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ABSTRACT. The study of optimality conditions and constraint qualification is a key topic in nonlinear
optimization. In this work, we present a reformulation of the well-known second-order constraint quali-
fication described by McCormick in [17]. This reformulation is based on the use of feasible arcs, but is
independent of Lagrange multipliers. Using such a reformulation, we can show that a local minimizer ver-
ifies the strong second-order necessary optimality condition. We can also prove that the reformulation is
weaker than the known relaxed constant rank constraint qualification in [19]. Furthermore, we demonstrate
that the condition is neither related to the MFCQ+WCR in [8] nor to the CCP2 condition, the companion
constraint qualification associated with the second-order sequential optimality condition AKKT 2 in [5].

Keywords: Nonlinear programming, second-order optimality conditions, constraint qualification.

1 INTRODUCTION

In this paper, we consider the nonlinear optimization problem of the form:

Minimize f (x)
s. t. hi(x) = 0, for i = 1, . . . ,m

g j(x)≤ 0, for j = 1, . . . , p
(1.1)

where the functions f : Rn → R,hi : Rn → R, i = 1, . . . ,m,g j : Rn → R, j = 1, . . . , p are twice
continuously differentiable on Rn.

We denote by
Ω = {x ∈ Rn : h(x) = 0,g(x)≤ 0}

the feasible set of problem (1.1). For each x ∈ Ω we define as A(x) = { j ∈ {1, . . . , p} : g j(x) = 0}
the index set of active inequality constraints at x.
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770 A NOTE ON THE MCCORMICK SECOND-ORDER CQ

The notion of optimality and, especially, of how to characterize an optimal solution is crucial
for the study of nonlinear optimization problems due to its close relation to the construction of
algorithms to find such points.

The best-known first-order analytical optimality condition for (1.1) is the Fritz-John property
presented in [9]: given a feasible point x of (1.1), there exist multipliers (µ0,λ ,µ) ∈ R1+m+p

such that, µ0 ≥ 0, and

µ0∇ f (x)+
m

∑
i=1

λi∇hi(x)+
p

∑
j=1

µ j∇g j(x) = 0,

µ j ≥ 0,µ jg j(x) = 0, j = 1, . . . , p.

However, the Fritz-John optimality conditions can be satisfied by many points which are not local
optimal solutions to the problem when µ0 = 0. Thus, when an additional regularity condition is
assumed in the feasible set, the Fritz-John conditions become the most useful and important
stationary properties for (1.1): the well-known Karush-Kuhn-Tucker conditions. We say that a
feasible point x of problem (1.1) verifies the Karush-Kuhn-Tucker conditions (KKT conditions
in [15]) if there exist multipliers (λ ,µ) ∈ Rm+p such that

∇ f (x)+
m

∑
i=1

λi∇hi(x)+
p

∑
j=1

µ j∇g j(x) = 0,

µ j ≥ 0,µ jg j(x) = 0, j = 1, . . . , p.
(1.2)

The vectors λ and µ presented in (1.2) are known as Lagrange multipliers. The set of vectors
(λ ,µ) satisfying (1.2) at x is denoted by ∆(x).

A point that verifies (1.2) is a stationary point of the Lagrangian function associated to (1.1):

l(x,λ ,µ) = f (x)+
m

∑
i=1

λihi(x)+
p

∑
j=1

µ jg j(x). (1.3)

Unfortunately, as we have already mentioned, (1.2) is not a first-order necessary optimality con-
dition for a local minimizer. First-order constraint qualifications are conditions in the constraints
under which it can be claimed that, if x is a local minimizer, then x is a stationary point of
the Lagrangian function (1.3). The most widely used first-order constraint qualification is the
linear independence of the gradients of equality and active inequality constraints at a given fea-
sible point (LICQ). It is well-known that LICQ implies that ∆(x) is a singleton. There are other
weaker first-order constraint qualifications in the literature which vary from easily verifiable but
also somewhat restrictive in some situations to very abstract and difficult to check, but enjoyed by
many feasible sets. On the one hand, among the easily verifiable conditions we can mention: the
Mangasarian-Fromovitz condition (MFCQ) presented in [16]; the constant-rank constraint qual-
ification (CRCQ) discussed in [13]; the relaxed constant-rank constraint qualification (rCRCQ)

shown in [19]; the constant positive linear dependence condition (CPLD) described in [7, 20]
and the relaxed constant positive linear dependence condition (rCPLD) given in [6]. On the

Trends Comput. Appl. Math., 23, N. 4 (2022)
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other hand, among those more abstract and difficult to check but weaker first-order constraint
qualifications we can mention: pseudonormality in [9]; quasinormality presented in [12]; the
cone continuity property (CCP) described in [5]; Abadie’s CQ shown in [1] and Guignard given
in [11].

