma se encuentra favorecida cuando la relación molar es 2:1. La variación de energía libre de Gibbs la ecuación (1) es negativa desde la temperatura ambiente en adelante, y a medida que la temperatura sube se vuelve aún más negativa [30]. Por otra parte, para ecuación (2), cuando la temperatura aumenta, la entalpía es menos negativa para temperaturas superiores a 500 °C. Por esta razón el CH₄ y el H₂ siempre coexisten en el gas. Además, cuando no se alcanza el equilibrio, el CO₂ no se reduce totalmente a C, pero sí lo hace parcialmente a CO. Esto explica la presencia de CO para tiempos de reacción cortos o a bajas temperaturas. En este caso, las reacciones (3) y (4) ocurren en serie, con CO como intermediario en la reducción de CO₂ a C. La detección de pequeñas cantidades de MgCO₃ pueden deberse a la carbonatación de óxido de magnesio por reacción con el CO₂, mientras que el CO generado puede consumirse para formar hidrocarburos superiores a través de la reacción de Fischer-Tropsch [31].

 $2MgH_{2}(s) + CO_{2}(g) \rightarrow 2MgO(s) + 2H_{2}(g) + C(s)$ (1)

$$C(s) + 2H_2(g) \rightarrow CH_4(g)$$
⁽²⁾

$$MgH_{2}(s) + CO_{2}(g) \rightarrow MgO(s) + H_{2}(g) + CO(g)$$
(3)

(4)

 $MgH_2(s) + CO(g) \rightarrow MgO(s) + C(s) + H_2(g)$

Figura 1. Composición de la fase gaseosa (% molar) determinada por GC y rendimiento de CH₄ (%) luego de la reacción de MgH₂ sin catalizar con CO₂ en diferentes condiciones experimentales.

Figura 2. (A) FTIR del estado gaseoso, (B) Difractograma de XRPD, (C) FTIR del estado sólido y (D) Espectroscopia Raman, luego de la reacción de MgH₂ sin catalizar con CO₂ a 400 °C durante 24 h.

Reacción con CO2 proveniente de Li2CO3

Para el estudio de la reactividad entre hidruro de magnesio y CO₂ desde un material portador sólido, mezclas de MgH₂:Li₂CO₃ con diferentes composiciones molares (4:1 y 2:1) fueron expuestas a calentamiento en vacío a 450 °C por 5 y 24 horas. De los resultados experimentales obtenidos se concluye que la mejor condición es una composición molar de 4MgH₂:Li₂CO₃ a 450 °C y 5 h. El análisis de la composición molar de los productos gaseosos (Fig. 3) evidencia la presencia de CH₄ como principal componente (50,0% molar), con coexistencia de H₂, CO₂ y de otros hidrocarburos tales como etano y/o propano (Fig. 4A y B). Por otro lado, una pequeña cantidad de CO (inferior a 5,0% molar) es detectada en el sistema 2MgH₂:Li₂CO₃, el cual podría asociarse a la reducción parcial de CO₂ (proveniente de la descomposición de carbonato de litio) en atmósfera reductora de H₂. Dada la diferente relación molar H₂:CO₂ en el caso 2MgH₂:Li₂CO₃, la presión parcial de H₂ en el gas proveniente de la descomposición de MgH₂ podría no ser suficiente para reducir el CO₂ y se detecta

Respecto a la naturaleza de los productos sólidos, el estudio de los mismos por XRPD (Fig. 4B) muestra la formación de óxidos como MgO para ambas relaciones molares, mientras que Li₂O solo se detecta para 2MgH₂:Li₂CO₃. Por otra parte, Mg metálico es identificado a mayores concentraciones de MgH₂ (relación molar MgH₂:Li₂CO₃ 4:1), probablemente como producto de la descomposición térmica del hidruro en estas condiciones. Adicionalmente, en estas muestras no se detecta una cantidad remanente de reactivos, debido a la transformación de los mismos durante la reacción.

