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48 Highlights

49  Wild boars produce negative impacts in South America.
50  Ecological niche modelling was used to predict potential wild boar distribution in South 
51 America.
52  Most ecoregions in South America have suitable conditions to sustain wild boar 
53 populations. 
54  Suitable area occupied 85% of Atlantic Forest and 61.3% of Cerrado biodiversity 
55 hotspots.
56  An alarming large number of protected areas are currently or potentially affected by the 
57 species. 
58  Control measures should be adopted to control wild boar impacts on biodiversity.
59
60 Abstract
61 Wild pigs, including wild boar (Sus scrofa) and feral domestic pig (Sus scrofa 
62 domestica), are associated with negative impacts in their native and introduced ranges. We 
63 compiled wild pig occurrence reports and utilized Maximum Entropy modelling to predict 
64 their potential distribution in ecoregions overlaying Argentina, Brazil, Bolivia, Chile, 
65 Uruguay and Paraguay, An analysis of their observed and potential distributions was 
66 carried out in relation to four biodiversity hotspots and 3766 protected areas to estimate the 
67 number of units and percent area currently and potentially invaded. Among biodiversity 
68 hotspots, Atlantic Forest, Cerrado, and Chilean Winter Rainfall-Valdivian Forests included 
69 44.7% of wild pig records. The proportion of suitable area was 85% in Atlantic Forest, 
70 61.3% in Cerrado, 37.5% in Chilean Winter Rainfall-Valdivian Forests, and 5.6% in 
71 Tropical Andes. The number of protected areas with wild pig presence was led by Uruguay 
72 (100%), followed by Chile (20.3%), Argentina (15.8%), Paraguay (9.5%), Bolivia (6.5%), 
73 and Brazil (4.7%). Potential distribution was highest in protected areas of Uruguay (100%), 
74 followed by Paraguay (72.6%), Brazil (58.0%), Argentina (57.4%), Chile (42.2%), and 
75 Bolivia (35.9%). Our work represents the first assessment of wild pig potential distribution 
76 in South America and highlights the potentially devastating impacts of wild pigs on the 
77 regional biodiversity and national conservation targets, especially at mega-diverse areas. 
78 We present a dynamic and web application that can be readily consulted by scientists, 
79 managers and decision makers to improve wild pig control and risk mitigation actions in 
80 the study region.
81
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108 1. Introduction
109 Wild boar (Sus scrofa Linnaeus, 1758) are native to large parts of Europe, Asia and 
110 North Africa, and are now present in all continents except Antarctica, as well as on many 
111 oceanic islands (Barrios-Garcia and Ballari, 2012) making it one of the world’s most 
112 widely distributed mammals (Cuthbert et al., 2022). Similarly, since the early stages of 
113 European colonization, wild boar’s domestic derivative, the domestic pig (Sus scrofa 
114 domesticus), has established naturalized populations in Australasia, the Americas, and 
115 Oceania, in addition to a large number of oceanic islands (Oliver et al., 1993). The success 
116 of wild pigs (from here on referring to wild boar and feral domestic pig) in colonizing a 
117 variety of habitats is partly due to their high reproductive potential (Beasley et al., 2018), 
118 highly plastic diet (Ballari and García-Barrios, 2014), wide climatic and topographic 
119 tolerance (Bosch et al., 2020), and behavioral adaptability under contrasting conditions of 
120 human pressure (Podgórski et al. 2013). 
121 Worldwide, wild pigs are associated with strong negative effects (Barrios-Garcia and 
122 Ballari 2012) and large direct economic impacts (Anderson et al., 2016; FAO, 2020; 
123 Marcos, 2021; Cuthbert et al., 2022). In South America, pigs were introduced by 
124 Portuguese and Spanish explorers, and have established feral populations (Carpinetti et al., 
125 2016; Salvador and Fernandez, 2017). Studies have shown the negative effects of wild pigs 
126 on ecosystem functioning in Brazil (Silveira de Oliveira et al., 2020), Argentina (Ballari et 
127 al., 2015), and Chile (Cuevas et al. 2021), and their impact on the biodiversity in protected 
128 areas has been widely documented (Cuevas et al., 2010; Ballari et al., 2015). The history of 
129 wild boar in the Neotropic goes back more than a century (Skewes and Jaksic, 2015), with 
130 their first introductions occurring in Argentina for hunting purposes during the early 
131 twentieth century and the following dispersion between 1906-1930 (Daciuk, 1978). More 
132 recent waves of introduction took place for hunting during the 1990s, followed by escape 
133 and cross-border dispersal (Pedrosa et al., 2015; Skewes and Jaksic, 2015; García et al., 
134 2011), which led to explosive population growth in the Neotropics (Pedrosa et al., 2015). 
135 Hybridization with feral pigs has been suggested to be intense in southern South America  
136 (Figueroa et al., 2022) as well as Europe (Iacolina et al., 2018).
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137 Despite their considerable impacts on agricultural, ecological systems functioning and 
138 animal health (García-Barrios and Ballari, 2012), little is known about their broad-scale 
139 potential distribution in South America, where published information is either outdated 
140 (e.g., Bonino, 1995; Novillo and Ojeda, 2008) or limited to a specific countries such as 
141 Argentina (Pescador et al., 2009, Ballari et al., 2019; Cuevas et al., 2021), Brazil (Pedrosa, 
142 et al. 2015; Deberdt and Scherer, 2007) and Chile (Skewes and Jaksic, 2015). In the latter 
143 countries, wild pig populations are currently growing and expanding their ranges at 
144 alarming rates (Ballari et al., 2019; Skewes and Jaksic, 2015; Hegel et al., 2022). 
