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Abstract

The concept of star-dagger matrices was introduced in 1984 by Hartwig and Spindelbock. While they com-

pletely characterized the star-dagger matrices by using a block decomposition of the form [ g g ] , they

also proposed the following open problem:
“Can the triangular form [ Ig g
In this paper, we have attempted this open problem by using an upper-triangularization of Schur’s type for a

} be used to obtain further results on the star-dagger matrices?”

square matrix, namely, the core-EP decomposition. Furthermore, similar problems regarding bi-dagger and
bi-EP matrices are investigated.

Keywords: Star-dagger matrix, partial isometry, bi-normal, bi-dagger, bi-EP, EP matrix, normal matrix,
group matrix, Moore—Penrose inverse
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1. Introduction

A square complex matrix A is said to be star-dagger if its conjugate transpose A* commutes with its
Moore-Penrose inverse Af. Star-dagger matrices were formally defined in 1984 by Hartwig and Spindelbdck
[9]. This class includes certain well-known classes of matrices as special cases such as idempotent matrices,
partial isometries, and normal matrices. The class of normal matrices includes in turn hermitian, skew-
hermitian, and unitary matrices. Together with the star-dagger matrices, three other types of matrices
were studied in [9], namely, bi-normal, bi-dagger, and bi-EP matrices. The first of these was introduced

by Campbell [3] in order to extend the normal matrices. The other two classes are generalizations of the
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concept of EP matrix [11]. Various authors [2, 4, 5, 7] have studied the inter-relationship between the classes
of normal, bi-normal, bi-dagger, star dagger, partial isometry, idempotent and orthogonal projectors.

The objective of this work is to obtain new properties and characterizations for star-dagger matrices by
using the core-EP decomposition of a matrix. Furthermore, similar problems regarding bi-dagger and bi-EP
matrices are also studied.

The paper is organized as follows. Section 2 provides the notation used in this paper and some preliminary
results. Section 3 deals with partial isometries and star-dagger matrices by using the core-EP decomposition.
Sections 4 and 5 offer new characterizations of the bi-dagger and bi-EP matrices, respectively. The main tool
is the core-EP decomposition. Finally, Section 6 is devoted to the study of matrices of index 2. More precisely,

it is proved that in this case, the concepts of 2-EP , 2-index EP, and bi-dagger matrices are equivalent.

2. Notation and preliminaries results

Throughout this paper, we denote the set of m x n complex matrices by C™*™. The symbols A*, N'(A),
R(A), and rk(A) will stand for the conjugate transpose, null space, range (column space), and rank of
A € C™*"_ respectively. Moreover, AT € C™*™ represents the Moore-Penrose inverse A € C™*™, i.e., the

unique solution to the four equations [1]:
(1) AATA= A, (2) ATAAT = AT (3) (AAT)* = AAT, (4) (ATA)* = ATA.

The Moore-Penrose inverse induces the orthogonal projectors Py := AA" and Q4 := ATA onto R(A) and
R(A*), respectively.

The index of A € C™"*", denoted by Ind(A), is the smallest nonnegative integer k such that rk(A*) =
rk(A**1). When Ind(A) < 1, the matrix A is called a group matriz (GM, for short). A special subset
of the GM matrices are the well-known EP matrices. Recall that a matrix A € C"*™ is an EP matriz if
R(A) = R(A*) or, equivalently, P4 = Q4 [11].

For any two square complex matrices A and B of the same size, the commutator of A and B will be
denoted by [A, B] = AB — BA.

Recall that A € C™*™ is a partial isometry if it verifies AT = A*. As mentioned in the Introduction,
in order to extend the square partial isometries, Hartwig and Spindelbock [9] defined the star-dagger (SD,
for short) matrices as the square matrices for which A* commutes with A, that is, A € C**™ is SD if
[A*, AT] = 0.

The following inclusions for C"*" were proved in [9]:

{Orthogonal projectors} C {Partial isometries} C {SD},



{Orthogonal projectors} C {Idempotents} C {SD}.