Las diferencias observadas en la composición de la fase gaseosa y de la fase sólida para las relaciones molares estudiadas, están asociadas a la disponibilidad de H₂ y CO₂ en el gas. Estas cantidades dependen fundamentalmente de la velocidad de descomposición de MgH₂ y Li₂CO₃, promovida por la mezcla mecánica entre ambos. La relación molar 4MgH₂:Li₂CO₃ permite disponer de exceso de H₂ en el gas, como lo evidencia la identificación de Mg formado a partir de MgH₂, además de MgO. Para la relación molar 2MgH₂:Li₂CO₃, se identifica Li₂O y MgO en el sólido y CO como producto intermedio de la reducción de CO₂ a CH₄. En ausencia de catalizador y para ambas relaciones molares, los rendimientos porcentuales de CH₄ están además afectados por la formación de hidrocarburos superiores como etano y propano (bandas IR entre 3095-2848 cm⁻¹ en Fig. 4 B). Considerando los resultados anteriores, se propone que la conversión del CO₂ desde Li₂CO₃ e MgH₂ en ausencia de especies catalíticas, ocurre principalmente mediante la reacción 5, la cual es favorable termodinámicamente desde temperatura ambiente, mientras que el exceso de MgH₂ se descompone para generar Mg.

$$2MgH_2 + Li_2CO_3 \rightarrow 2MgO + Li_2O + CH_4$$
(5)

Figura 3. Composición molar de CH4 (%) de los productos gaseosos y valores de rendimiento de la reacción entre MgH2-Li2CO3 en diferentes condiciones experimentales.

Figura 4. (A) Análisis GC, (B) espectro FTIR y (C) XRPD después de la reacción de MgH₂-Li₂CO₃ (4:1 y 2:1) 450 °C por 5 h.

MgH2 catalizado con 10% p/p Ni

Reacción con CO2 gaseoso

Para investigar la conversión de CO₂ en presencia de MgH₂ catalizado por calentamiento después de la molienda, se analizaron diferentes temperaturas (350, 375 y 400 °C), duraciones de tratamiento (24 h y 48 h) y se consideró una relación molar 4:1 [24]. El análisis de la fase gaseosa resultante mediante GC indicó que en este rango de temperaturas se obtiene una mezcla de H₂ y CH₄ con un pequeño exceso de CO₂. Se observó una relación directa entre la temperatura de operación, el porcentaje molar y el rendimiento de CH₄ (ver Fig. 5A). Al reducir la temperatura de 400 a 350 °C, estos valores disminuyeron de 50,2 a 35,2 y de 64,5 a 44,9, respectivamente. Se mostró que una temperatura de 300 °C no fue suficiente para lograr una tasa considerable de conversión, obteniéndose una fase gaseosa principalmente compuesta de CO₂ sin reaccionar. A diferencia de las observaciones a temperaturas más altas, se confirmó la presencia de CO para reacciones a 300 y 350°C. En cuanto al tiempo de operación, se observó que a 350 °C el aumento de 24 a 48 h de tratamiento térmico permitió un gran crecimiento en la cantidad de metano en fase gaseosa, que pasó de 35,2 a 67,7% y en el rendimiento de metano de 44,9 a 74,2% (Fig. 5A). La diferencia no puede explicarse por la variación del CO₂ en la fase gaseosa, pero podría deberse a la reacción gas - sólido de H₂ con algún componente de la fase sólida.

La presencia de agua en la fase gaseosa (Fig. 5B) prueba que el proceso de metanación se lleva a cabo a través de la Reacción de Sabatier (Reacción 7) con especies que contienen Ni como catalizadores activos capaces de disociar el H_2 y el CO₂ adsorbido a la superficie del hidruro (Ni metálico, Mg₂NiH₄ y Mg₂NiH_{0.3})

después la descomposición del MgH₂ (Reacción 6) [24]. La contribución de la reducción directa de CO₂ para producir depósitos carbonosos en la fase sólida (Reacción 8) y la generación de CH₄ vía C como intermediario (Reacción 9) puede considerarse como un proceso simultáneo y complementario. Por otro lado, el rol de especies con Ni también está relacionado con la selectividad ya que no se identifican hidrocarburos superiores como etano o propano, solo metano (ver Fig. 5B). La formación de CO se observó sólo en tiempos de reacción cortos o bajas temperaturas (Reacción 10). Para tiempos de reacción más largos, podría ser consumido a través de la reacción con H₂ para generar más CH₄ (Reacción 11).