To check the local optimality in the candidates obtained using the KKT conditions, second-order
necessary optimality conditions are studied and developed. These conditions take into account
the curvature of the Lagrangian function over critical directions.

Given a KKT point x with multiplier (λ ,µ) ∈ ∆(x) we define as

C(x) =

d ∈ Rn :
∇hi(x)⊺d = 0, i = 1, . . . ,m
∇g j(x)⊺d = 0, j ∈ A(x) : µ j > 0
∇g j(x)⊺d ≤ 0, j ∈ A(x) : µ j = 0


the critical cone or cone of critical directions at x ∈ Ω. We are interested in the so-called strong
second-order optimality condition (SSOC) described in [10,17]: assume that x is a feasible point
and (λ ,µ) ∈ ∆(x), then SSOC holds at x with multiplier (λ ,µ) if

dT
∇

2l(x,λ ,µ)d ≥ 0, (1.4)

for all directions d ∈C(x).

It is well established in the literature that, if a local minimizer of (1.1) verifies LICQ, then there
is a unique KKT multiplier vector (λ ,µ) for which SSOC holds (see [9]). Strong second-order
constraint qualifications are conditions in the constraints under which it can be claimed that, if
x is a local minimizer then x verifies the KKT condition and there is, at least, a KKT multiplier
vector (λ ,µ) that verifies SSOC.

In the last few years, weak constraint qualifications have been studied with the aim of obtaining
theorems with strong results.

In [4], the authors have proved that if x is a local minimizer that verifies CRCQ defined in [13]
then for all (λ ,µ) ∈ ∆(x), SSOC (1.4) holds. In [6], the authors observed that the same result
proved with CRCQ can be demonstrated using rCRCQ presented in [8]: if x is a local minimizer
that verifies rCRCQ then for all (λ ,µ) ∈ ∆(x), SSOC (1.4) holds.

Recently, in [2], the SSOC has been obtained by means of a “modified” Abadie constraint quali-
fication (see Theorem 3.2 in [2]). However, we have noted that the “modified” Abadie constraint
qualification introduced in [2] is not a proper constraint qualification as it involves the sign of the
multipliers associated with the active inequality constraints in its definition.

In [18], the authors have introduced the notion of critical regularity condition (CRC) and have
proved the validity of SSOC at a point of local minimum when CRC holds at this point. It is
worth mentioning that even though CRC ensures the existence of Lagrange multipliers in a given
solution, it is not a constraint qualification since its definition depends on the objective function.

Trends Comput. Appl. Math., 23, N. 4 (2022)
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772 A NOTE ON THE MCCORMICK SECOND-ORDER CQ

Some of the second-order practical algorithms (see for example [3]) take into account the analysis
of the Hessian of the Lagrangian function in the following tangent subspace:

C0(x) =
{

d ∈ Rn :
∇hi(x)⊺d = 0, i = 1, . . . ,m
∇g j(x)⊺d = 0, j ∈ A(x)

}
.

Clearly, for a feasible point x for which ∆(x) ̸= /0, C0(x) ⊆ C(x) and C0(x) is independent of
the Lagrange multiplier associated with a given KKT point. Considering C0(x), we can state the
so-called weak second-order optimality condition: assume that x is a feasible point and (λ ,µ) ∈
∆(x), then WSOC holds at x with multiplier (λ ,µ) if

dT
∇

2l(x,λ ,µ)d ≥ 0, (1.5)

for all d ∈ Rn such that d ∈C0(x).

In [8], the authors have proved that if x is a feasible point that satisfies MFCQ and the weak
constant-rank condition (WCR, see Definition 3.3), then there exists (λ ,µ) ∈ ∆(x) such that
WSOC (1.5) holds. Then in [4], the same results have been proved for all (λ ,µ) ∈ ∆(x).