145 Historical or current distributional information is more scarce in Bolivia (Tejeda et al. 
146 2021), Paraguay, and Uruguay, even when in the latter country wild pigs are suggested to 
147 have invaded the entire territory (Altuna et al., 2020; CEEI and Dinama, 2022). To this 
148 date, the work by Salvador and Fernandez (2017) is the most comprehensive review of wild 
149 pig global distribution in South America.  Similarly, information about their current and 
150 potential distribution in biodiversity hotspots and protected areas is incomplete and 
151 scattered, with only a handful of studies conducted in South American countries (Ballari et 
152 al. 2015; Salvador and Fernandez, 2017). This gap of knowledge raises concerns about 
153 impacts that may not have been evaluated in their proper dimension, thus leading to 
154 deficient prevention planning, control and mitigation strategies. 
155 Management and control strategies are being developed throughout the world to 
156 minimize the impacts of wild pigs and to control or eradicate their populations (e.g., Croft 
157 et al., 2020; Bengsen et al., 2014). In addition to the actual observations, predictions of the 
158 potential distribution of wild pigs derived from ecological niche models (ENMs) can 
159 support these efforts. For example, information of the potential distribution of wild pigs in 
160 areas of high conservation priority such as protected areas and biodiversity hotspots can be 
161 used to improve the surveillance and prevention in still uninvaded but suitable areas, 
162 efficiently allocate resources, and prioritize management practices on the most vulnerable 
163 ecosystems. In this sense, ENMs have benefited biodiversity conservation through the 
164 linkage between science and decision processes. ENMs have strengthened conservation 
165 efforts worldwide by allowing more efficient planning for the management of invasive 
166 species (Peterson, 2003), and they can reach their full potential when scientists, public 
167 stakeholders and policy makers are brought together and used them as adaptive 
168 management tools (McShea, 2014). 
169 This study aimed to assess the current and potential spatial distribution of wild pigs in 
170 southern South America, and to analyze their potential impact on biodiversity hotspots and 
171 protected areas in the study region.    
172
173 2. Methods
174 2.1. Modeling workflow and reproducibility
175 We followed a structured format consisting of five modelling steps to provide 
176 transparency and comparability following best-practice standards (Guisan et al., 2017; 
177 Araújo et al., 2019). These steps are (i) Overview/Conceptualization, (ii) Data, (iii) Model 
178 fitting, (iv) Assessment and (v) Prediction. This approach, henceforth referenced as 
179 ODMAP, assures the technical details needed to reproduce the methods (Feng et al., 2019) 
180 and to assess their appropriateness for different purposes. Here, we used the ODMAP 
181 protocol proposed by Zurrell et al. (2020), which was completed using the Shiny web 
182 application ODMAP v1.0 (ODMAP Protocol, Supplementary Information). 
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183 All the analyses were performed using the open source programming language R (R 
184 Core Team 2022). The packages “sf” (Pebesma, 2018) and “stars” (Pebesma, 2021) were 
185 used for manipulation of spatial data. Graphics and maps were done using the package 
186 “ggplot2” (Wickham, 2016). The scripts used to perform the analysis and a list of packages 
187 used are available in a GitHub repository 
188 (https://github.com/lucianolasala/Wild_boar_ENM). To allow better exploration of results, 
189 a dynamic application was developed using Google Earth Engine through its JavaScript 
190 API (https://lucianolasala.users.earthengine.app/view/wild-pigs-south-america), which 
191 incorporates exploration capabilities for ENMs as continuous (suitability index) and binary 
192 (presence/absence) outputs in single or multiple areas of specific interest (hotspots, 
193 ecoregions, PAs), and offers a graphics interface that summarizes habitat suitability metrics 
194 for the selected areas, such as average and range for the continuous ENM and 
195 presence/absence area (sq. km ).
196
197 2.2. Occurrence records, data curation and sampling bias control
198 Presence-only data were used, and included both direct (field observation) and indirect 
199 (camera trapping, tracks) observations of wild boar and feral pigs reported by 
200 knowledgeable collaborators (hunters, field researchers, park rangers, farmers). A complete 
201 list of data sources is provided (Sources of Information, Supplementary Information). 
202 Considering the strong hybridization that exists between wild boar and feral pigs in the 
203 study region, the occurrence records of both taxa were combined in the analyses and are 
204 jointly regarded as “wild pigs”.
205 Records from uncertain sources or with large locational uncertainty (>10 km) were 
206 removed from analysis, including offset locations (e.g. “10 miles N of”).  Records reported 
207 as the centroid of a spatial polygon (e.g., states, protected areas) were also removed, given 
208 the pervasive of this kind of data in ENMs (Park and Davis, 2017; Cheng et al., 2021).
209 Occurrence data were not collected via a standardized sampling scheme, which may 
210 lead to modelling biases (Yackulic et al. 2013). The effects of these biases were minimized 
211 via spatial thinning of records, which can improve model performance (Boria et al., 2014; 
212 Fourcade et al., 2014). Spatial thinning was implemented using the R package “spThin” 
213 (Aiello-Lammens et al. 2015), setting a thinning distance of 10 km and performing 100 
214 iterations. The dataset including the maximum number of records (compared across all 
215 iterations) was used for modeling purposes. 