(7)

(8)

(9)

(10)

(11)

 $MgH_{2}(s) \rightarrow Mg(s) + H_{2}(g)$ (6)

 $CO_2(g) + 4H_2(g) \rightarrow CH_4(g) + 2H_2O(g)$

 $2MgH_2(s) + CO_2(g) \rightarrow 2MgO(s) + 2H_2(g) + C(s)$

 $C(s) + 2H_2(g) \rightarrow CH_4(g)$

 $Mg(s) + CO_2(g) \rightarrow MgO(s) + CO(g)$

 $CO(g) + 3H_2(g) \rightarrow CH_4(g) + H_2O(g)$

Figura 5. (A) Rendimiento de metano (%) luego de la reacción entre MgH₂-10% p/p Ni y CO₂ gaseoso a diferentes temperaturas y (B) Comparación de espectros FTIR fase gaseosa luego de reacción a 400 °C durante 24 hs con y sin catalizador.

Reacción con CO₂ proveniente de Li₂CO₃

El efecto de especies catalíticas fue evaluado en el sistema MgH_2 -Li₂CO₃ empleando níquel. Para ello, se prepararon mezclas de $4MgH_2$:Li₂CO₃:10%Ni y $2MgH_2$:Li₂CO₃:10%Ni mediante molienda mecánica de bolas en atmósfera de Ar para mejorar el grado de mezclado de los componentes. Luego, estas mezclas de reactivos fueron calentadas a diferentes temperaturas (400 °C y 450 °C) y tiempos (1 y 5 h)

La descomposición completa del carbonato de litio requiere altas temperaturas. Sin embargo, los cálculos termodinámicos [30] indican que esto desfavorece la producción de metano mediante la reacción de Sabatier, la cual es promovida por la presencia de una fase catalítica activa. En la búsqueda de maximizar la producción de CH₄, esta situación de compromiso sugiere la existencia de una condición óptima de operación del sistema. En concordancia con estas observaciones, el análisis de la composición del producto gaseoso muestra que la mejor condición experimental es 400 °C, 2MgH₂:Li₂CO₃ y 5h, obteniéndose una conversión a metano cercana a 90,0%. En esta condición la fase gaseosa está compuesta prácticamente en su totalidad por CH₄. Es destacable que a mayor temperatura (450 °C) para la composición 2:1, la incorporación de Ni prácticamente no tuvo un efecto en el rendimiento de metano (41,0% versus 59,0%). Por otro lado, se observan mejoras respecto a la selectividad de la reacción hacia la formación de metano, a 400 °C y 24 h (Fig. 7). Adicionalmente, la presencia de agua en Fig. 7A (bandas en región de 3700 y 1600 cm⁻¹), indica que la reacción de Sabatier se favorece por la presencia de Ni.

Figura 6. Rendimiento porcentual de CH4 luego de la reacción entre MgH2 y Li₂CO₃ en presencia de 10% p/p de aditivo de Ni en diferentes condiciones experimentales.

Figura 7. Espectro de FTIR del gas (A) y XRPD (B) en presencia de Ni después del calentamiento a diferentes tiempos y temperaturas.

Del estudio de las fases cristalinas formadas a 450 °C después de 5 horas a partir de MgH₂-Li₂CO₃-10%Ni (Fig. 7 B), se observan diferencias según la composición MgH₂:Li₂CO₃ inicial. A composiciones altas de MgH₂, se identifica la presencia de Mg₂NiH_{0.3}, probablemente como producto de la interacción entre MgH₂ sin reaccionar y Ni libre en el medio de reacción. Por otra parte, se evidencia la fase LiOH cristalina, lo cual podría explicarse por la hidratación del óxido de litio en presencia de vapor de agua como producto secundario de la reacción de Sabatier. Por último, como en el sistema en ausencia de Ni, se observa MgO en los residuos sólidos para todas las composiciones molares consideradas.

Se considera que el sistema MgH₂-Li₂CO₃ en presencia de Ni puede producir metano a partir del H₂ y CO₂ contenido en los sólidos reactivos, siguiendo la reacción propuesta (5) [26]. Adicionalmente, este sistema dopado con Ni parece presentar una conversión adicional dada por la reacción de Sabatier, como lo sugiere la presencia de H₂O en el FTIR. Por lo tanto, el rol del Ni y sus fases hidruras es dual, ya que puede promover la liberación de H₂ a menor temperatura a partir de MgH₂ [32] y además actuar como catalizador para la reacción de Sabatier, promoviendo la descomposición de Li₂CO₃.