Together with the SD matrices, three other types of matrices were studied in [9]. The first of them are
called bi-normal matrices. A matrix A € C"*" is bi-normal if [AA*, A*A] = 0. This type of matrices are
an extension of normal matrices to matrices of arbitrary index. The other two classes are called bi-dagger
and bi-EP matrices. A matrix A € C"*" is called bi-dagger and bi-EP, if (A")2 = (A2)" and [Pa, Q4] = 0,
respectively. Note that both bi-dagger and bi-EP are extensions of EP matrices to matrices of arbitrary

index. The relationship between these matrix classes as given on [9] is given below:
{bi-normal} C {bi-dagger} C {bi-EP}. (2.1)

It was also proved

{SD} N {bi-normal} = {SD} N {bi-dagger} = {SD} N {bi-EP}.

In [12] H. Wang introduced a new triangular decomposition of Schur’s type for a square matrix. It was

proved that for any matrix A € C"*" of index k = Ind(A), there exists a unitary matrix U € C™*™ such that

T 8
A=U U, (2.2)
0 N

where T' is a nonsingular matrix of size ¢ X ¢ whose diagonal entries are nonzero eigenvalues of A, and N is
nilpotent with Ind(N) = k. This representation of A is called the core-EP decomposition of A. Notice that
if A is nonsingular (that is, & = 0) if and only if ¢t = n, and A is nilpotent if and only if ¢ = 0.

Henceforth, we can assume Ind(A) = k > 1 whenever the core EP decomposition is used.

Lemma 2.1. Let A € C"™*" be written as in (2.2), m €N, and s = [£]. Then Ind(A™) = s and

™ Ty, I ,
A™ =U U*, Tpo=» T'SN™'7, (2.3)
0 N =0
is the core-EP decomposition of A™ with t = rk(T™) = rk(A™*), and N™ is nilpotent of index s. In
particular, the Moore-Penrose inverse of A™ is given by
T™)* A, —(T™)* Ay T (N™)T
Q;LA"I (Nm)T - S)jnAan"m(]\/vrn)Jr

where

Ay = (T™(T™) + Q)Y and Q= T (In—t — Qum).

Proof. Let 7 = ms — k. Note that Ind(A™) = s. In fact, when m < k, we have m(s — 1) < k by definition
of ceiling function. Therefore, tk((A™)%) = rk(A**") = rk(A*7T™) = rk((A™)*+1) and rk((A™)%) =



k(A7) = rk(AF) < rk(AF=1) < rk((A™)*~1).

On the other hand, if k& < m, then rk(A™) = rk(A**+") = tk(AF7Tm) = rk((A™)?).

Now, as tk(T™) = rk(T) = rk(A*) = rk((A™)*) and clearly N™ is nilpotent of index s, we get that (2.3) is
the core-EP decomposition of A™. Finally, (2.4) follows from [6, Theorem 3.9]. O

Henceforth I,, will refer to the identity matrix of order n. From above lemma we derive the following

expressions for the orthogonal projectors

I, 0 (T™)*ApT™  (T™)* A
Pam =U U, Qam=U U*, meN.  (2.5)
0  Pym QEALT™  Qum + Q5 AL Q0
Remark 2.2. (i) Ty =S and A; = (TT* + Q.Q%) 1, where Q; = S(I,_; — Qn).
(i) Ty =TS 4+ SN and Ay = (T?(T?)* 4 QQ3) ", where Qy = (T'S 4+ SN)(I,,_; — Qn>).
(iii) If SN* =0 then Q; = S and Ay = (TT* + SS*)~ L.

(iv) If S(N*)% = 0 then Qp = T'S + SN (Ii_s — Qu2) and Ay = (T2(T2)* + Q,05) .

3. Star-dagger matrices and the core-EP decomposition

In this section, we provide some results concerning the characterizations of partial isometries and star-
dagger matrices by using the core-EP decomposition.

Recall that the concept of unitary (isometry) matrices has been extended as partial isometry to rectangular
matrices, using the Moore-Penrose inverse. Later, the concept of partial isometry was extended to SD
matrices. Also, from [9, Remark 3] it follows that the class {normal} is a subset of {SD}. Further, the two
classes coincide in case of nonsingular matrices.