216    
217 2.3. Environmental variables
218 When modelling niches and predicting species distributions, remote sensing products 
219 can provide standardized measurements of environmental variables that are spatially 
220 continuous, and have a quasi-global coverage at high temporal and spatial resolutions (He 
221 et al. 2015; Pinto-Ledezma and Cavender-Bares 2021). We used remote sensing products, 
222 including precipitation, temperature, biophysical and topographic variables representing 
223 different components of vegetation and ecosystems. After an extensive literature review 
224 (e.g., Park and Lee, 2003; Bosch et al., 2014; McClure et al., 2015; Froese et al., 2017; 
225 Khwarahm et al., 2022), 24 variables were selected on the basis of their potential biological 
226 association with the species’ distribution and their availability through remote sensing. A 
227 list of data sources including the most relevant attributes is provided in the Supplementary 
228 Information (Table S1). All remote imagery was processed using the Google Earth Engine 
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229 (Gorelick et al., 2017) through its JavaScript API. All layers were exported at the default 
230 resolution of 1000 m. 
231 A principal component analysis (PCA) approach was used to reduce multicollinearity 
232 among variables. Because including redundant variables can cause the PCA to 
233 overemphasize their contribution, highly correlated variables (Spearman correlation |r| > 
234 80%) (Dormann et al., 2007) were removed, after which 11 variables remained in the final 
235 set. Following, a PCA was performed on the remaining variables. The first six PCA axes 
236 explained 91.3% of variability and were used as final explanatory variables in the model. 
237 The spatial resolution of analysis was defined by fitting spherical variograms on the PCA 
238 axes, and evaluating each raster’s variance range  to identify the autocorrelation 
239 distanceand. Based on the results a final resolution of 10 km2 was selected for modeling 
240 purposes. 
241
242 2.4. Study region, calibration and projection areas
243 Our study region comprised ecoregions totally or partially overlapping Argentina, 
244 Chile, Brazil, Uruguay, Bolivia and Paraguay. These countries cover 84.1% of South 
245 America (ca. 15,001,900 km2), and include 68 unique ecoregions of which 50 lie 
246 completely inside, and 18 extend into neighboring countries (Olson et al., 2001). 
247 Ecoregions are defined as areas containing distinct sets of biological communities and 
248 species associated to specific geographic and environmental phenomena (Omernik, 2004). 
249 As such, they approximate areas where ecological processes most strongly interact (Orians 
250 1993), and reflect the distribution of species and communities more accurately than do units 
251 based on other global and regional models (Olson et al., 2001). This may be informative 
252 about barriers that have historically constrained the distributional potential of species. 
253  A total of 41 (60.3%) ecoregions had wild pig occurrence records and were used as a 
254 hypothesis of areas that have been accessible to the species over relevant time periods 
255 (Barve et al., 2011; Soberón, 2010), and therefore as calibration area. Based on ecological 
256 criteria (e.g., animal dispersion), the entire area of each of these ecoregions was considered 
257 for model calibration, regardless of their extension beyond administrative boundaries of the 
258 region of interest. Ecoregions without records were used for model projection, also 
259 regardless of their extension beyond the region of interest. Ecoregions spatial data were 
260 downloaded from a database maintained by the World Wildlife Fund (Olson et al. 2001, 
261 https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world). 
262
263 2.5. Model calibration and evaluation
264 A maximum entropy modeling algorithm was used for estimating an environmental 
265 niche and the potential area of distribution after projecting the first on geographical space. 
266 The Maxent software (version 3.3.3 k; Phillips et al., 2006) was used via the R package 
267 “kuenm” (Cobos et al., 2019). The complete occurrence dataset was randomly split into 
268 calibration (75%) and testing (25%) sets, and background sampling of the calibration area 
269 included 100 000 random samples. Initial candidate models were built using five 
270 combinations of feature classes of increasing complexity, with the simplest model including 
271 only the linear feature class, and subsequent models adding the quadratic, product, 
272 threshold and hinge feature classes. Each combination of feature classes was fitted with 
273 seven regularization multiplier values (0.1, 0.25, 0.5, 0.75, 1, 2.5, 5). For better computing 
274 performance, the modeling process was implemented using the “sample with data” (SWD) 
275 format.
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276
277 2.6. Evaluation and selection of best models
278 The performance of candidate models was evaluated in terms of statistical significance 
279 (partial ROC), prediction ability (omission rate; Peterson et al., 2008), and model 
280 complexity (Warren and Seifert, 2011) following the Akaike information criterion 
281 corrected for small sample sizes (AICc; Burnham and Anderson, 2002). Among the models 
282 that were statistically significant and presented omission rates below a defined threshold 
283 (5%), those with ∆AICc up to two units were selected as best models (Burnham and 
284 Anderson, 2002). The “cloglog” output format was used, and posterior binary 
285 transformations were also performed. For further details, the model workflow is described 
286 in the ODMAP protocol.
