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Radiometric corrections serve to remove the effects that alter the spectral

characteristics of land features, except for actual changes in ground target,

becoming mandatory in multi-sensor, multi-date studies. In this paper, we

evaluate the effects of two types of radiometric correction methods (absolute and

relative) for the determination of land cover changes, using Landsat TM and

Landsat ETM + images. In addition, we present an improvement made to the

relative correction method addressed. Absolute correction includes a cross-

calibration between TM and ETM + images, and the application of an

atmospheric correction protocol. Relative correction normalizes the images

using pseudo-invariant features (PIFs) selected through band-to-band PCA

analysis. We present a new algorithm for PIFs selection in order to improve

normalization results. A post-correction evaluation index (Quadratic Difference

Index (QD)), and post-classification and change detection results were used to

evaluate the performance of the methods. Only the absolute correction method

and the new relative correction method presented in this paper show good post-

correction and post-classification results (QD index < 0; overall accuracy .80%;

kappa .0.65) for all the images used. Land cover change estimations based on

uncorrected images present unrealistic change rates (two to three times those

obtained with corrected images), which highlights the fact that radiometric

corrections are necessary in multi-date multi-sensor land cover change analysis.

1. Introduction

Detection, evaluation, and prediction of changes in natural environments are among

the most important tasks in landscape ecology studies. Land cover change is the

single most important variable of global change affecting ecological systems

(Vitousek 1994), with an impact on the environment that is at least as great as that
associated with climate change (Skole 1994). For many purposes, remote sensing

provides the only means to assess habitat structure and land cover changes across

broad areas (Foody 2003, Kerr and Ostrovsky 2003, Turner et al. 2003). The spatial

and temporally repeated observations have significantly improved the quantity and

quality of these environmental data. The information derived from satellite images
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is becoming increasingly important for mapping and monitoring land cover

(Pax-Lenney et al. 2001, Watson and Wilcock 2001, Scanlon et al. 2002, Fuller et al.

2003) and for detecting natural and human-induced environmental changes

(Abuelgasim et al. 1999, Helmer et al. 2000, Mukai and Hasegawa 2000, Rogan

and Yool 2001, Song et al. 2001, Miller and Yool 2002, Rogan et al. 2002, Ress et al.

2003).

A wide variety of methods have been developed and used to study land cover

change (e.g. Singh 1989, Muchoney and Haack 1994, Collins and Woodcock 1996,

Coppin and Bauer 1996, Kerr and Ostrovsky 2003, Turner et al. 2003, Coppin et al.

2004). Simple image differencing, differencing of images of derived indices, such as

Normalized Difference Vegetation Index (NDVI), and change vector analysis (CVA)

are mostly linear methods, which estimate change on the basis of a linear combination

of the input image spectral bands. Other methods, for example principal-component

analysis (PCA), use the statistical properties of the image to extract the change

component, assuming that the variability caused by real change is different from other

sources of variability in the images. But probably, the most popular approach in

change detection analysis is the post-classification comparison method (Foody 2002),

where all the images used are classified separately (based only on the information

contained in each image), and then the thematic maps generated are compared. In

change-detection analysis, data generalization across time and space is necessary.

When using multi-date multi-sensor images, the post-classification comparison

method could lead to wrong results due to the differences in the radiometric

characteristics of the images from which thematic maps were obtained.

The underlying assumption when using remotely sensed data for change detection

is that land cover changes can be recorded as significant differences in the spectral

characteristics of the affected area between two or more dates. In addition, these

differences must be larger or somehow distinguishable from other changes in the

images, such as those related to atmospheric conditions (Song et al. 2001, Lu et al.

2002), illumination geometry, phenological variability (Lunetta et al. 2002, Rogan

et al. 2002, Fuller et al. 2003), and sensor calibration (Teillet et al. 2001, Vogelmann

et al. 2001). When using images from two or more dates in change detection

analysis, a given target can have a different sensor’s radiometric responses over time,

due to several factors, including:

N differences in relative radiometric response between sensors;

N changes in satellite sensor calibration over time (i.e. aging);

N differences in illumination and observation angles;

N variation in atmospheric effects;

N reflectance anisotropy (i.e. BRDF effects);

N topography (i.e. slope-aspect effects); and

N actual changes in target reflectance.

The goal of radiometric corrections is to remove or compensate for all the above

effects except for actual changes in ground target. For change-detection studies,

some form of image matching or radiometric calibration is recommended to

eliminate exogenous differences (Coppin et al. 2004). In this way, radiometrically

corrected images should appear as if they were acquired with the same sensor and

under the same atmospheric and illumination conditions.