Next, we characterize partial isometries and their powers by using the core-EP decomposition.
Theorem 3.1. Let A € C"*™ be written as in (2.2) and m € N. Then the following conditions are equivalent:
(a) A™ is a partial isometry;

(b) N™ is a partial isometry, Ny, = Iy, and T,,(N™)* = 0.

Proof. By definition, A™ is a partial isometry if (A™)* = (A™)T. So, from (2.3) and (2.4) we have (A™)* =
(A™)T if and only if the following conditions simultaneously hold:

(1) (T™)" Am = (T)7;

(i) —(T™)* A T (N™)T = 0;



(i) 25,8, = T;
(iv) (N™)F = Q5 A T (N = (N™)7.

As T and A,, are nonsingular, clearly conditions (i)-(iv) are equivalent to A,, = I, T,,(N™)* = 0, and

(N™)* = (N™)'. Thus the conclusion.

Corollary 3.2. Let A € C*"*" be written as in (2.2). Then the following conditions are equivalent:

(a) A is a partial isometry;
(b) N is a partial isometry, Ay = I, and SN* = 0.
Proof. Follows from Theorem 3.1 for m = 1 and Remark 2.2 (i).

From [9], we know that if A is a partial isometry, A% need not be a partial isometry.

2/3 —1/3 0
Example 3.3. Let A= | 2/3  2/3 0]. A straightforward computation yields
~1/3 2/3 0
2/3 2/3 —1/3 5/9 2/9 —4/9 5/9 2/9 —4/9
At=|_1/3 2/3 2/3 |, A*=|2/9 8/9 2/9|, (A)T=]2/9 8/9 2/9
0O 0 0 —4/9 2/9  5/9 —4/9 2/9 89

Thus, it is clear that A is a partial isometry but A2 is not.

Next, we give necessary and sufficient conditions for the square of a partial isometry to be a partial

isometry.

Corollary 3.4. Let A € C"*™ be written as in (2.2) such that A is a partial isometry. Then the following

conditions are equivalent:
(a) A% is a partial isometry;
(b) N? is a partial isometry, Ay = Iy, and SN(N?)* = 0.

Proof. It is a consequence from Theorem 3.1 for m = 2, Corollary 3.2, and Remark 2.2 (ii).

Note that if A is written as in (2.2), a necessary condition for A to be a partial isometry is that N is also a
partial isometry. Since the class of square partial isometries is a proper subset of the class of SD matrices, it

is natural to ask whether a similar result is valid for the case of SD matrices. Next, we answer that question.

Before, we need the following auxiliary lemma.

O

O



Lemma 3.5. Let A € C"*". Then the following conditions are equivalent:

(a) A is SD;

(b) [AA*A Al =0;

(c) AM™A*A = AA*A™, for all integer m > 2;

(d) ATA™A* = A*A™ AT, for all integer m > 2.

Furthermore, if A is written as in (2.2), then SN* =0 and T, S* = T~ 185*.

Proof. (a) < (b). By [9, Proposition 2.

(b) = (c). Note that [AA*A, A] = 0 is equivalent to A?A*A = AA*A% Now, the implication follows by
induction on m.

(c) = (b). Trivial.

(c) = (d). It follows that by pre and post- multiplying by Af in A™A*A = AA*A™ and by using the fact
that A* = ATAA* = A*AAT,

(d) = (c). This follows by pre and post- multiplying by A in ATA™A* = A*A™ A" and by using the fact
that Af is an inner inverse of A.

Finally, we assume that A is written as in (2.2) and satisfies (c) for m = k. Then A¥(A*A) = (AA*)A¥,

which is equivalent to

T Ty T T*S TT*+5S* SN* TF T
0 0 S*T S*S+ N*N NS* NN* 0 0
THT*T + T3, S*T  TFT*S + Ty (5*S 4+ N*N) (TT* + SS*)T* (TT* + SS*)T},
= = N
0 0 NS*T* NS*Ty,
whence SN* = 0, because T is nonsingular. Moreover, from (2.3) it is clear that T, S* =T 188% O

Theorem 3.6. Let A € C"*™ be written as in (2.2). Then the following conditions are equivalent:
(a) A is SD;
(b) N is SD, TA; = AT, SN* =0, and SN = A;SNN*N.