In [5], the authors have introduced the second-order cone-continuity property (CCP2), a second-
order constraint qualification strictly weaker than the joint condition MFCQ+WCR [8], CRCQ
[13], and rCRCQ [19], which can be used in the global convergence analysis of the second-order
algorithms defined in [3, 8, 14]. The CCP2 condition is the companion second-order constraint
qualification associated with the sequential second-order optimality condition called AKKT 2
(see definition 3.1 in [5]) and the authors have proved that if x is a feasible point that satisfies
CCP2, then there exists a multiplier (λ ,µ) ∈ ∆(x) for which WSOC holds.

In Theorem 4 of the original paper written by McCormick [17], it is shown that a local minimizer
verifies WSOC using the following first and second-order constraint qualification based on arcs:

• A feasible point x verifies the McCormick first-order constraint qualification (McCormick
FOCQ) presented in [17] if for any nonzero vector d ∈ L(x) being L(x) the linearized
constraint set for Ω given by:

L(x) = {d ∈ Rn : ∇hi(x)⊺d = 0, i = 1, . . . ,m;∇g j(x)⊺d ≤ 0, j ∈ A(x)} (1.6)

there exists an arc α(t) contained in the feasible set such that α(0) = x,α
′
(0) = d, and α

is differentiable ∀t ∈ [0,δ ].

• A feasible point x verifies the McCormick second-order constraint qualification (Mc-
Cormick SOCQ) in [17] if for any non-zero vector d ∈ C0(x) there exists a twice
differentiable arc α(t) such that α(0) = x,α

′
(0) = d and ∀t ∈ [0,δ ]

hi(α(t)) = 0, i = 1 . . . ,m;
g j(α(t)) = 0,∀ j ∈ A(x).

Trends Comput. Appl. Math., 23, N. 4 (2022)
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N. S. FAZZIO, M. D. SÁNCHEZ and M. L. SCHUVERDT 773

It is worth mentioning that although C(x) is the cone that explicitly appears in SSOC, the first-
order cone of feasible variations L(x) (1.6) is a more natural approximation of the tangent di-
rections of the feasible set Ω and C0(x) ⊂ C(x) ⊂ L(x). The set L(x) is essential and has to be
taken into account to demonstrate the existence of the multipliers at a local minimizer. In fact, it
appears in McCormick FOCQ because it demonstrates the existence of the Lagrange multipliers
in a given solution, but it does not ensure that (1.4) holds. At the same time, McCormick shows
that McCormick SOCQ is a second-order CQ which does not imply McCormick FOCQ.

In this work, we present a strong second-order CQ (Definition 2.1) which is a reformulation of
the McCormick FOCQ and McCormick SOCQ and is independent of the sign of the Lagrange
multiplier associated with a KKT point. Using such a reformulation, we can show that a lo-
cal minimizer verifies SSOC. We also show that the reformulation is weaker than the rCRCQ
described in [19] and is neither equivalent to MFCQ+WCR in [8] nor to CCP2 presented in [5].

The rest of this paper is organized as follows. In Section 2 we describe the formal definition
of the reformulation of McCormick FOCQ and McCormick SOCQ. In Section 3, we show the
relationships between other strong second-order CQs. In Section 4, we present some concluding
remarks.

2 THE REFORMULATION OF MCCORMICK FOCQ AND MCCORMICK SOCQ

Definition 2.1. Let x ∈ Ω be a feasible point. We say that x verifies the reformulation of the
McCormick FOCQ and McCormick SOCQ (REF-McCormick) if for any nonzero vector d ∈
L(x) there exists a twice differentiable arc α(t),∀t ∈ [0,δ ], such that α(0) = x,α

′
(0) = d and

∀t ∈ (0,δ ]
hi(α(t)) = 0, i = 1, . . . ,m;
g j(α(t)) = 0,∀ j ∈ A(x) : ∇g j(x)⊺d = 0;
g j(α(t))< 0,∀ j ∈ A(x) : ∇g j(x)⊺d < 0.

(2.1)

The following theorem establishes that REF-McCormick is a strong second-order constraint
qualification. We include the proof here for completeness.

Teorema 2.1. Suppose that x∗ ∈ Ω is a local minimum of (1.1) and that REF-McCormick holds
at x∗. Then x∗ is a KKT point and for every (λ ,µ) ∈ ∆(x∗), (1.4) holds.