Change-detection analysis using Landsat Thematic Mapper (TM) and Landsat

Enhanced Thematic Mapper plus (ETM + ) images requires the assessment of
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radiometric consistency to ensure inter-image comparability, regarding the

differences in relative radiometric response between corresponding Landsat-4/5

TM and Landsat-7 ETM + spectral bands (Teillet et al. 2001). In this case,

radiometric correction should be used not only to remove the atmospheric,

illumination/observation and radiometric sensor aging effects, but also to reduce the

radiometric discrepancy between TM and ETM + sensors. This is a key factor when

training data from one image (i.e spectral signature) will be used to classify another

image (Song et al. 2001, Woodcock et al. 2001). Otherwise, in multi-date multi-

sensor analysis, the use of images none corrected radiometrically may lead to

misclassification and incorrect land cover change estimations.

In subtropical ecosystems of north-western Argentina, remotely sensed data can

be a very valuable tool to estimate land cover change and evaluate its impact on the

ecosystems dynamics, especially regarding its large extension and environmental

complexity. Recent studies conducted in this region have successfully used Landsat

TM image to detect natural disturbances (Blodgett 1998, Paolini et al. 2002, Grau

2001). Although these works have achieved good discrimination of land cover

categories, none of them has used multi-date, multi-sensor images for classification

and change detection analysis. In land cover change studies of large areas, data

generalization could be very useful. For example, classification results of the present

date image can be easily checked through field surveys and then used as training

data to classify past-time images. This kind of generalization will be dependent on

the ability to perform good radiometric calibrations of images.

For studies conducted in Argentina, the lack of specific methodologies for

correcting Landsat images generated by local stations is yet an unsolved issue. In

general, all the algorithms and methodologies used for radiometric corrections of

Landsat images are developed specifically for images produced in Europe or USA,

which has some differences with those generated in other stations (i.e. format, pre-

processing level, etc.). For example, the cross-calibration method between Landsat

TM and ETM + sensors developed by Teillet et al. (2001) is for level 0 images,

whereas the images generally accessible by users in South America are of level 1.

Thus, it will be of great help to test and improve these methodologies in order to be

used with images locally generated.

The main goal of this paper is to evaluate the effect of two different radiometric

correction algorithms, one absolute and other relative, based on post-correction,

post-classification, and change-detection analysis, in a multitemporal study

involving Landsat TM and ETM + images. Although, in past studies, Collins and

Woodcock (1996) have already examined the effects of different radiometric

corrections levels on change detection results, their research was based on only one

sensor type (Landsat TM), and the pseudo-invariant features (PIFs) for the relative

correction process were selected through a subjective procedure.

2. Radiometric correction methods

Radiometric correction methods of satellite images can be grouped in two major

categories: absolute and relative (Thome et al. 1997, Tokola et al. 1999, Teillet et al.

2001, Vogelmann et al. 2001, Du et al. 2002). Absolute radiometric correction

converts the digital counts (Q), in which satellite image data are distributed, to at-

sensor radiance (W m22 mm21 sr21) and then, through atmospheric correction, to

reflectance at the surface of the Earth. Relative radiometric correction is used to

remove or normalize the variation between images and yields radiometrically
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normalized data in a common (reference) scale, not necessarily in physical units. It is

also used to normalize differences between individual detectors, usually done at the

product generation state.

In this paper, the absolute radiometric correction method applied is a

combination of the cross-calibration method developed by Vogelmann et al.

(2001), with an atmospheric correction algorithm based on the Dark Object

Subtraction (DOS) approach, presented by Song et al. (2001). The relative
radiometric correction used was developed by Du et al. (2002), while a new

approach for an objective selection of pseudo-invariants features (PIFs) is presented.

Also, we propose a modification and extension of Du et al.’s method, to overcome

the limitations found when applying it to a combination of Landsat TM and ETM +
images. The method presented in this paper relies on the same hypothesis presented

by Du et al. (2002) but introduces a new algorithm to improve the selection of PIFs,

a key factor in the normalization process.

2.1 Absolute correction

DOS is perhaps the simplest yet one of the most widely used image-based

atmospheric correction approach for classification and change-detection studies.

Atmospheric corrections of satellite images based on the DOS approach have

proved to be as reliable as other atmospheric-correction algorithms (Song et al.

2001). This approach assumes the existence of dark objects (zero or low surface

reflectance) throughout a scene and a horizontally homogeneous atmosphere. If a
dark object could be found in the image, this would correspond to the minimum

digital count value (Qmin) in the histogram of the entire scene. From this minimum,

it is possible to estimate the path radiance and correct the entire scene for

atmospheric scattering effects (Teillet and Fedosejevs 1995, Chavez 1996, Song et al.

2001).

When using both Landsat TM and ETM + images in studies that require

radiometric consistency between images, special attention has to be paid to the

differences in sensors response. As mentioned before, there are significant

differences in the radiometric response between Landsat ETM + and Landsat TM

spectral bands (Teillet et al. 2001). To reduce these differences and ensure image
inter-comparability, a cross-calibration is needed before performing the absolute

radiometric correction. In this way, any radiometric discrepancy between sensors

could be reduced, while taking advantage of the superior radiometric calibration of

Landsat ETM + . The procedure followed in this paper was presented by Vogelmann

et al. (2001), where Landsat TM image (L5_Q5), in digital counts, is first converted

to Landsat ETM + image (L5_Q7), in digital counts, as follows:

L5Q7~L5Q5slopezintercept ð1Þ

using the slope and intercept values provided by Vogelmann et al. (2001) (table 1).