Proof. (a)=(b). By Lemma 3.5 we know that A is SD if and only if A(AA*)A = (AA*)A2. In particular,

SN* = 0. Moreover, from Remark 2.2 we have Afl =TT* + SS*. In consequence,
TAT'T TAT'S+SNN*N ATIT? AT

A(AAY)A = (AA)A? & = . (3.0
0 N2N*N 0  NN*N?



where f’g =TS+ SN.

Since T is non-singular, it is clear that (3.1) holds if and only if
TA, = AT, TA['S+SNN*N =A[YTS+SN), and N2N*N = NN*NZ (3.2)

Since TA; = AT, the second equality in (3.2) is equivalent to SN = A} SNN*N. Also, by Lemma 3.5 it is
clear that the third equality in (3.2) is equivalent to N being a SD matrix. This completes the implication.
(b)=-(a). Follows from Lemma 3.5. O

Now, we obtain conditions under which the square of an SD matrix is again SD.

Theorem 3.7. Let A € C™"*" be written as in (2.2) such that A is SD. Then the following conditions are

equivalent:
(a) A2 is SD;
(b) N2 18 SD, [T27A1_1TT*+SNN*S*} = O; SN(NQ)* — 07 and (AIITT*+SNN*S*)f2N2 — T2N2(N2)*N2.

Proof. According to Lemma 2.1 we have

, T T
A2 =T U, (3.3)
0 N?
is the core EP decomposition of A2.
(a)=(b). From (3.3) and Theorem 3.6 we obtain
A?is SD & T?Ay = AgT?, TH(N?)* =0, ToN? = A,ToN*(N?)*N?, N?is SD. (3.4)

Moreover, as A is SD, by applying again Theorem 3.6 we have that SN* = 0 and TA; = A;T. In consequence,
from Remark 2.2 we have Afl =TT* + SS*, and so
A7 = THT) 4 (D)

= T*T** + (TS + SN)(TS+ SN)*

= T*(T?)" +TSS*T* + SNS*T* + TSN*S* + SNN*S*

= T(TT)T*+T(SS*)T*+SNN*S*

= TAT'T*+ SNN*S*

= A['TT*+ SNN*S*.
Thus, the first and third equations in (3.4) lead respectively to

[T2,AT'TT* + SNN*S* ]| =0, (A7'TT* + SNN*S*)TaN? = T,N?(N?)*N2. (3.5)



Also, the second equation in (3.4) leads to
SN(N?)* =0. (3.6)

Now, the implication follows from (3.5), (3.6) and the last condition in (3.4).
(b)=(a). Easy. O

Corollary 3.8. Let A € C™ ™ be written as in (2.2) such that SN =0 and A is SD. Then A? is SD if and
only if N? is SD and [T%,T*] = 0.

Proof. Since SN = 0, then Ty N = (TS+SN)N = 0. Thus, as A is SD, by Theorem 3.7 it is clear that A2 is
SD if and only if N2 is SD and [T2, A;'TT*] = 0. However, [T?, A;*TT*] = 0 is equivalent to [T2,T*] = 0,
as Theorem 3.6 gives that SN* = 0 and TA; = A;T. Now, the affirmation follows from the nonsingularity
of T and A;. ]

Theorem 3.9. Let A € C"*" be written as in (2.2) such that SN* = 0. Then the Moore-Penrose inverse
of A is given by

T*(TT*+S8S*)~t 0

S*(TT* +8S*)~t Nt

AT =U U*. (3.7)

In particular, if A is SD then the Moore-Penrose inverse of A is as in (3.7).

Proof. The equality (3.7) is an immediate consequence from (2.4) for m = 1, and Remark 2.2.

In particular, if A is SD, the last affirmation of the theorem follows from Lemma 3.5. O

Hartwig and Spindelbock [9, Proposition 8] proved that if A is a partial isometry then:
A? is a partial isometry < A is bi-normal < A is bi-dagger < A is bi-EP.

Since the set of isometries partial is a proper subset of the class SD, it naturally leads one to think about the

validity of such equivalences for the larger class of SD matrices. The following theorem clarifies this situation.