Rendimientos de CH₄ obtenidos a partir de los sistemas MgH₂-CO₂ y MgH₂-Li₂CO₃

En esta sección se resumen los resultados experimentales obtenidos a partir de la reacción termoquímica de los sistemas de estudio descriptos (Tabla 1). Se resaltan los mejores valores de rendimiento de metano obtenidos para cada sistema.

		Relación molar (MgH ₂ :CO ₂ o MgH ₂ :Li ₂ CO ₃)	Temperatura (°C)	Tiempo (h)	Rendimiento de CH4 (%)
Sin Ni	CO ₂ (g)	4:1	400	24	42,4
		2:1	400	5	4,3
				24	44,6
			350	24	0,3
	Li ₂ CO ₃	4:1	450	5	68,0
				24	64,0
		2:1	450	5	41,0
				24	32,6
Con Ni	CO ₂ (g)	4:1	400	24	64,5
			375	24	57,5
			350	24	44,9
				48	74,2
			300	24	1,7
	Li ₂ CO ₃	4:1	400	5	76,0
			450	1	70,0
				5	65,6
		2:1	400	5	90,0
			450	1	51,5
				5	58,0

Tabla 1. Resumen de resultados experimentales.

CONCLUSIONES

En este trabajo se evaluó el uso de MgH₂ como fuente segura de H₂ para la conversión termoquímica de CO_2 empleando el gas o un sólido portador del mismo (Li₂CO₃), en ausencia y presencia de Ni. Para ambos enfoques experimentales, se obtuvieron mezclas combustibles compuestas principalmente por metano e hidrógeno.

Para el sistema MgH₂-CO₂, los mejores resultados experimentales fueron obtenidos a 400 °C, 24 horas de reacción, una composición inicial de 2:1, alcanzando una conversión a CH₄ de 46,4%. Por otra parte, el sistema compuesto por MgH2:Li2CO3 mostró su mejor rendimiento de reacción a 450 °C y 5 h con una relación molar inicial de 4:1 (68,0%). La completa caracterización de los productos tanto gaseosos como sólidos indicó que a partir de estos dos sistemas no catalizados la formación de metano se da a través de mecanismos de reducción directa. Cuando el CO₂ es provisto como gas, el mecanismo global implica la reducción directa de CO₂ y la generación de CH₄ vía C como intermediario y cuando se disminuye la temperatura o el tiempo de reacción, el CO₂ se reduce parcialmente a CO. Por otro lado, cuando se parte del carbonato como reactivo, se requieren temperaturas superiores para descomponerlo. En este caso el CH₄ se produce mediante la reacción sólido- sólido entre el hidruro y el carbonato, con formación de óxidos de Li y Mg. En ausencia de Ni, independientemente si el CO₂ es provisto desde el gas o como sólido, durante la conversión termoquímica de CO₂ se identifica la presencia de hidrocarburos superiores (etano y propano).

Por otra parte, se exploró el efecto de adicionar 10% en peso de Ni a las mezclas MgH₂-CO₂ y MgH₂-Li₂CO₃. En ambos casos se observó una mejora en los valores de conversión y en la selectividad de CH₄, reduciendo la cantidad de hidrocarburos superiores presentes en la mezcla de productos. Los mayores valores de rendimiento de metano obtenidos fueron 74,2 y 90,0% para 4MgH₂-CO₂ después de un calentamiento a 350°C por 48 horas y 2MgH₂-Li₂CO₃ a 400 °C por 5 horas, respectivamente. Cuando se dispone de Ni metálico, el proceso de metanación tiene una fuerte contribución gobernada por el proceso de Sabatier, a través del cual se combina H₂ y CO₂ gaseoso, favorecido por la presencia de especies que contienen Ni como fases catalíticas activas (Ni metálico, Mg₂NiH₄ y Mg₂NiH_{0.3}), capaces de disociar el H₂ y el CO₂ adherido a la superficie del hidruro. La contribución de la reducción directa de CO₂ para producir depósitos carbonosos en la fase sólida y la generación de CH₄ vía C como intermediario por un lado y la reacción sólido-sólido entre MgH₂ y LiCO₃ para dar MgO y Li₂O pueden considerarse como un procesos simultáneos y complementarios en cada caso. Se obtuvieron mayores rendimientos de metano cuando el dióxido de carbono está almacenado químicamente dentro del carbonato. Si bien a 400 °C la fase gaseosa se compone fundamentalmente de CH_4 con cantidades marginales de hidrógeno, no es factible reducir la temperatura.