The slope and intercept values for cross-calibration where derived using two

tandem Landsat images (one TM and one ETM + ) with about 30 min difference in

data acquisition time. The cross-calibration scheme derived in this way can be

applied to any set of images of any place. This is due to the nearly linear response of

both sensors. In addition, there are no other tandem scenes available. Once the

Landsat TM image is cross-calibrated according to the Landsat ETM + sensor, all
the images are treated as Landsat ETM + , and an absolute radiometric correction

can be applied. This method, based on the DOS approach, implies, first, eliminating
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or reducing the effects resulting from the satellite sensor system calibration,

transforming the Q values of the original image in values of at-satellite radiances,

Lsat~Qgainzoffset, ð2Þ

where Lsat is the at-satellite radiance, Q is the image value in digital counts, and gain

and offset are those of Landsat ETM + (table 2), since all the TM images have now

been rescaled to be comparable to ETM + images.

Then, it is necessary to convert the apparent at-satellite radiance to reflectance at

the surface of the Earth, which involves the correction of effects caused by

illumination geometry and atmospheric conditions. We used the improved DOS

method (Chavez 1996), denoted DOS3 by Song et al. (2001). This includes the

standard DOS approach calculation, except for the atmospheric transmittance along

the path from the Sun to the ground surface (Tz). The Tz value was computed as,

TZ~exp {
taur

cos hz

� �
, ð3Þ

where hz is the solar zenith angle, and taur is the optical thickness of Rayleigh

dispersion, calculated according to Kaufman (1989),

taur~0:008569l{4 1z0:0113l{2z0:00013l{4
� �

, ð4Þ

where l is the central wavelength of each band, in microns.

Equation (5) shows the final calculation to retrieve images in values of reflectance

at the surface of the Earth:

r~
Lsat{Lhazeð Þpd2

E0cos hzTz

, ð5Þ

where r is the reflectance at the surface of the Earth, Lhaze is the upwelling

atmospheric radiance or path radiance (haze), d is the Earth–Sun distance in

Table 1. Slope and intercept values for radiometric conversion of Landsat 5 TM DN values
to Landsat 7 ETM + DN values.

Band Slope Intercept

1 0.9398 4.2934
2 1.7731 4.7289
3 1.5348 3.9796
4 1.4239 7.0320
5 0.9828 7.0185
7 1.3017 7.6568

Table 2. Gain and offset values of Landsat 7 ETM + , used for calibration of images.

Band Gain Offset

1 0.775 26.2
2 0.795 26.4
3 0.619 25.0
4 0.637 25.1
5 0.125 21.0
7 0.043 20.35
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astronomical unit, E0 is the exoatmospheric solar irradiance, qz is the Sun zenith

angle, and Tz is the atmospheric transmittance along the path from the Sun to the

ground surface.

Lhaze was computed as

Lhaze~Qmingainzoffset{
0:01 cos hzTZE0ð Þ

p d2
, ð6Þ

following Song et al. (2001).

In this paper, we will refer to this combination of methods (cross-

calibration + atmospheric correction) as Vogelmann–DOS3. The Vogelmann–

DOS3 method produces images of reflectance at the surface of the Earth that

are radiometrically consistent.

2.2 Relative correction

The relative radiometric correction method normalizes images of the same area and

different dates by using landscape elements (pixels) whose reflectance values are

nearly constant over time. This procedure assumes that the pixels sampled at Time 2

are linearly related to the pixels, of the same locations, sampled at Time 1, and that

the spectral reflectance properties of the sampled pixels have not changed during the

time interval (no actual change during this period). The sampled pixels are

considered pseudo-invariant features (PIFs) and are the key to the image regression

method used in the normalization process. The main characteristic of PIFs is that

they are considered objects spatially well defined and spectrally stable though time.

The limitation of this kind of approach is that the landscape elements are normally

selected by visual inspection, which could result in a subjective radiometric

normalization.

In order to perform a relative radiometric correction, Du et al. (2002) proposes an

objective methodology for the selection of PIFs. The main assumption in this

method is that the linear effects impacting the images are much greater than

nonlinear effects, so

Q~Lazb, ð7Þ
where Q is the image value in digital counts, L is the surface radiance of the imaged

scene, and a and b are linear coefficients that take into account changes in satellite

sensor calibration over time, differences in illumination and observation angles,

atmospheric effects, etc.