Proof. Let us suppose that x∗ is a local minimizer of (1.1). Then, ∀d ∈ L(x∗), by the re-
formulated condition REF-McCormick, there exists a twice differentiable arc α(t) such that
α(0) = x∗,α

′
(0) = d and ∀t ∈ [0,δ ], (2.1) holds. Thus, f (α(t)) ≥ f (x∗) and we have that

∀d ∈ L(x∗): ∇ f (x∗)⊺d ≥ 0. Then,

−∇ f (x∗) ∈ (L(x∗))◦ =
{

z ∈ Rn : z =
m

∑
i=1

λi∇hi(x∗)+
p

∑
j=1

µ j∇g j(x∗),µ j ≥ 0 ∀ j ∈ A(x∗)
}
.

The notation C◦ indicates the polar cone of C. Therefore, x∗ is a KKT point.

Trends Comput. Appl. Math., 23, N. 4 (2022)
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774 A NOTE ON THE MCCORMICK SECOND-ORDER CQ

Let us consider a Lagrange multiplier vector (λ ∗,µ∗)∈ ∆(x∗) and a nonzero direction d ∈C(x∗).
Then, by REF-McCormick, d is tangent of a twice differentiable arc α(t) (where t ⩾ 0) along
which α(0) = x∗, α ′(0) = d and (2.1) holds.

Let us define ℓ(t) = l(α(t),λ ∗,µ∗). Following the feasibility and complementarity property we

have that ℓ(0) = f (x∗)+
m

∑
i=1

λ
∗
i hi(x∗)+

p

∑
j=1

µ
∗
j g j(x∗) = f (x∗). By the KKT condition:

ℓ′(0) = ∇xl(x∗,λ ∗,µ∗)T d = 0

and
ℓ′′(0) = dT

∇
2
x l(x∗,λ ∗,µ∗)d.

Thus, using Taylor on ℓ around t = 0, we obtain that

ℓ(t) = f (x∗)+
t2

2
dT

∇
2
x l(x∗,λ ∗,µ∗)d +o(t2).

Then, from the definition of ℓ and (2.1) we have that

f (α(t)) = f (x∗)+
t2

2
dT

∇
2
x l(x∗,λ ∗,µ∗)d +o(t2).

Since x∗ is a local minimizer, ∀t small enough

0 ≤ f (α(t))− f (x∗)≤ t2

2
dT

∇
2
x l(x∗,λ ∗,µ∗)d +o(t2).

Dividing by t2 the last inequality and taking limits when t → 0, we obtain the proof. □

3 RELATIONS

In this section we present the relationship between REF-McCormick and other well-known
second-order CQs.

Definition 3.2. (Ref. [19]) Let x ∈ Ω. We say that the relaxed constant rank constraint qualifica-
tion rCRCQ holds if there exists a neighbourhood V of x such that for every index set J ⊂ A(x),
the set

{∇hi(y)}i=1,...,m ∪{∇g j(y)} j∈J

has the same rank for all y ∈V ∩Ω.

Teorema 3.2. Suppose that x∗ ∈ Ω and that rCRCQ holds at x∗. Then, REF-McCormick holds
at x∗.

Proof. Let us consider a direction d ∈ L(x∗). Without loss of generality we rename the equality
constraints as ci(x) = hi(x), i = 1, . . . ,m and the inequality constraints as cm+ j(x) = g j(x), j =
1, . . . , p.

Trends Comput. Appl. Math., 23, N. 4 (2022)
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Define the index set I0(x∗,d) = { j ∈ {1, . . . ,m+ p} : ∇c j(x∗)⊺d = 0}.

According to this hypothesis, the family of gradients {∇ci(y)}i∈I0(x∗,d) has the same rank for
every y in a neighbourhood N of x∗. Let us suppose that the rank of the family {∇ci(y)}i∈I0(x∗,d)

is l, and we denote as IrCR the index of the linearly independent vectors, then l = |IrCR|.

This means that, in N, l functions of the family {∇ci(y)}i∈IrCR are independent. Without loss
of generality we can assume that the first l functions c1, . . . ,cl are independent and the other
functions (if they exist) depend on c1, . . . ,cl .

Define the vector function as c : Rn →Rl by c(x) = (c1(x) . . .cl(x))⊺ and consider C : Rn+1 →Rl

given by
C(y, t) := c(x∗+ td + y). (3.1)

Thus,
C(0,0) = c(x∗) = 0

Moreover, using the chain rule, the Jacobian of C with respect to y is the matrix

Cy(y, t) = Jc(x∗+ td + y)

and, in particular,
Cy(0,0) = Jc(x∗).