Theorem 3.10. Let A € C™X", If A is SD, then any one of the following three statements implies A% is
SD:

(a) A is bi-normal;
(b) A is bi-dagger;

(c) A is bi-EP.



Proof. Since A is SD, it is well known that (a), (b), and (c) are equivalent [9]. So, it is sufficient to assume
that one of the three statements holds. Suppose A is bi-dagger, that is, (A?)t = ATAT. Since A*Af = ATA*,
we obtain (A2)*(A%)F = A*A*ATAT = ATATA* A* = (A%)T(A%)*. Tt follows that A? is SD. O

However, the reciprocal implications are false. In fact, for example take the matrix

A:
0 0

Since A is idempotent, we know that it is SD, and so is A2. However, A is not bi-EP. Similarly, since the
class bi-EP contains both the bi-normal and bi-dagger matrix classes, the remaining reciprocal implications

are also false.

4. Bi-EP matrices and the core-EP decomposition
In this section, we derive a characterization of bi-EP matrices by using the core-EP decomposition.
Theorem 4.1. Let A € C™*™ be written as in (2.2). Then the following conditions are equivalent:
(a) A is bi-EP;
(b) [Pn,Qn +Q7A1] =0 and Qi (I—t — Pn) =0;
(¢) N is bi-EP and Q4 (I—y — Pn) =0;
(d) N is bi-EP and S(In—t — Pn)(In—t — Qn) = 0.
Proof. (a) < (b). From (2.5), direct calculations yield

T*AT T*A1Q1 Py AT TA10Q
QAPA = ) PAQA =
AT (Qn + A1) Py PyQiAT Pn(Qn +Q7A1Q)

By definition, A is bi-EP if and only if Q 4 P4 = Pa4Q 4 if and only if all the following three conditions hold:
(1) T*A1Q1PN = T*Algh
(i) (@~ +Q1A1Q1)Py = Pn(Qn + Q1 A1).

Since T and A; are nonsingular, (i) holds if and only if Q4 (I, — Py) = 0.
By definition of the commutator, it is clear that (ii) is equivalent to [Py, Qn + Q5A1Q4] = 0.
(b) < (c). Note that under condition Q4 (I,,—s — Py) = 0, it follows that [I,,_; — Py, Q7A1021] = 0.

Thus the equivalence follows from the identity

[Pn, QN + QA1 Q] = [Pn,Qn] + [P, QA 1] = —[I,—y — Py, Q1 A1 4] + [Py, Qn)-



(¢) < (d). It directly follows from the equality [Py, Qn] = 0. O
Above theorem and Lemma 2.1 for m = 2 yield to the following corollaries.

Corollary 4.2. Let A € C"*" be written as in (2.2) such that Q1 = 0. Then A is bi-EP if and only if N is
bi-EP.

Corollary 4.3. Let A € C"*" be written as in (2.2). Then the following conditions are equivalent:
(a) A? is bi-EP;

(b) N2 is bi-EP and (TS + SN)(In—t — Pnz2)(In—t — Qn2) = 0.

5. Bi-dagger matrices and the core-EP decomposition

In this section we characterize the bi-dagger matrices by using the core-EP decomposition. Before, we

present several auxiliary results.

Lemma 5.1. Let A, B € C**™. Then the following conditions are equivalent:
(a) QaBB* is Hermitian;

(b) [Qa,BB*|=0;

(c) QaB = BQas.

Proof. Tt is consequence of the proofs of Theorem 2 and Theorem 4 in [8]. O
Lemma 5.2. Let A € C"*™. Then the following conditions are equivalent:
(a) QaAA* is Hermitian;

(b) [Qa, AA"] = 0;

(¢) QaA = AQxz;

(d) A is bi-EP and [PaQa, AA*] = 0.

Furthermore, if A is written as in (2.2), then any of the above conditions is equivalent to T* Ay = T(T?)*Ag+
SQ;AQ, AII(T*)_lsQNZ =TS+ N —Qo, QTAl = NQ;AQ; and QT(T*)_1SQN2 =NQn2 — QnN.

10



Proof. (a) < (b) < (c¢). It is consequence of Lemma 5.1 with A = B.