From equation (7), it can be shown that the statistical properties of the PIFs are

constants for all the images (see Du et al. 2002 for a full description). There is an

attribute A(i) of each PIF, independent of the image characteristics,

Q ið Þ{Q
� �2

1
n

P1~n

i~1

Q ið Þ{Q
� �2

~
L ið Þ{L
� �2

1
n

P1~n

i~1

L ið Þ{L
� �2

~A ið Þ: ð8Þ

It can be seen, from equation (8), that A(i) is a dimensionless factor that is

independent of the a and b coefficients. Therefore, A(i) represents a property of the

PIFs that is independent of all linear variations affecting the image.

Through the selection of PIFs, the linear effects impacting the images can be

established and, therefore, determine the correction coefficients to be applied to
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normalize the images. The PIFs selection procedure proposed by Du et al. (2002) is

an objective process based on PCA calculations between pair of analogous bands of

different images, and involves:

1. Applying thresholds values to each band of each image to reject cloudy and

water pixels.

2. Using the remaining pixels to compute the PCA (in a multitemporal mode)

between each pair of band of each image (i.e. b2_1998 vs b2_1999).

3. Then, the pixels located around the primary major axis will be selected as

PIFs, using an arbitrary threshold U perpendicular to the PCA major axis (i.e.

U,minor axis,U).

Once the PIFs are selected, the mean and standard deviation of each band in each

image are calculated, and the gain and offset to normalize the images are computed

as,

gain jð Þ~
sQref

sQj

ð9Þ

offset jð Þ~Qref{
sQref

sQj

:Qj, ð10Þ

where j represents the image date, Qref and sQref
are the reference mean and standard

deviation values, respectively, and Qj and sQj
are the mean and standard deviation

of each set of PIFs.

In this way, the entire set of images are normalized to a reference scale common

to all the images, by applying new gain and offsets values for each band of each image.

3. Study area and data

3.1 Vegetation and climate

Our analysis was conducted over remotely sensed data from a portion of the

subtropical mountain forest of north-western Argentina (figure 1). This area

corresponds to the ‘Yungas’ biogeographic province (Cabrera and Willink 1980)

that extends along the tropical Andes, reaching its southern limit in northern

Argentina. The climate of the region is subtropical monsoonal, with 70–90% of

precipitation occurring during the summer followed by a marked dry winter season.

Therefore, cloud-free satellite images are mainly available from June to August.

In a simplified scheme, two forest types can be differentiated along the

elevation gradient. The lower montane forest extends from 400 to 1700 m of
elevation, and is dominated by a relatively diverse (20–30 tree species per hectare)

semi-evergreen forest. The upper montane forest (1700–2700 m) is a mosaic of

relatively simple forests largely dominated by Alnus accuminata, grassland, and

shrublands (Grau et al. 2003). Above treelines, vegetation is dominated by tall

grasslands.

3.2 Imagery processing

Radiometric consistency is hard to maintain between separate images with repeated

coverage. Among the various aspects of image preprocessing for land cover change
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detection, there are two outstanding requirements: multitemporal image registration

and radiometric correction (Coppin and Bauer 1996). For this study, one Landsat

TM and two Landsat ETM + images of the same area and from different years were

used (table 3). The three images are of near-anniversary dates to reduce the

differences in illumination geometry and vegetation phenology. All images were first

geometrically registered to one base image, using nearest-neighbour resampling. The

resulting misregistration error (rms) is, in all cases, less than 0.3 pixel (table 3). An

area common to all three images was selected for testing the different radiometric

correction methods presented in this paper.

4. Application procedure

We first corrected our set of images with both the absolute (Vogelmann–DOS3) and

the relative (Du et al.) radiometric correction methods presented above. When

looking at the results after applying these methodologies, we found a key limitation

in the relative method developed by Du et al. (2002). When working with a

combination of TM and ETM + images, it is not possible to find a common set of

PIFs. It was this limitation that led us to look for a different procedure for PIFs

selection.

Figure 1. Location of subtropical mountain forests and study area in north-western
Argentina.
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Although Du et al.’s method was developed based on a set of images composed

exclusively by Landsat TM, the algorithm proposed should perform well, even with

a combination of Landsat TM and ETM + images (Du, personal communication).

Even when the theoretical approach and the A(i) calculations do not themselves

present problems in a multisensor arrangement, the selection of PIFs through a

paired (band-to-band) PCA analysis failed to consider all the spectral variation

among the images.

Following Du et al., we compute the PCA between the bands for all the possible

combination of images (i.e. b2_1998 vs. b2_1999, b2_1999 vs. b2_2000 and b2_2000

vs. b2_1998), and found three sets of PIFs (one per each image pair) but with no

common pixels to all images (figure 2). The results of this analysis for the other

bands are similar (not shown). When working with images with differences in the

radiometric response (as is the case of TM and ETM + sensors), this PIFs selection

technique based on paired bands PCA calculation fails to find a common set of PIFs

to all the images from which to construct the common reference scale. From a

theoretical viewpoint, the lack of common PIFs to all of the images involved in any

study means that no portion of the study area remains unchanged, so the pixels

sampled cannot be considered PIFs. Thus, having no real PIFs common to all the

images, it is not possible to build a common reference scale. Then, the gains and

offsets computed for the normalization procedure will not be the correct ones.