Since the gradients {∇ci(x∗)}i∈IrCR are linearly independent, the matrix Cy(0,0) has rank l.

Without loss of generality we can assume that the rank of Cy(0,0) is equal to l with respect to
the first l coordinates of vector y. Denote y = (y1,y2) where y1 = (y1, . . . ,yl),y2 = (yl+1, . . . ,yn).

The Implicit Function Theorem (Theorem 2.13 described in Spivak [22]) ensures that near
(y, t) = (0,0) there exists an implicit continuously differentiable function r̄ : Rn−l+1 →
Rl , r̄(y2, t) = y1 such that C((r̄(y2, t),y2), t) = 0 and r̄(0,0) = 0. Let us define the function
r : (−ε0,ε0)→ Rl as r(t) = r̄(0, t). Then the curve r(t) is a differentiable arc for which

C((r(t),0), t) = 0 (3.2)

and r(0) = 0 hold.

Let us show that r′(0) = 0. By (3.2), we have that Cy1((r(t),0), t)r′(t)+Ct((r(t),0), t) = 0 and,
taking t = 0

Cy1(0,0)r′(0)+Ct(0,0) = 0. (3.3)

By (3.1), Ct(y, t) = Jc(x∗+ td + y)d. Then, since d ∈ L(x∗),

Ct(0,0) = Jc(x∗)d = 0.

Therefore, using the matrix Cy(0,0) which has rank l and (3.3), we obtain that r′(0) = 0.

Using r(t), we define, on a suitable open interval containing t = 0, the differentiable arc

α(t) = x∗+ td + r(t).

Trends Comput. Appl. Math., 23, N. 4 (2022)
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By construction, α(0) = x∗, α ′(0) = d and we have that

c(α(t)) = c(x∗+ td + r(t)) =C((r(t),0), t) = 0

on (−ε,ε).

If i ∈ A(x∗) but i /∈ I0(x∗,d), we have that ∇ci(x∗)⊺d < 0. In this case, consider the auxiliary
function φ(t) = ci(α(t)) which satisfies

φ(0) = ci(α(0)) = ci(x∗) = 0

and
φ
′(0) = ∇ci(x∗)⊺α

′(0) = ∇ci(x∗)⊺d < 0.

Then, using Taylor’s theorem, we obtain that there exists εi > 0 such that φ(t) < 0 for all t ∈
(0,εi). Taking ε = min{εi}, we finish the proof. □

Counterexample 1. rCRCQ is strictly stronger than REF-McCormick.

In R2, consider (x∗1,x
∗
2) = (0,0) and the following inequality constraints

g1(x1,x2) = x1;
g2(x1,x2) = x1ex2 .

Then,
∇g1(x1,x2) = (1,0), ∇g1(0,0) = (1,0);
∇g2(x1,x2) = (ex2 ,x1ex2), ∇g2(0,0) = (1,0).

Hence, rCRCQ fails.

For any non-zero vector d ∈ L(0,0) = {(d1,d2) : d1 ≤ 0,d2 ∈R}, we consider the following two
cases:

In the first one, we take into account the directions d = (0,d2). We propose the curve α(t) ∈C2

given by α(t) = (0,d2t) ∀t ∈ [0,δ ] such that α(0) = (0,0),α
′
(0) = d. Then g1(α(t)) = 0 and

∇g1(0,0)⊺d = 0 ∀t ∈ (0,δ ].

For the second constraint, we have ∇g2(0,0)⊺d = 0 and g2(α(t)) = 0 ∀t ∈ (0,δ ].

In the second case, we consider d = (d1,d2), d1 < 0. Then, there exists a curve α(t)∈C2 given by
α(t) = (d1t,d2t) ∀t ∈ [0,δ ] such that α(0) = (0,0), α ′(0) = d. Furthermore, since g1(α(t)) = d1t
we obtain that ∇g1(0,0)⊺d = d1 < 0 and g1(α(t))< 0 ∀t ∈ (0,δ ].

For g2, we have g2(α(t)) = d1ted2t . Then, ∇g2(0,0)⊺d = d1 < 0 and g2(α(t)) = d1ted2t < 0,
∀t ∈ (0,δ ].

Hence, REF-McCormick holds.