287
288 2.7. Final model evaluation, projection and extrapolation risk analysis
289 A final model evaluation was conducted using an independent set of occurrences (n = 
290 370) not used for model calibration, that were collected through a survey distributed among 
291 SENASA’s (National Service for Agrifood, Health and Quality of Argentina) 14 regional 
292 centers and their 370 local offices across the country’s territory. The evaluation was done in 
293 terms of AUC ratio (ratio of observed to null expectations), statistical significance (partial 
294 ROC) and omission rates (5%). 
295 The final model was projected to ecoregions not included in model calibration (i.e., 
296 ecoregions without occurrence records). The process was replicated 10 times via 
297 bootstrapping. Extrapolation types used were (a) “free extrapolation”, where responses in 
298 areas environmentally different from the calibration area follow trends in the calibration 
299 environmental data; (b) “extrapolation and clamping”, where the response in areas with 
300 environments distinct from those in the calibration area is clamped to levels present at the 
301 periphery of the calibration region in environmental space; and (c) “no extrapolation”, 
302 where the response is set to zero if the environments in transfer areas are more extreme than 
303 those in areas across which the models were calibrated. A final model prediction was 
304 produced by averaging across all model bootstrap repetitions for each extrapolation type.  
305 The mobility-oriented parity (MOP) (MOP; Owens et al., 2013) metric was used to 
306 analyze the novelty of climate conditions in the projection area relative to the calibration 
307 area. This analysis helps determine areas where strict extrapolation occurs (i.e., transfer 
308 areas with values outside the range of climates in the calibration area). Areas with higher 
309 extrapolative values indicate higher uncertainty, and caution is required when interpreting 
310 likelihood of species presence in such areas. Finally, models representing the standard 
311 deviation and range of suitability values were produced for evaluation.
312
313 2.8. Threshold selection 
314 When applied to ecological problems, such as the potential impact of invasive alien 
315 species, ENM often require a threshold to transform continuous models into binary outputs. 
316 Several methods have been proposed for use with presence-only data (Phillips et al., 2006; 
317 Pearson et al., 2007; Li and Guo, 2013; Liu et al., 2013). Here, we selected a threshold that 
318 maximized the sum of sensitivity and specificity (maxSSS) (Liu et al. 2005, 2013, 2016), 
319 which has good performance in presence-only data scenarios. This approach minimizes 
320 omission errors, which are generally costlier in conservation applications such as 
321 identifying areas under risk for biological invasion (Liu et al., 2005; Jiménez-Valverde and 
322 Lobo, 2007). Then, the mean value of maxSSS was calculated across all 10 replicates of the 
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323 final model, including the calibration and projection areas, and this value was used as 
324 optimum threshold to produce binary models.    
325
326 2.9. Biodiversity hotspots, ecoregions and protected areas
327 Based on the built model, we evaluated habitat suitability at three different spatial 
328 levels, which are relevant in terms of biodiversity conservation and ecosystem functioning: 
329 these were biodiversity hotspots (henceforth denoted as hotspots), ecoregions, and 
330 protected areas (PAs). 
331 Hotspots are regions which meet two criteria: they contain at least 1500 species of 
332 vascular plants (>0.5% of the world’s total) as endemics, and have 30% or less of its 
333 original vegetation (extent of historical habitat cover) remaining (Mittermeier et al., 2004). 
334 Threats to hotspots are similar to, although more intense than, the threats facing 
335 biodiversity worldwide (Brooks et al., 2002). Spatial data of hotspots overlapping total or 
336 partially with the study region were downloaded from the Data Basin database (Hoffman et 
337 al., 2016). For the purpose of our analysis, only the area of each hotspot overlapping our 
338 calibration or projection areas was considered. The presence of wild pig records within 
339 each hotspot was assessed, and the total and percentage of suitable and unsuitable areas 
340 within each hotspot were calculated. 
341 Ecoregions are defined as areas containing distinct sets of biological communities and 
342 species associated to specific geographic and environmental phenomena (Omernik, 2004). 
343 These units approximate the areas where ecological processes interact most strongly 
344 (Orians 1993), and reflect the distribution of species and communities more accurately than 
345 do units based on other global and regional models (Olson et al., 2001). This may be 
346 informative about barriers that have historically constrained the distributional potential of 
347 species. The presence of wild pigs was assessed within each ecoregion. Since ecoregions 
348 reflect the history of the changing distributions of species, if the species was detected in one 
349 or more sites inside an ecoregion, it was assumed that it could potentially find suitable 
350 habitats across a large proportion of the area. Under this rationale, ecoregions were 
351 classified as “invaded” if the presence of wild pigs was confirmed, or “unknown (UNK)” 
352 otherwise. Also, ecoregions were classified as suitable if they overlapped (totally or 
353 partially) with suitable areas for wild pigs, or unsuitable otherwise. Finally, the continuous 
354 niche model was used to derive summary statistics (mean, minimum, maximum, standard 
355 deviation) of suitability in each ecoregion.
356 Data on protected areas were downloaded and processed from the Protected Planet 
357 database (UNEP-WCMC and IUCN, 2022) using the R package “wdpar” (Hanson, 2021). 
358 We also included additional PAs considered relevant for biodiversity conservation but not 
359 included in this database. Relevant sources of information from each country were 
360 consulted with regards to the presence of wild pigs within PAs (see Sources of Information 
361 in Supplementary Information). For the purpose of PAs analyses, these data were 
362 complemented with the wild pig presence records in PAs used in the modeling process. 