Esta investigación proporciona un método termoquímico para sintetizar combustibles sintéticos de interés industrial, libre de COx, empleando un hidruro metálico bien conocido (MgH₂) como fuente de hidrógeno, dopada con una fase catalítica (Ni) barata y de alta disponibilidad. Por un lado, reciclando CO₂ gaseoso es factible generar mezclas combustibles metano- hidrógeno (aproximadamente de composición 70%-30%) y, por otro lado, empleando un carbonato como fuente sólida, obtener CH₄ como fase gaseosa altamente mayoritaria. Con el objetivo de reducir las temperaturas y/o tiempos de operación y favorecer la eficiencia del proceso de metanación, puede analizarse la optimización de ciertas variables como, por ejemplo, la microestructura del sólido inicial mediante métodos químicos o mecánicos, la dispersión y nanoestructura de la fase catalítica como también su naturaleza y la relación molar H₂:CO₂ de los diferentes sistemas.

AGRADECIMIENTOS

El trabajo fue apoyado por CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica) y CNEA (Comisión Nacional de Energía Atómica). Este trabajo se encuadra dentro de los siguientes proyectos financiados por ANPCyT: PICT-2018-00606, PICT-2019-02291 y PICT-2020-00170.

REFERENCIAS

[1] Caesar L., McCarthy G. D., Thornalley D. J. R., et al. Current Atlantic Meridional Overturning Circulation weakest in last millennium. Nature Geoscience, 14, 118–120, 2021.

[2] IPCC. Climate Change 2021: The Physical Science Basis Disponible en https://www.ipcc.ch/report/ar6/wg1/; 16/02/2022

[3] Leung D., Caramanna G., Maroto-Valer M. An overview of current status of carbon dioxide capture and storage technologies. Renewable Sustainable Energy Rev, 39, 426-443, 2014.

[4] Bui M., Adjiman C., Bardow A., et al. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci., 11, 1062-1176, 2018.

[5] Sabatier P., Senderens J.B. New synthesis of methane. Acad. Sci.Paris. 134, 514-516, 1902.

[6] Vogt C., Monai M., Kramer G.J., et al. The renaissance of the Sabatier reaction and its applications on Earth and in space. Nat. Catal., 2, 188-197, 2019.

[7] Gotz M., Lefebvre J., Mörs F., et al. Renewable Power-to-Gas: a technological and economic review. Renewable Energy, 85, 1371-1390, 2016.

[8] Vincenzo M., Jacopo D. Burning behaviour of high-pressure CH₄-H₂-air mixtures. Energies 6, 97-116, 2013.

[9] Klell M., Eichlseder H., Sartory M. Mixtures of hydrogen and methane in the internal combustion engine -synergies, potential and regulations. Int. J. Hydrogen Energy 37, 11531-11540, 2012.

[10] Sandalci T., Işın Ö., Galata S., et al. Effect of hythane enrichment on performance, emission and combustion characteristics of an ci engine. Int J Hydrogen Energy, 44, 3208-3220, 2019.

[11] Frontera P., Macario A., Ferraro M., et al. Supported catalysts for CO2 methanation: a review. Catalysts, 7, 35-59, 2017.

[12] Li W., Wang H., Jiang X., et al. A short review of recent advances in CO₂ hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Adv., 8, 7651-7669, 2018.

[13] Younas M., Kong L.L., Bashir M.J.K., et al. Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO₂. Energy Fuels, 30, 8815-8831, 2016.

[14] Hugelshofer C.L., Borgschulte A., Callini E., et al. Gas-solid reaction of carbon dioxide with alanates. J. Phys. Chem. C, 118, 15940-15945, 2014.