Trends Comput. Appl. Math., 23, N. 4 (2022)
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Definition 3.3. (Ref. [8]) Let x ∈ Ω. We say that the weak constant rank condition WCR holds if
there is a neighbourhood V of x such that the matrix made of the gradients

{∇hi(y)}i=1,...,m ∪{∇g j(y)} j∈A(x)

has the same rank for all y ∈V.

Definition 3.4. (Ref. [16]) We say that x ∈ Ω satisfies the Mangasarian-Fromovitz constraint
qualification if the gradients {∇hi(x)}i=1,...,m are linearly independent and there exists a vector
d ∈ Rn such that ∇hi(x)⊺d = 0, i = 1, . . . ,m and ∇g j(x)⊺d < 0, j ∈ A(x).

The following counterexamples show that MFCQ+WCR and REF-McCormick are independent.

Counterexample 2. REF-McCormick does not imply WCR+MFCQ.

In R2, consider (x∗1,x
∗
2) = (0,0) and the inequality constraints defined by

g1(x1,x2) = x1;
g2(x1,x2) = x1 − x2

2;
g3(x1,x2) = x1 + x2;
g4(x1,x2) =−x1 − x2.

Then,
∇g1(x1,x2) = (1,0);
∇g2(x1,x2) = (1,−2x2);
∇g3(x1,x2) = (1,1);
∇g4(x1,x2) = (−1,−1);

and L(0,0) = {(d1,−d1) : d1 ≤ 0}. For any non-zero vector d ∈ L(0,0) consider the curve α(t)∈
C2, α(t) = (td1,−td1),∀t ∈ [0,δ ] which verifies α(0) = (0,0),α

′
(0) = d and, ∀t ∈ (0,δ ]

g1(α(t)) = td1 < 0, ∇g1(0,0)⊺d < 0;
g2(α(t)) = td1(1− td1)< 0, ∇g2(0,0)⊺d < 0;
g3(α(t)) = 0, ∇g3(0,0)⊺d = 0;
g4(α(t)) = 0, ∇g4(0,0)⊺d = 0.

Clearly, REF-McCormick holds. And, it is trivial that MFCQ does not hold.

Counterexample 3. MFCQ+WCR does not imply REF-McCormick.

Consider the following example given in [18]. In R3, consider (x∗1,x
∗
2,x

∗
3) = (0,0,0) and the

following inequality constraints

g1(x1,x2,x3) =−x1 + x2 − x2
3;

g2(x1,x2,x3) =−x1 − x2;
g3(x1,x2,x3) =−x1;
g4(x1,x2,x3) =−x2

1 − x2
2 − x2

3 + x3.
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Then,
∇g1(x1,x2,x3) = (−1,1,−2x3), ∇g1(0,0,0) = (−1,1,0);
∇g2(x1,x2,x3) = (−1,−1,0), ∇g2(0,0,0) = (−1,−1,0);
∇g3(x1,x2,x3) = (−1,0,0), ∇g3(0,0,0) = (−1,0,0);
∇g4(x1,x2,x3) = (−2x1,−2x2,−2x3 +1), ∇g4(0,0,0) = (0,0,1).

It is easy to see that WCR+MFCQ holds.

We will see that REF-McCormick does not hold.

We have that L(0,0,0) = {(d1,d2,d3) : d1 ≥ 0,−d1 ≤ d2 ≤ d1,d3 ≤ 0}. Let us take a generic arc
α(t) = (α1(t),α2(t),α3(t)) for t ∈ [0,δ ].

Let us consider the direction d = (0,0,d3), d3 < 0. Then, ∇gi(0,0,0)⊺d = 0 for i = 1,2,3 and
∇g4(0,0,0)⊺d = d3 < 0.

As the arc has to be feasible for t ∈ [0,δ ] and (2.1) must hold, the equalities: g1(α(t)) =
g2(α(t)) = g3(α(t)) = 0 must be verified, ∀t ∈ (0,δ ].

However, this is a contradiction since the unique arc which can be considered is the null one.
Therefore, REF-McCormick fails.

In [5] the authors have presented the CCP2 condition defined below.