363 The analysis was performed at two levels by selecting PAs where: (i) wild pig 
364 occurrences have been reported within their boundaries, and (ii) the binary model shows 
365 spatial overlap between PAs and suitable areas. Firstly, PAs were classified as “invaded” 
366 under the assumption that if the presence of wild pigs was confirmed within their 
367 boundaries, the whole PA could potentially be invaded. Secondly, the total number of PAs 
368 overlapping (totally or partially) with suitable areas was calculated in each country, and 
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369 PAs were classified with regards to their risk status as “at risk” if they overlapped suitable 
370 areas, or “not at risk” otherwise. 
371 Finally, we estimated the binary model’s capacity to correctly classify PAs with 
372 regards to their risk status. The following performance metrics were calculated: accuracy 
373 (model’s ability to correctly classify PAs’ status), sensitivity (proportion of correctly 
374 classified PAs at risk), specificity (proportion of correctly classified PAs not at risk), 
375 omission (type I) and commission (type II) errors. 
376 The PAs included in the analyses have been categorized by the International Union for 
377 Conservation of Nature (IUCN) into the following management categories (Dudley, 2008): 
378 “strict nature reserve” (Ia), “wilderness area” (Ib), “national park” (II), “natural monument 
379 or feature” (III), “habitat or species management area” (IV), “protected landscape or 
380 seascape” (V), and “protected area with sustainable use of natural resources” (VI). The 
381 frequency distribution of PAs among IUCN management categories was analyzed for PAs 
382 predicted to be at risk according to our binary model.
383     
384 3. Results
385 3.1. Wild pig occurrences
386 Occurrence records covered a temporal range of 116 yrs. (1906-2022) and consisted of 
387 6502 records with acceptable levels of precision (≤10 km), which were distributed as 
388 follows: Argentina (2479), Bolivia (36), Brazil (3931), Chile (155), Paraguay (69), and 
389 Uruguay (202). Additionally, information on wild pig occurrences were collected from 278 
390 PAs in these countries. 
391  
392 3.2. Niche modelling and suitable areas
393 After spatial thinning of occurrence data, 2511 wild pig records were retained for 
394 modeling purposes. A total of 35 candidate models were produced. One model passed pre-
395 defined criteria (statistically significant model meeting omission rate and AICc criteria) and 
396 was selected as the best model. This model was parameterized using a regularization 
397 multiplier of 1 and linear, quadratic and product features. 
398 The final model is presented in two forms; as continuous “cloglog” output and as 
399 binary model classifying the study region as suitable or unsuitable (Figs. 1 and 2). County-
400 level results are presented for the continuous and binary models (Supplementary 
401 Information, Figs. S1-S6). According to the binary model, 35.8% of the territory in the 
402 studied countries was suitable, and country-level suitability was led by Uruguay (97.3%), 
403 followed by Paraguay (48.3%), Argentina (43.6%), Brazil (35.9%), Chile (15.3%) and 
404 Bolivia (12.5%) (Table 1). 
405
406 3.3. Final model evaluation, projection and risk of  extrapolation
407 The independent evaluation showed that the final model performs well (mean AUC 
408 ratio: 1.98; partial ROC: p < 0.0001; omission rate at 5%: 0.046). Based on these results, 
409 the model was projected to ecoregions without wild pig records (projection area). The MOP 
410 analysis identified only very small areas of extrapolation in projection region located in 
411 northern Brazil, western Bolivia, northern and southern Chile (Supplementary Information, 
412 Fig. S17). Only the model built using a “free extrapolation” algorithm was selected for 
413 further analyses.
414
415 3.4. Biodiversity hotspots, ecoregions and protected areas

https://en.wikipedia.org/wiki/International_Union_for_Conservation_of_Nature
https://en.wikipedia.org/wiki/International_Union_for_Conservation_of_Nature
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416 Three hotspots (Atlantic Forest, Cerrado, and Chilean Winter Rainfall-Valdivian 
417 Forests) laid completely inside the study region, and one (Tropical Andes) overlapped only 
418 partially (Fig. 3). A total of 3076 (44.8%) wild pig records were located within hotspots. 
419 The first three hotspots included 44.7% of all records, whereas Tropical Andes included 
420 0.1%. The proportion of suitable area inside each hotspot was led by the Atlantic Forest 
421 (85%), followed by Cerrado (61.3%), Chilean Winter Rainfall-Valdivian Forests (37.5%), 
422 and Tropical Andes (5.6%) (Table 2). The hotspot areas with highest habitat suitability 
423 were Atlantic Forest (mean: 0.706; SD: 0.142), followed by Cerrado (mean: 0.606; SD: 
424 0.192), Chilean Winter Rainfall-Valdivian Forests (mean: 0.457; SD: 0.267), and Tropical 
425 Andes (mean: 0.122; SD: 0.203) (Fig. 4 and Fig. S12-S15, Supplementary Information). 
426 Individual binary models for each hotspot are presented (Fig. S8-S11, Supplementary 
427 Information). 
428 At the ecoregion level, suitability ranged between maximum values in Araucaria Moist 
429 Forests (mean: 0.772; range: 0.166-0.967; SD: 0.12) and lowest values in Atacama Desert 
430 (mean: 0.001; range: 0-0.066; SD: 0.004). Continuous models for individual ecoregions are 
431 presented (Fig. S18-S85, Supplementary Information). Of all 68 ecoregions, 41 (60.3%) 
432 were reported to have wild pigs, 64 (94.1%) overlapped totally or partially with suitable 
433 environmental conditions, and 18 (26.5%) had mean suitability values above the mean 
434 threshold suitability value of 0.579 (range = 0.503-0.599; SD = 0.03) (Table S2, 
435 Supplementary Information). Only Solimões-Japurá Moist Forests in northern Brazil, Lake 
436 on the border between western Bolivia and Perú, Central Andean Dry Puna between 
437 northwest Argentina, northeast Chile and southwest Bolivia, and Atacama Desert in 
438 northern Chile, were classified as completely unsuitable.