Although the method presented by Du et al. (2002) has a solid theoretical basis, the

PIFs selected does not represent the entire radiometric variability of all the images

when the sensor gains have considerable differences.

To test our hypothesis that the radiometric difference between sensors is

responsible for the difficulty of finding common PIFs, we first cross-calibrate the

Landsat TM image according to Vogelmann et al. (2001) and then re-normalize the

images following Du et al. (2002). In this paper, we will refer to this methodology as

Vogelmann–Du. The results achieved following this procedure show a better

classification accuracy than those obtained after applying the original Du et al.

(2002) method. Although this supports our hypothesis, the radiometric consistency

assessed is reduced in band-to-band PIFs radiometric response, compared with the

radiometric consistency reached after applying another more sophisticated radio-

metric correction method (i.e. absolute correction method).

In order to overcome the aforementioned difficulties, we develop a new algorithm,

which simplifies the relative calibration process and improves final results. The

methodology we propose follows the same theoretical approach presented by Du

Table 3. Characteristics of the images used in the study and corregistration results.

Acquisition
date

WRS path/
row

Source/
format

Satellite/
sensor

Number of
GCPsa for
registration

Registration
RMSEb

26 July 1998 231/076 CONAEc/LPGS Landsat 5/TM 34 0.26
06 August

1999
231/076 CONAEc/LPGS Landsat 7/

ETM +
35 0.23

23 July 2000 231/076 CONAEc/LPGS Landsat 7/
ETM +

2 Base image

aGround control points.
bRoot mean square error of x,y coordinate.
cComisión Nacional de Actividades Espaciales, Argentina.
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et al. (2002), but developing a simpler yet more effective procedure for selecting

common PIFs to all the images, without cross-calibrating the Landsat TM and

ETM + images. We will refer to this new method developed by us as the multi-

dimensional PIFs selection (MDPS) procedure.

4.1 MDPS method

The selection of PIFs following the MDPS methodology is based on a three-

dimensional principal-component analysis (3D PCA). After 3D PCA calculations, a

cylinder is constructed where its axis is defined by the PCA major axis, and its radius

is an arbitrary threshold U, generated through an iteration process until there is a

sufficient number of pixels included (i.e. 1% of the pixels of the images) (figure 3).

All the pixels common to the three images that are contained in the cylinder are

selected as PIFs. To decide if a pixel is contained in the cylinder, the minimum

distance between that pixel and the 3D PCA major axis must be determined. If that

distance is less than the cylinder radius, the pixel is contained in the cylinder and will

be selected as a PIF; otherwise the pixel will be rejected.

The 3D PCA major axis could be defined by the vector (x9, y9, z9), and any pixel P

common to the three images could be defined by the vector (x, y, z), where x5band

1_1998, y5band 1_1999, and z5band 1_2000. The minimum distance d between any

Figure 2. Scatter plots of the PIFs selected from band 2 of the three images, according to Du
et al.’s (2002) methodology. A, B, and C correspond to the PIFs selected from paired analysis
of 1998–1999, 1999–2000, and 2000–1998 images, respectively.
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pixel P and the 3D PCA major axis is defined by:

d~ Sx{xð Þ2z Sy{y
� �2

z Sz{zð Þ2
h i1

2

, ð11Þ

where S is the closest point on the 3D PCA axis to the pixel P. S has the same 3D

PCA major axis direction and a magnitude computed as the dot product of P and

3D PCA major axis,

S~ P:PCAð ÞPCA~ xx0zyy0zzz0ð Þ x0;y0;z0ð Þ~R x0;y0;z0ð Þ: ð12Þ

where R5(x.x9 + y.y9 + z.z9).

The distance between S and P is calculated as shown in equation (13),

d~ Rx0{xð Þ2z Ry0{yð Þ2z Rz0{zð Þ2
h i1

2

< U , ð13Þ

where U is the radius of the cylinder. Equation (13) represents the condition for the

pixel P to be included in the cylinder.

This calculation could be extended to be used with any number of images,

according to the general form,

d~ Rx0{xð Þ2z Ry0{yð Þ2zz RN 0{Nð Þ2
h i1

2

< U , ð14Þ

where N is the total number of images and R is computed as

R~ xx0zyy0zzNN 0ð Þ ð15Þ

Figure 3. 3D Scatter plot for band 2 of 1998 (X), 1999 (Y) and 2000 (Z) images, in digital
counts (Q). P is the pixel analysed. S is the closest point on the 3D PCA axis to the pixel P. d is
the minimum distance between P and S. u is the cylinder’s radius (threshold).
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After applying this procedure, all the pixels contained in this cylinder are selected

as PIFs common to the three images. Then, they are used to compute the new gain

and offset for the set of images, according to equations (9) and (10).