(b) = (d). Firstly, we will prove that A is bi-EP which is equivalent to A%(A")242 = A% [9, Corollary 3].
Further, we note that this condition holds if and only if A%2(AT)2A42(A%)* = A%(A?)* since R(A?(A2%)*) =
R(A?). Thus, it is sufficient to prove this last equality. In fact, as Q1 AA* = AA*Q 4, we obtain

A2(AT)2A2(A2)* = APs(QaAA*)A* = AP4(AA*QA)A™ = A(PAA)A*(QaA") = A2(A%)",

whence A is bi-EP.
Now, as PaQa = QaP4 and QqAA* = AA*Q4 we have

PAQaAA" = QaPAAA" = QuAA" = AA"Qa = AAPaQa,

that is, [PaQa, AA*] = 0.
(d) = (b). As A is bi-EP, i.e., PAQa = QaPa, and [P4Qa, AA*] = 0 we have

QaAA* = QAPAAA* = PAQsAA* = AA*PaQa = AA* Q4.

Finally, assume that A is written as in (2.2). From (2.5) for m = 1,2, we have that Q4 A = AQ 42 if and

only if the following conditions simultaneously hold:
(i) T*Ap = T(T?)*Ag + SQUA;
(i) T*A1TS + T*AQ N = T(T?)*Asfds + SQ > + SQ5A;
(iii) QIA; = NQSA;
(iv) QIALTS + QNN + QAN = NQpz + NQ5A,.
According to (i) we have that (ii) is equivalent to T*A1 TS + T*AQ N = SQpn2 + T* A1, that is,
ATHT*)ISQN: =TS + U N — Qy (5.1)

since T" and A; are nonsingular.
Using (iii) we see that (iv) is equivalent to QI A (TS+Q N —Qs) = NQn>—QnN, that is, QF(T*)"1SQpn2 =
NQn2 — QnN by (5.1). The proof is complete. O

Lemma 5.3. Let A € C™"*™. Then the following conditions are equivalent:
(a) A*APy is Hermitian;

(b) [A*A, P4] =0;

11



(C) PAA* = A*PAz;
(d) A is bi-EP and [QaPa, A*A] = 0.

Furthermore, if A is written as in (2.2), then any of the above conditions is equivalent to Py N* = N*Pyz

and S(In—t — Py) = 0.

Proof. (a) & (b) & (c) & (d). It directly follows from Lemma 5.2 by taking A* instead of A, and using the
fact that A is bi-EP if and only if A* is bi-EP.

Finally, if A is written as in (2.2), from (2.5) for m = 1,2, we have that P4A* = A*Py42 if and only if
PyN* = N*Py2 and S(I,_+ — Py) = 0. The proof is complete. O

Now, we are able to obtain some new characterizations of bi-dagger matrices.
Theorem 5.4. Let A € C"*™. Then the following conditions are equivalent:
(a) A is bi-dagger;
(b) QaAA* and A*AP4 are Hermitian;
(€) [Qa,AA*) =0 and [A*A, P4] =0;
(d) QaA = AQ 2 and PaA* = A*Pyz;
(e) A is bi-EP, [P4Qa, AA*] =0, and [QaPa, A*A] = 0.

Furthermore, if A is written as in (2.2), then any of the above conditions is equivalent to T* Ay = T(T?)* Ay +
SQ5Ag, ATHT*)"1SQn> = TS + QN — Qy, QfA; = NQ5A,, QF(T*)"1SQn2 = NQn2 — QnN, PyN* =
N*PNZ, and S(In_t - PN) =0.

Proof. (a) < (b). Since A is bi-dagger if and only if (42)" = (AT)2, the equivalence can be derived by taking
A = B in [8, Theorem 2].

The remainder of the proof directly follows from Lemma 5.2 and Lemma 5.3. O

Corollary 5.5. Let A € C™*™ be written as in (2.2) such that N is bi-dagger. Then the following conditions

are equivalent:
(a) A is bi-dagger;

(b) T*Ay = T(T?)* Mg+ S Ay, ATHT*) 1 SQns = TS+QN —Qo, QA = NQ5A,, Q5(T*) " SQuz = 0,
and S(In—t — Py) =0.
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Proof. As N is bi-dagger, by Theorem 5.4 (d) we have Qn N = NQpy= and PyN* = N*Py2. So, by applying

again Theorem 5.4 the result follows. ]

Unlike what happens with partial isometries, SD matrices and bi-EP matrices, in the case of a bi-dagger
matrix A written as in (2.2), it can be seen that N does not inherit the property of being also bi-dagger.