Let us consider x∗ ∈ Ω. For x ∈ Rn define the cone

CW (x,x∗) =
{

d ∈ Rn : ∇hi(x)⊺d = 0, i = 1, . . . ,m;∇g j(x)⊺d = 0, j ∈ A(x∗)
}
.

and denote by KW
2 (x) the following set:

⋃
(λ ,µ) ∈ Rm ×Rp

+

µ j = 0 for j /∈ A(x∗)



(
m

∑
i=1

λi∇hi(x)+ ∑
j∈A(x∗)

µ j∇g j(x),H

)
,

such that H ⪯
m

∑
i=1

λi∇
2hi(x)+ ∑

j∈A(x∗)
µ j∇

2g j(x) on CW (x,x∗)


where we write A ⪰ B if dT Ad ≥ dT Bd for all d ∈ Rn. The set KW

2 (x) is a convex cone included
in Rn ×Sym(n) where Sym(n) denotes the set of symmetric matrices of order n, [5].

Definition 3.5. (Ref. [5]) We say that x∗ ∈ Ω satisfies the second-order cone-continuity property
CCP2 if the set-valued mapping (multifunction) x 7−→ KW

2 (x), is outer semicontinuous at x∗, that
is,

limsup
x→x∗

KW
2 (x)⊂ KW

2 (x∗).

The authors proved that CCP2 is less stringent than MFCQ+WCR and rCRCQ. In the following
counterexamples we show that REF-McCormick does neither imply nor is implied by CCP2.

Trends Comput. Appl. Math., 23, N. 4 (2022)
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Counterexample 4. REF-McCormick does not imply CCP2.

Consider the following example given in [21] where the authors proved that CCP2 fails. In R2,
consider (x∗1,x

∗
2) = (0,0) and the inequality constraints given by

g1(x1,x2) =−x1;

g2(x1,x2) = x1 +max{x1,0}2ex2
2 .

Then

∇g1(x1,x2) = (−1,0),
∇g2(x1,x2) = (1+2max{x1,0}ex2

2 ,2x2 max{0,x1}2ex2
2), ∇g2(0,0) = (1,0);

and L(0,0) = {(0,d2) : d2 ∈ R}. For any nonzero vector d ∈ L(0,0) there exists the curve α(t) ∈
C2, α(t) = (0,d2t), ∀t ∈ [0,δ ] such that α(0) = 0,α

′
(0) = d and, ∀t ∈ (0,δ ]

g1(α(t)) = 0, ∇g1(0,0)⊺d = 0;
g2(α(t)) = 0, ∇g2(0,0)⊺d = 0.

Clearly, REF-McCormick holds.

Counterexample 5. CCP2 does not imply REF-McCormick. In R2, consider the following
example given in [5]: (x∗1,x

∗
2) = (0,0) and the equality and inequality constraints

h1(x1,x2) = x1;
g1(x1,x2) =−x2

1 + x2;
g2(x1,x2) =−x2

1 + x3
2.

We have
∇h1(x1,x2) = (1,0), ∇h1(0,0) = (1,0);
∇g1(x1,x2) = (−2x1,1), ∇g1(0,0) = (0,1);
∇g2(x1,x2) = (−2x1,3x2

2), ∇g2(0,0) = (0,0).

As a result, we see that rCRCQ fails at (x∗1,x
∗
2). Now, since CW ((x1,x2),(0,0)) = {(0,0)}, we get

KW
2 (x1,x2) = R×R+× Sym(2). Clearly, KW

2 (x1,x2) is outer semicontinuous on R2 and CCP2
holds.

We will see that REF-McCormick does not hold. We have that L(0,0) = {(0,d2) : d2 ≤ 0}. Let us
take d = (0,d2),d2 < 0, and a generic arc α(t) = (α1(t),α2(t)) for t ∈ [0,δ ]. As the arc has to be
feasible and (2.1) must hold, the equalities: h1(α(t)) = g2(α(t)) = 0 must be verified, ∀t ∈ (0,δ ].

But, this is a contradiction. Therefore, REF-McCormick fails.

In Figure 1, we show the relationship between the CQs discussed in this article.
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LICQ

MFCQ + WCR rCRCQ

CCP2 REF-McCormick

/

/

Figure 1: Relationship of second-order CQs. An arrow between two CQs means that one is
strictly stronger than the other.

4 FINAL REMARKS

In the present paper, we have presented the condition called REF-McCormick, a second-order
constraint qualification which unifies McCormick FOCQ and McCormick SOCQ conditions pre-
sented in [17]. Using REF-McCormick we have proved that a local minimizer verifies SSOC. We
have also shown that REF-McCormick is weaker than the strong second-order condition rCRCQ
described in [19]. Furthermore, we have demonstrated that REF-McCormick is independent of
CCP2 and MFCQ+WCR conditions, which imply WSOC.
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