5. Evaluation procedure

5.1 Post-correction analysis

To assess the quality of the radiometric corrections, after applying all the

radiometric correction methods (Vogelmann–DOS3, Du et al., Vogelmann–Du

and MDPS), we developed a Quadratic Difference index (QD). Through the QD

index, we analyse the slope of the PCA major axis (SL) between each pair of

analogous bands of each image combination (e.g. b2_1998 vs. b2_1999, b2_1999 vs.

b2_2000 and b2_2000 vs. b2_1998), after the radiometric correction process. If a

pair of images do not show land cover changes and are not affected by radiometric

linear effects (case A), the slope of the major axis of a multi-temporal band-to-band
PCA would be equal to 1, and the scatter plot pattern for each paired bands l of

each image combination n would be a straight line. When there is no land cover

change between the two images, but there are differences in its radiometric responses

due to linear effects (i.e. different gain) (case B), the SL will be greater or less than 1.

The purpose of relative radiometric corrections is to recover case A data from case B

data.

To measure the differences between the actual slope of the PCA major axis and

the ideal case of a PCA slope equal to unity, we compute the QD Index, for all the

possible images combinations as:

QDl~
Xn~N

n~1

1{SLn, lð Þ2, ð16Þ

where SLn,l is the slope of PCA major axis for each paired bands l of each image

combination n. N is the total number of image combinations.

For the case of our set of images, the computation of the QD index for band 2

(QD2) is as follows,

QD2~ 1{SL A, 2ð Þ
� �2

z 1{SL B, 2ð Þ
� �2

z 1{SL C, 2ð Þ
� �2

, ð17Þ

where A, B, and C are the 1998–1999, 1999–2000, and 2000–1998 images
combination, respectively.

In this way, the closer the QD index to 0, the better the overall radiometric

correction process.

5.2 Classification

To further evaluate the impact of the different radiometric correction methods, we

classified both corrected and uncorrected images, following a hybrid classification

technique (unsupervised + supervised). First, an unsupervised classification

(ISODATA) was applied to the newest image (Landsat ETM + , year 2000) to

retrieve 50 different spectral classes. After labelling classes based on a field survey,

we grouped them into five informational classes to be used as training data for a

supervised classification. The classification was designed to evaluate the radiometric
correction methods proposed in this paper. Defining a few, broad and spectrally

differentiated classes increases the probability of finding all the classes labelled in the
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last year image in all the images composing the time series. To check if the five

classes defined have an adequate radiometric separability among classes (Richards

and Jia 1999), we compute the Transformed Divergence (DT) index. A TD value of

1.88 was considered the threshold above which the classes are different enough to be

used in the supervised classification (table 4).

In order to train the supervised classifier, we used as training data the spectral

signature of each of the five classes defined from the newest image (year 2000).

Beside the data needed to train the supervised classification algorithm, site data also

are necessary to validate the classification results (Muchoney and Strahler 2001). A

stratified random (proportionate) sampling method was used to select 70% of the

pixels of each class for training the classifier and the other 30% for testing results.

These spectral signatures statistics were used as input data in a supervised maximum

likelihood classification algorithm (probability threshold 0.05), to classify all the

images. This generalization procedure allows us to obtain thematic maps of past

years (years 1998 and 1999) from data acquired and field-checked at the present time

(year 2000)

The value of a thematic map obtained as a product of the classification process is

clearly a function of the accuracy of the classification (Foody 2002). The most

widely promoted and used accuracy-assessment technique may be that derived from

a confusion or error matrix. The confusion matrix is used to provide a site-specific

assessment of the correspondence between the image classification and ground

conditions. After classifying the images, we assessed the accuracy of the thematic

maps by computing the kappa coefficient (k) and the overall accuracy.

5.3 Land cover change-detection analysis

Change-detection results depend on the quality of the thematic maps used. Land

cover change assessment was computed comparing time series of thematic maps

produced from uncorrected and corrected images. The ‘uncorrected’ set of images

corresponds to the original images without any radiometric correction. We identify

as ‘corrected’ the set of images normalized with the MDPS method, which were used

for further analysis. To illustrate the effects of radiometric correction on change

detection assessment, we compare the overall land cover change for the period 1998–

2000, between uncorrected images and corrected images using MDPS method. The

comparison of the overall change detected is used only as an estimation of the error

extent that could be achieve when working with uncorrected images in multi-date

multi-sensor studies.

Table 4. Transformed divergence class separability indexa.

Class Shadow Forest Grassland Bare soil Rock

Shadow 2.00 1.88 1.99 1.99 2.00
Forest 2.00 1.89 1.92 1.99
Grassland 2.00 1.90 1.99
Bare soil 2.00 1.94
Rock 2.00

aTransformed Divergence index range from 0 to 2.
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6. Results

Table 5 shows the results of each paired band-to-band analysis for all images

combinations. This analysis was applied to images not radiometrically corrected

(original images in digital counts) and to images in which four different radiometric

correction procedures were used (Vogelmann–DOS3, Du, Vogelmann–Du and

MDPS). The SL and QD index values are presented as indicators of the level of

radiometric correction achieved. The lower the QD index, the better the radiometric

correction level.