The following results provide certain conditions under which NV is also bi-dagger.

Corollary 5.6. Let A € C™*™ be written as in (2.2) such that A is bi-dagger. Then N is bi-dagger if and
only if Q3(T*)~1SQn2 = 0.

Proof. As A is bi-dagger, according to Theorem 5.4 we have Qf (T*)"1SQy2 = NQn2 — QnN and PyN* =

N*Ppz2. Now, Theorem 5.4 completes the proof.

Corollary 5.7. Let A € C"™*" be written as in (2.2) such that S(N*)> = 0. Then the following conditions

are equivalent:
(a) A is bi-dagger;
(b) N is bi-dagger, T*Ay = T(T?)* Mg+ SQ3As, QA1 = NQ5Ay, TS+ N = Qy, and S(I,,_y — Pn) = 0.

Proof. By hypothesis SQn2 = 0. Hence Q}(T*)"1SQy> = AT (T*)"1SQn2 = 0. Now, Corollary 5.5 and
Corollary 5.6 complete the proof. O

Corollary 5.8. Let A € C™ ™ be written as in (2.2) such that SN* = 0. Then the following conditions are

equivalent:
(a) A is bi-dagger;
(b) N is bi-dagger, T* Ay = T(T?)*Ag + SQ5As, Q;A1 = NQ5A,, and S(I,—; — Py) = 0.

Proof. By hypothesis SQy = 0. Moreover, since S(N*)? = 0, we have SQy2 = 0. Therefore Qf (T*)"1SQy2 =
Afl(T*)*lSQNz =TS+ N —Qy =0. Now, Corollary 5.5 and Corollary 5.6 complete the proof. O

Corollary 5.9. Let A € C"*" be written as in (2.2) such that S = 0. Then A is bi-dagger if and only if N
is bi-dagger.

Proof. Since § =0, Ty = 0. Thus, Q; = 0y =0, A} = (TT*)~', and Ay = (T%(T?)*)~'. Now, the result
follows from Corollary 5.8. O
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6. Some considerations about matrices of index 2

In this section, we study the concepts of k-EP matrix and k-index EP matrix when & = 2. More precisely,
in this case we prove that both 2-EP matrices and 2-index matrices are equivalent to the matrix being
bi-dagger.

The concepts of k-EP matrices and k-index-EP matrices were introduced to extend the class of EP
matrices to square complex matrices of arbitrary index. A matrix A with Ind(A4) = k is called k-index EP
if A¥ is EP [13]. The class of all k-index EP matrices is denoted by CE*FF. A matrix A € C"™" with
Ind(A) = k is called k-EP matrix if A¥AT = ATAF [10]. The class of all k&-EP matrices is denoted by Ck.

Both classes of matrices can be characterized by using core-EP decomposition given in (2.2):

AeCHEP o §=0, [13, Theorem 2.3] (6.1)
AeCht o S(I,_,—Qn)=0and Ty(I,_ — Py) =0, [6, Theorem 3.10] (6.2)
where T}, = Z?;& TISNF-1-3,
By using (6.1) and (6.2), one can easily verify that [13, Remark 2.1]
ChiEP C k1, (6.3)

The following examples show that the class CEFF is strictly included in CET.

Example 6.1. Consider the matrix

1 0 -1 1
Ly | 00 -1 0
0 0 0 1
0 0 0 0
0 -1 0
Clearly, Ind(A) = 3. DenotingTzl,S:[() -1 1} and N =10 0 1|, wehave I3 — Qn =
0 0 0
1 0 0 0 0 0
0 0 0|andls—Pny=|0 0 0 |. Therefore,
0 0 0 0 01

S(Ig~QN):{0 0 0}7 (TQS+TSN+SN2)(IB—PN):{0 0 0}.