439 The number of protected areas (PAs) currently affected by wild pig presence was led 
440 by Uruguay (100%), followed by Chile (20.3%), Argentina (15.8%), Paraguay (9.5%), 
441 Bolivia (6.5%), and Brazil (4.7%). When analyzing the risk status of PAs, Uruguay (100%) 
442 also ranked first, followed by Paraguay (72.6%), Brazil (58.0%), Argentina (57.4%), Chile 
443 (42.2%), and Bolivia (35.9%) (Table 3). The complete dataset of PAs with their respective 
444 information is presented (Excel file Protected Areas, Supplementary Information).
445 Regarding the capacity of our binary model to correctly classify PAs in terms of their 
446 risk status, the overall accuracy was 48.1% (1,810/3,766), sensitivity was 82.8% (231/279), 
447 and specificity was 45.3% (1,579/3,487). Omission and commission errors were 17.1% and 
448 54.7%, respectively.  
449 The distribution of PAs at risk among IUCN management categories varied by country 
450 (Table S3, Supplementary Information). When considering all six countries combined, the 
451 percentage of PAs at risk in each category was led by protected landscapes (73.3%), 
452 followed by national parks (63.9%), natural monuments or features (59.1%), habitat/species 
453 management areas (57.6%), wilderness areas (57.1%), strict nature reserves (55.7%), areas 
454 with undefined category (48.1%), and protected areas with sustainable use of natural 
455 resources (44.6%). 
456
457 4. Discussion
458 4.1. Wild pig potential distribution
459 According to our model, the potential distribution of wild pigs occupies large 
460 percentages of each country’s territory, being 97.3% in Uruguay, 48.3% in Paraguay, 
461 43.6% in Argentina, 35.9% in Brazil, and 15.3% in Chile. In Uruguay, the estimated 
462 suitable area occupied 97.3%, or 2.4% less that that reported by Salvador and Fernandez 



11

463 (2017), who also reported the percentage of invaded area for Argentina (41.9%), Brazil 
464 (7.5%), Chile (8.9%) and Paraguay (7.3%). 
465 When comparing our results with other research in individual countries, the differences 
466 are stark. For example, in Argentina, although we could confirm the current presence of 
467 wild pigs in the same ecoregions and provinces reported by Ballari et al. (2019), our model 
468 estimated a potential distribution area 2.2 times larger than the distribution reported by 
469 these authors (43.6% vs. 13.6% of the total territory). Similarly, in Chile, our model 
470 estimated a potential distribution area 4.4 (150 100 vs. 27 600 km2) times larger than the 
471 distribution area reported by Skewes and Jaksic (2015). In Brazil, we confirmed wild pig 
472 occurrences in 205 previously unreported municipalities compared with the most 
473 exhaustive analysis (Hegel et al., 2022), where wild pigs were reported in 1152 
474 municipalities across the country. Hence, our data expands the current range for wild pigs 
475 in this country raising the total number of currently invaded municipalities by 17.8%. Also, 
476 we found that nearly 36% of Brazil’s territory was classified as suitable, with the southern 
477 states of Santa Catarina, Paraná, São Paulo, Minas Gerais, Goias and Mato Grosso do Sul 
478 being the most vulnerable. Although this agrees broadly with the most severely affected 
479 areas according to other research (Pedrosa et al., 2015; Salvador and Fernandez, 2017), the 
480 distribution reported in the present work (which includes both occupied and potentially 
481 invadable areas) was nearly 4 times larger (35.9% vs. 7.5%).
482 The broader distributions reported in our study compared with previous ones from 
483 Argentina, Brazil, and Chile could be explained by the different methodological approach 
484 used and by the inclusion of a large number of new records spanning a longer period of 
485 time. In general, other studies estimated wild pig distributions based on mapping 
486 occurrences at the level of administrative divisions (Pedrosa et al., 2015; Salvador and 
487 Fernandez, 2017) or by drawing minimum convex polygons around occurrence records 
488 (Ballari et al., 2019). Contrarily, with our approach, we identified not only effectively 
489 occupied areas, but also areas where the species may be present but has not be detected, and 
490 also regions with suitable conditions which have not been invaded as yet (Peterson et al., 
491 2011). The latter scenario could be explained by an unfilled niche in the study region 
492 (Guisan et al., 2014), which is expected as a result of recent colonization and ongoing 
493 dispersal processes and has been reported in wild pigs globally (Strubbe et al., 2014) and in 
494 the Neotropics (Sáles et al., 2017). We are aware of the perils of training niche models in 
495 regions undergoing invasion and not in distributional equilibrium (Peterson, 2005). 