MDPS procedure (presented in this paper) (table 5(e)) yields SL values very close

to 1 and QD values that are almost 0 for all the bands. This means that the

Table 5. Slopes of the PCA 1ST component and QD index of uncorrected and corrected
images.

Bands

SLa SLa SLa

L5 1998–L7 1999 L7 1999–L7 2000 L7 2000–L5 1998 QD indexb

(a) Uncorrected images
1 1.5124 0.8158 0.7936 0.3391
2 3.1053 0.8414 0.3707 4.8535
3 2.6529 0.9678 0.3938 3.1006
4 1.4004 0.9801 0.6822 0.2617
5 1.2874 1.0189 0.7243 0.1590
7 1.9380 0.9690 0.5015 1.1293
(b) Images in reflectance at surface of the Earth (Vogelman–DOS3 correction method)
1 1.2348 1.0004 0.8041 0.0935
2 1.1569 1.0072 0.8565 0.0453
3 1.3032 1.0066 0.7609 0.1491
4 0.8235 1.0695 1.1396 0.0555
5 1.0220 1.0648 0.9197 0.0111
7 1.2614 1.0041 0.7897 0.1126
(c) Images in digital counts Q (Du et al.’s correction method)
1 1.3083 0.8727 0.8683 0.1286
2 1.0407 0.8785 1.0935 0.0252
3 0.8048 1.1294 1.1027 0.0654
4 0.8089 1.2302 1.0048 0.0895
5 0.6540 1.1727 1.2984 0.2386
7 0.7436 0.9911 1.3562 0.1927
(d) Images in digital counts Q (Vogelman–Du correction method)
1 1.0925 0.9526 0.9584 0.0125
2 1.3652 0.9660 0.7550 0.1946
3 0.9306 0.9518 1.1292 0.0238
4 0.8876 1.2874 0.8712 0.1118
5 0.8252 1.0509 1.1498 0.0556
7 0.7997 0.9259 1.3487 0.1672
(e) Images in digital counts Q (MDPS correction method)
1 0.9723 1.0203 1.0052 0.0012
2 0.9960 1.0075 0.9964 0.0001
3 0.9816 1.0052 1.0135 0.0005
4 0.9562 1.0184 1.0286 0.0031
5 0.9937 0.9942 1.0118 0.0002
7 0.9659 1.0112 1.0183 0.0016

aSlope of the PCA major axis.
bQuadratic Difference Index.
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radiometric differences among PIFs (after correction) are minimal, so the images are

correctly normalized.

The SL values for the Vogelmann–DOS3 absolute radiometric correction

method (table 5(b)) differ from 1, except for the L7_1999–L7_2000 image pair.

The QD index values show values close to 0 but have some deviation from

ideal values in bands 3 and 7. Looking at SL values, a better radiometric correction

level is reached when images of the same sensor (in this case ETM + ) are

normalized.

The results obtained after applying Du et al.’s method, with and without cross-

calibration (table 5(d) and table 5(c)), present several inter-band variations in SL and

QD values, although they show an improvement when cross-calibration is applied as

a first step. Some SL values differ significantly from 1, reaching values greater than

1.3, while the QD index presents values greater than 0.1 for bands 1 and 7 and

greater than 0.2 for band 5. This values do not fit the theoretical assumption of SL

values close to 1 (for normalized images) and can lead to poor inter-image

comparability.

As expected, uncorrected images (table 5(a)) show SL values very different to 1

and QD index values much larger than 0 for most of the bands.

Figure 4 shows all the classification and post-classification results of corrected and

uncorrected images. In the same way as in the post-correction analysis, as discussed

previously in table 5, post-classification results show that the MDPS method and the

Vogelmann–DOS3 method reach the best overall accuracy (OA) and kappa

coefficient (k) values, with minimal differences between them.

The results of MDPS method (figures 4(M), (N), and (O)) show similar values of

both, OA and the k coefficient, of the order of 80% and 0.7, respectively, for

L7_1999 and L5_1998. Also, these values do not differ by more than 15% from the

L7_2000 image taking as the base image for training samples selection.

The Vogelmann–DOS3 absolute correction method (figures 4(d), (e), and (f)),

shows results very close to those obtained through the MDPS approach. The small

differences between these two methods arise in L7_1999 image classification, where

Vogelmann–DOS3 presents a 5–10% improvement with respect to MDPS in OA

and k coefficient.

In the case of the Vogelmann–Du method (figures 4(j), (k), and (l)), the results

present differences in OA of the order of 15% between L7_2000 and L7_1999, and of

30% between L7_2000 and L5_1998, even considering that a cross-calibration was

applied first.