Consequently A € CH1 by (6.2). However, since S # 0, according to (6.1) we have A ¢ CFAEP,
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As can be seen in the above example Ind(A) = 3. Next, we show that if Ind(A) = 2, the concepts of
2-EP, 2-index EP matrix, and bi-dagger are equivalent.

Remark 6.2. Clearly, if Ind(A) = k < 1, the concepts of k-EP , k-index EP matriz, and bi-dagger are

equivalent since they coincide with the concept of EP matrix.

Theorem 6.3. Let A € C"*™ with Ind(A) = 2. Then the following conditions are equivalent:
(a) A is 2-index EP (or equivalently A? is EP);

(b) A2 is bi-dagger;

(c) A? is bi-EP;

(d) A is 2-EP (or equivalently A2AT = ATA2);

(e) A is bi-dagger.

Proof. (a)=(b) As A% is EP and Ind(A) = 2, clearly Ind(A?) < 1. Thus, A? is bi-dagger.

(b) =(c) Follows from (2.1).

(c) =(a) As Ind(A?) <1 and A? is bi-EP then A? is EP.

(a) =(d) Follows from (6.3) for k = 2.

(d)=(e) By [10, Proposition 2.13].

(e)=-(a) By [10, Lemma 2.4]. O

Corollary 6.4. Let A € C"*™ with Ind(A) = 2. Then any one of conditions (a)-(e) in Theorem 6.3 implies
A is bi-EP.

Proof. Follows from (2.1). O
The following example shows that the reciprocal of above result is false.

Example 6.5. Let

_10000-
01 001
A=10 01 0 0
00 0 01
00 0 0O

Then, Ind(A) = 2, A is bi-EP but A is not bi-dagger.

However, for the case of nilpotent matrices of index 2, the reciprocal of Corollary 6.4 is true.
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Theorem 6.6. Let A € C"*™ q nilpotent matriz with Ind(A) = 2. Then the following conditions are

equivalent:

(a) A is 2-index EP (or equivalently A? is EP);
(b) A? is bi-dagger;

(c) A? is bi-EP;

(d) A is 2-EP (or equivalently A?AT = ATA?);
(e) A is bi-dagger.

(f) A is bi-EP.

Proof. Equivalences (a) to (e) were proved in Theorem 6.3.

(e)=(f) By (2.1).

(f)=(e) Clearly, (A%)! = 0. Further, A is bi-EP (i.e. PaQa = QaPa) we have A(AT)2A = 0 whence
(AN)2 = 0. Thus, (A?)" = (A2, that is, A is bi-dagger. O

Corollary 6.7. Let A € C™"*™ be written as in (2.2) such that Ind(A) = 2. Then A is bi-EP if and only if
N satisfies any one of conditions (a)-(e) in Theorem 6.6 and S(In—t — Qn — Py) = 0.

Proof. From Theorem 4.1 we know that A is bi-EP if and only if N is bi-EP and S(I,,—:—Qn)(I,—:—Pn) = 0.
Thus, by using the fact that N is nilpotent with Ind(N) = 2, the result follows by Theorem 6.6. O

We finish this section with two results concerning bi-dagger matrices and SD matrices of index 2.

Theorem 6.8. Let A € C™*™ be written as in (2.2) such that Ind(A) = 2. Then A is bi-dagger if and only
if N is bi-dagger, T*Ay = T(T?)* Ay + STy Ay, VA, = NT5 Ao, and S(I,,_, — Py) = 0.

Proof. As Ind(A) = 2, clearly N2 = 0. Therefore, ;N = SN and Qy = Ty =TS+ SN. Thus, TS + QN —
Qs = 0. Now, as S(N*)? = 0, Corollary 5.7 completes the proof. O

Remark 6.9. From Theorem 6.8, one can note that if A is written in its core-EP decomposition (2.2) and

Ind(A) = 2, a necessary condition for A to be bi-dagger is that NN is also bi-dagger.

Theorem 6.10. Let A € C™*" be written as in (2.2) such that Ind(A) = 2 and A is SD. Then A? is SD if
and only if [T?, AT'TT* + SNN*S*] = 0.

Proof. 1t is a direct consequence from Theorem 3.7. O
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