[15] Zhao J., Teng Y-L., Dong B-X. Thermal reduction of CO₂ with activated alkali metal aluminum hydrides for selective methanation. Energy Fuel, 34, 11210-11218, 2020.

[16] Vitillo J.G., Groppo E., Gil Bardají E., et al. Fast carbon dioxide recycling by reaction with γ -Mg(BH4)2. Phys. Chem. Chem. Phys., 16, 22482-22486, 2014.

[17] Picasso C.V., Safin D.A., Dovgaliuk I., Devred F., Debecker D., Li H.W., Filinchuk Y. Reduction of CO2 with KBH4 in solvent free conditions. Int. J. Hydrogen Energ, 41, 14377-14386, 2016.

[18] Kato S., Borgschulte A., Ferri D., et al. CO₂ hydrogenation on a metal hydride surface. Phys. Chem. Chem. Phys., 14, 5518-5526, 2012.

[19] Grasso M.L., Puszkiel J., Fernandez Albanesi L. et al. CO₂ reutilization for methane production via catalytic process promoted by hydrides. Phys. Chem. Chem. Phys., 21, 19825-19834, 2019.

[20] Grasso M.L., Puszkiel J., Gennari F.C., et al. CO₂ reactivity with Mg2NiH4 synthesized by in situ monitoring mechanical milling. Phys. Chem. Chem. Phys., 22, 1944-1952, 2020.

[21] Dong B. X., Wang L. Z., Song L., et al. Thermochemical Reduction of Carbon Dioxide with Alkali Metal Hydrides, Producing Methane and Hydrogen Fuels at Moderate Temperatures. Energy Fuels, 30, 6620-6625, 2016.

[22] Zhao J., Wei Y-F., Cai Y-L., et al. Highly selective and efficient reduction of CO₂ to methane by activated alkaline earth metal hydrides without a catalyst. ACS Sustainable Chem. Eng., 7, 4831-4841, 2019.

[23] Amica G., Rozas Azcona S., Aparicio S., Gennari FC. Catalysis effect on CO_2 methanation using MgH_2 as a portable hydrogen medium. Phys. Chem. Chem. Phys., 30, 14720-14730, 2020.

[24] Amica G., Gennari F.C. Synergistic effect of MgH_2 doping with Ni and carbon nanotubes on thermochemical CO2 recycling process for CH_4 - H_2 mixtures production, Int. J. Hydrogen Energy, 47, 428-442, 2021.

[25] Dong B-X., Wang L., Zhao J., et al. Highly selective room-temperature catalyst- free reduction of alkaline carbonates to methane by metal hydrides. Energy Technol., 7, 1-10, 2019.

[26] Grasso M. L., Fernández Albanesi L., Garroni S., Mulas G., Gennari F. C. Methane production by mechanochemical processing of MgH_2 -Li₂CO₃ as sources of H_2 and CO₂ at room temperature. Journal of CO₂ Utilization, 40, 1-10, 2020.

[27] Zhang S., Chen H-Q., Kan X-T., et al. Storage and in-situ preparation of H_2 -mixed CH₄ fuel by thermochemical reduction of inorganic carbonates with activated metal hydrides. Fuel, 292, 1-9, 2021.

[28] Grasso M.L., Blanco M.V., Cova F., et al. Evaluation of the formation and carbon dioxide capture of Li₄SiO₄ using in situ synchrotron powder X-ray diffraction studies. Phys. Chem. Chem. Phys., 20, 26570–26579, 2018.

[29] Makhoukhi N., Péré E., Creff R., et al. Determination of the composition of a mixture of gases by infrared analysis and chemometric methods. Journal of Molecular Structure, 855, 744–747, 2005.

[30] H. S. C. Outokumpu, Chemistry for Windows, Version 6.1, Outokumpu Research Oy, Finland, 2009.

[31] Gao G., Wang Y., Ping Y., et al. A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Advance, 2, 2358-2368, 2012.

[32] Cova F., Arneodo Larochette P., Gennari F.C. Hydrogen sorption in MgH₂-based composites: the role of Ni and LiBH₄ additives. Int. J. of Hydrogen Energy, 37, 15210-15219, 2012.