496 However, occurrence data from invaded regions offer additional insights of novel 
497 environments and biotic contexts, and have been extensively used (e.g., Rouget et al., 2004; 
498 Muñoz and Real, 2006). 
499 Niche models must be evaluated rigorously prior to any use as management tools, in 
500 forecasting or risk mapping (Peterson, 2005). In invasive species applications, model 
501 validation should be conducted first within the training region to assure significant 
502 predictive ability before model transfer to other regions. Such validation should ideally rely 
503 on an independent dataset with different source of biases to efficiently validate the model 
504 (e.g., different origin, collected with different sampling methods) to avoid incorrect or 
505 incomplete results (Lobo et al., 2008; Peterson et al., 2008). Not surprisingly, as 
506 independent datasets are seldom available, robust model assessments and predictive 
507 performance are quite rare in ENM (Joppa et al., 2013). In our work, we highlight the 
508 model validation performed prior to model projection, and that the results obtained 
509 reinforce the reliability of the model.   

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5980497/#ece34014-bib-0037
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5980497/#ece34014-bib-0034
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510     
511 4.2. Wild pigs in ecoregions, biodiversity hotspots, and protected areas
512 Our results show that wild pigs are currently present in 60.3% of the ecoregions under 
513 analysis, suggesting that established populations are highly likely. This scenario represents 
514 a 1.5-fold increase compared with the 39.7% reported in previous research conducted in the 
515 same countries, except Bolivia (Salvador and Fernandez, 2017). Also, in our study, most 
516 (94.1%) ecoregions overlapped totally or partially with suitable environmental conditions, 
517 and only four ecoregions (Solimões-Japurá Moist Forests, Lake, Central Andean Dry Puna, 
518 Atacama Desert) were classified as completely unsuitable. Among these, the last three are 
519 cold deserts with extreme weather conditions, of which extremely low precipitation most 
520 likely explains their unsuitability for wild pig occurrence. 
521 In terms of relevant areas for biological conservation, results are at least concerning. 
522 Hotspots harbor half of the world’s plant species and more than a third of mammal, bird, 
523 reptile, and amphibian species in 2.3% of Earth’s land surface. Moreover, the introduction 
524 of exotic species is having a huge impact on the native communities of many hotspots 
525 (Mittermeier et al., 2004). Here, we identified four hotspots which are currently invaded by 
526 wild pigs, each encompassing variable areas of suitable habitat for wild pigs, ranging 
527 between 5.6% and 85% of their total area within the study region. Together, these hotspots 
528 harbor an important number of threatened (vulnerable, endangered and critically 
529 endangered) endemic and non-endemic mammal (42 and 136), bird (177 and 267), and 
530 amphibian (326 and 394) species (see Table 11 in Mittermeier et al., 2004,). 
531 At the PAs level, the number of PAs in the study region that are invaded or at risk is 
532 worrying. As the impact of wild pigs on ecosystems is increasingly acknowledged 
533 worldwide, assessing their potential effects on these areas becomes of paramount 
534 importance for policy-making and management (Ballari et al., 2015). Whereas other 
535 authors have reported great geographical expansion (Pescador et al., 2009) and increased 
536 wild pig abundances (Carpinetti and Merino, 2003; Pérez Carusi et al., 2009) in PAs of 
537 Argentina, impact assessments on PAs from Chile have been less systematic (Skewes and 
538 Jaksic, 2015). In Brazil, according to Salvador and Fernandez (2017), either wild pig 
539 presence has not been evaluated in most PAs due to the recent onset of the invasion, or the 
540 available assessments have been biased with only a few of the IUCN’s categories of PAs (I 
541 and II) being considered (Sampaio and Schmidt, 2013; Ziller and Dechoum, 2013). Lastly, 
542 to our knowledge, this is the first systematic review of currently and potentially invaded 
543 PAs in Uruguay, Bolivia and Paraguay which hinders any comparisons based on previous 
544 reports.     
545 The sensitivity of our binary model was nearly 83%, and showed a relatively small 
546 omission error which makes this model a useful tool for the identification of invaded PAs. 
547 Contrarily, the commission error was relatively high. We should note that, in the context of 
548 ENM, this error can have a twofold contribution from true and apparent commission errors 
549 (Anderson et al., 2003). Firstly, true commission error is represented by the proportion of 
550 truly negative PAs falsely classified as suitable, which can lead to model overprediction. 
551 Although this error has been cited as a problem (Brotons et al., 2004; Stockman et al., 
552 2006) in terms of potential distribution, we stress that this caveat should not be seen as a 
553 shortcoming but rather as a desirable trait in the identification of areas susceptible to 
554 colonization by an invasive species, as was suggested by Peterson et al., (2011). Also, 
555 considering the invasiveness of wild pigs and their negative impacts on ecosystem, this 
556 overprediction adheres to a “precautionary principle” weighing in favor of environmental 
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557 protection in the case of uncertainty (Cooney, 2004). Secondly, apparent commission error 
558 derives from suitable regions correctly predicted as presence, but that cannot be 
559 demonstrated as such because the species exists but has not yet been reported. This may be 
560 the case when inadequate sampling exists (Karl et al. 2002) and could explain part of the 
561 commission error detected in our results. Also, PAs located in suitable areas which have not 
562 yet  been invaded might explain part of this error, which should lead to a swift 
563 improvement of active surveillance inside and near those PAs. It is expected that these 
564 frequencies will change in the future as new wild pig reports become available from 
565 previously unoccupied PAs or previously occupied PAs where detections had failed. In any 
566 case, this scenario is expected considering that wild pigs seem to be in the process of 
567 expansion in the study region.