When using Du et al.’s method (figures 4(g), (h), and (i)), the OA and k values are

very low for L7_1999, showing a significant difference in OA with respect to

L7_2000 image. This could be due to the fact that the PIFs selected do not take into

account the radiometric variations among all images, so it is not possible to build a

common reference scale to use for normalization.

For completeness, the classification of the uncorrected images included in

figures 4(a), (b), and (c) shows, once more, the importance of performing a

radiometric correction to ensure inter-comparability of the images.

Table 6 shows the results of change detection analysis for uncorrected images and

corrected images using MDPS method. Table 6(a) shows that change-detection

estimations of uncorrected images present unrealistic change rates. This happens

when training samples obtained from an uncorrected ETM + image are used as a

training set to classify an uncorrected TM image.
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Change-detection estimations using images corrected with MDPS method

(table 6(b)), show the expected change rate between 1998 and 2000. As an example,

the overall change in the forest class is about 5% for the corrected images and about

55% for the uncorrected images (unrealistic value for this area). These results

highlight the importance of radiometric correction in change-detection analysis,

especially when different sensors are used.

Figure 4. Thematic maps obtained through hybrid classification (unsupervised + supervised)
of uncorrected and corrected Landsat TM (L51998) and Landsat ETM + (L71999 and
L72000) images. The base image is L72000. Radiometric corrections include all the
methodologies addressed in this paper (Vogelman–DOS3, Du et al., Vogelman–Du, and
MDPS methods). OA5overall accuracy (%); k5kappa coefficient.
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7. Conclusions

Radiometric corrections of satellite images, either absolute or relative, are necessary

in multi-date multi-sensor change-detection studies, especially if generalization of

remotely sensed data is needed. Unless some processing is performed to ensure the

radiometric comparability between images, any additional procedure, such as

classification and/or change detection, will not be reliable. Furthermore, land cover

change estimates should be carefully evaluated depending on the level of radiometric

consistency among the data used.

It is clear from this paper that classification and change-detection estimates from

radiometrically uncorrected images yield incorrect results. Four different radio-

metric correction methods with different levels of performance and complexity were

tested, one absolute (Vogelmann–DOS3) and three relative (Du, Vogelmann–Du

and MDPS). The results obtained from the absolute radiometric correction method

show a good level of radiometric comparability among images but require data

about sensor characteristics, illumination and observation geometry, estimations of

atmospheric components (i.e. path radiance and molecular absorption), and the

relationship between gain and offsets of the sensors involved. If these data are

available, this is a recommended method because it leads to consistent results and

has an intermediate level of complexity (it requires a certain level of knowledge on

atmospheric corrections).

From the three relative radiometric correction methods tested, only one (MDPS)

provides a good level of radiometric image comparability, similar to the quality

reached with the absolute correction method. The advantage of this method is the

fact that it does not require other data than the images itself. One of the

disadvantages is related to the selection of the Pseudo Invariant Features (PIFs),

which requires the application of a set of procedures previous to normalization of

images. Another point to consider is that as the total number of images increases,

this also increases the difficulty in finding common PIFs. Therefore, the selection of

Table 6. Area covered (km2) and change detection analysis for the period 1998–2000.

(a) Images in digital counts Q (uncorrected)

Class year 1998 1999 2000 1998–1999 1999–2000 1998–2000

Overall
change (%)
1880–2000a

Shadow 0.04 21.85 33.18 21.81 11.33 33.14 24.35
Forest 0 82.04 75.89 82.04 26.15 75.89 55.76
Grassland 0 17.56 13.15 17.56 24.41 13.15 9.66
Bare soil 0 9.35 9.85 9.35 0.5 9.85 7.24
Rock 0 4.01 4.02 4.01 0.01 4.02 2.95

(b) Images in digital counts Q (corrected with MDPS method)

Class year 1998 1999 2000 1998–1999 1999–2000 1998–2000

Overall
change (%)
1998–2000a

Shadow 38.56 22.77 33.21 215.79 10.44 25.35 23.938
Forest 69.24 80.96 76.13 11.72 24.83 6.89 5.071
Grassland 7.9 20.28 13.15 12.38 27.13 5.25 3.864
Bare soil 6.61 5.92 9.37 20.69 3.45 2.76 2.031
Rock 1.51 3.39 4.01 1.88 0.62 2.5 1.840

aOverall change 1998–20005((area2000–area1998)/total area)6100.
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one method (absolute correction) or the other (relative correction) involves a

performance–complexity trade-off.

The aim of this paper was to gain a better understanding of the

radiometric corrections effects in land cover change analysis, in order to

improve data generalization across time, space, and sensors. In regions where

past field data are not available, the possibility of using data from a present-

date image to interpret past-date images is a key factor to assess ecosystems

dynamics. With the added benefit of sufficient temporal coverage, remote sensing

can now be used to make predictions of the Earth’s vegetation dynamics with

respect to future climate scenarios based upon an analysis of these past satellite

observations.
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