568 In comparison with the most comprehensive and updated study in the region (Salvador 
569 and Fernandez, 2017), we found higher proportions of PAs that are already invaded or at 
570 risk in every country, except Uruguay, where all PAs are reported to be affected. The 
571 notable increases in the proportion of PAs with confirmed presence of wild pigs was led by 
572 Chile (16.7%) and followed Paraguay (9.5%), Argentina (3.6%), and Brazil (2.3%). These 
573 rises could be accounted for by at least three factors, separately or in combination; namely a 
574 different methodological approach as explained before, a more thorough and updated 
575 compilation of  wild pig records, or a true expansion of wild pig populations and their 
576 establishment in previously uninvaded areas in recent years.
577 Our study is unique in at least three contributions, by (i) adding novel information 
578 about invasion and habitat suitability in biodiversity hotspots; and (ii) providing an updated 
579 list of PAs currently occupied or at risk for wild pig invasion where prompt allocation of 
580 resources for management and control should be prioritized, and (iii) developing a dynamic 
581 web application that offers interested parties such as scientists, managers and decision 
582 makers, access to relevant information that can be used as a conservation tool, either alone 
583 or in combination with other resources. Finally, our work raises yet another alert about the 
584 current and potential impacts of wild pigs on the regional biodiversity, especially at mega-
585 diverse areas and on national conservation targets, if rapid and stringent measures are not 
586 adopted.
587
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Bolivia 1 139 200 142 200 (12.5%) 997 000 (87.5%)

Brazil 8 784 900 3 155 800 (35.9%) 5 629 100 (64.1%)

Chile 980 800 150 100 (15.3%) 830 700 (84.7%)

Paraguay 437 900 211 600 (48.3%) 226 300 (51.7%)

Uruguay 211 600 205 900 (97.3%) 5700 (2.7%)

Total 15 001 900 5 369 900 (35.8%) 9 632 000 (64.2%)
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1069 Table 2. Biodiversity hotspots in the study region. The estimated area inside the study region is presented, followed by suitable and 
1070 unsuitable areas and their respective percentages. The number of wild pig records inside each hotspot is presented followed by its 
1071 percentage. 

1072

Hotspot Total area Suitable (%) Unsuitable (%) Records (%)
Atlantic Forest 1 337 900 1 137 900 (85) 200 000 (15) 1174 (17.1)
Cerrado 2 114 200 1 296 700 (61.3) 817 500 (38.7) 1263 (18.4)
Chilean Winter Rainfall- Valdivian Forests 507 300 190 500 (37.5) 316 800 (62.5) 635 (9.2)
Tropical Andes 841 200 50 000 (5.6) 836 200 (94.4) 4 (0.1)
Total 4 800 600 2 675 100 (55.7) 2 170 500 (44.3) 3076 (44.8)
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1086 Table 3. Country-level summary of (a) total number of protected areas (PAs) and their accumulated area, (b) total number and 
1087 percentage of PAs with reports of wild boar followed by the total and percent area comprised, and (c) total number and percentage of 
1088 PAs that partially or completely overlap with the area suitable for the establishment of wild boar according to our model. Areas are 
1089 reported in km2.     
1090    
1091   

(a) Protected areas (b) Reports (c) Model predictions
Country Total Area PAs invaded Area invaded PAs at risk Area at risk
Argentina 408 267 521 64 (15.7%) 123 465 (46.1%) 233 (57.1%) 157 184 (58.8%)
Bolivia 153 401 089 10 (6.5%) 126 593 (28.2%) 55 (35.9%) 311 486 (77.7%)
Brasil 2899 2 951 455 135 (4.7%) 348 438 (11.8%) 1682 (58.0%) 1 610 810 (54.6%)
Chile 192 171 062 39 (20.3%) 40 372 (23.6%) 81 (42.2%) 93 296 (54.5%)
Paraguay 95 27 677 9 (9.5%) 6117 (22.1%) 69 (72.6%) 8476 (30.6%)
Uruguay 19 7851 19 (100%) 7851 (100%) 19 (100%) 7851 (100%)
Total 3766 3 826 654 278 (7.4%) 652 835 (17.1%) 2139 (56.8%) 2 189 103 (57.2%)
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1092 Legends for figures
1093
1094 Figure 1. Continuous ecological niche model for wild pigs in southern South America. 
1095 Habitat suitability is shown for ecoregions completely or partially overlaying Argentina 
1096 (AR), Bolivia (BO), Brazil (BR), Chile (CL), Paraguay (PY), and Uruguay (UY).
1097
1098 Figure 2. Binary-response ecological niche model for wild pigs in southern South America. 
1099 Habitat suitability is presented as presence/absence areas in ecoregions completely or 
1100 partially overlaying Argentina (AR), Bolivia (BO), Brazil (BR), Chile (CL), Paraguay 
1101 (PY), and Uruguay (UY).
1102
1103 Figure 3. Biodiversity hotspots of the study region: Atlantic Forest (AF), Cerrado (CE), 
1104 Chilean Winter Rainfall-Valdivian Forests (CF), and Tropical Andes (TP).
1105  
1106 Figure 4. Continuous models showing habitat suitability in biodiversity hotspots overlaying 
1107 the study region: Atlantic Forest (A), Cerrado (B), Chilean Winter Rainfall-Valdivian 
1108 Forests (C), and Tropical Andes (D).  
1109
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