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ract

oncept of star-dagger matrices was introduced in 1984 by Hartwig and Spindelböck. While they

y characterized the star-dagger matrices by using a block decomposition of the form

[
P Q
0 0

]
,

roposed the following open problem:

the triangular form

[
P Q
0 R

]
be used to obtain further results on the star-dagger matrices?”

s paper, we have attempted this open problem by using an upper-triangularization of Schur’s type

e matrix, namely, the core-EP decomposition. Furthermore, similar problems regarding bi-dagger

matrices are investigated.

ords: Star-dagger matrix, partial isometry, bi-normal, bi-dagger, bi-EP, EP matrix, normal matr

matrix, Moore–Penrose inverse

MSC: 15A09, 15A27, 15B57

troduction

square complex matrix A is said to be star-dagger if its conjugate transpose A∗ commutes wit

e-Penrose inverse A†. Star-dagger matrices were formally defined in 1984 by Hartwig and Spindel

his class includes certain well-known classes of matrices as special cases such as idempotent matr

l isometries, and normal matrices. The class of normal matrices includes in turn hermitian, s

itian, and unitary matrices. Together with the star-dagger matrices, three other types of mat

studied in [9], namely, bi-normal, bi-dagger, and bi-EP matrices. The first of these was introd

ampbell [3] in order to extend the normal matrices. The other two classes are generalizations o
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pt of EP matrix [11]. Various authors [2, 4, 5, 7] have studied the inter-relationship between the cl

rmal, bi-normal, bi-dagger, star dagger, partial isometry, idempotent and orthogonal projectors.

he objective of this work is to obtain new properties and characterizations for star-dagger matrice

the core-EP decomposition of a matrix. Furthermore, similar problems regarding bi-dagger and b

ces are also studied.

he paper is organized as follows. Section 2 provides the notation used in this paper and some prelimi

s. Section 3 deals with partial isometries and star-dagger matrices by using the core-EP decomposi

ns 4 and 5 offer new characterizations of the bi-dagger and bi-EP matrices, respectively. The main

core-EP decomposition. Finally, Section 6 is devoted to the study of matrices of index 2. More prec

roved that in this case, the concepts of 2-EP , 2-index EP, and bi-dagger matrices are equivalent.

otation and preliminaries results

hroughout this paper, we denote the set of m× n complex matrices by Cm×n. The symbols A∗, N
, and rk(A) will stand for the conjugate transpose, null space, range (column space), and ran

m×n, respectively. Moreover, A† ∈ Cn×m represents the Moore-Penrose inverse A ∈ Cm×n, i.e.

e solution to the four equations [1]:

(1) AA†A = A, (2) A†AA† = A†, (3) (AA†)∗ = AA†, (4) (A†A)∗ = A†A.

oore-Penrose inverse induces the orthogonal projectors PA := AA† and QA := A†A onto R(A)

), respectively.

he index of A ∈ Cn×n, denoted by Ind(A), is the smallest nonnegative integer k such that rk(A

+1). When Ind(A) ≤ 1, the matrix A is called a group matrix (GM, for short). A special su

GM matrices are the well-known EP matrices. Recall that a matrix A ∈ Cn×n is an EP matr

= R(A∗) or, equivalently, PA = QA [11].

r any two square complex matrices A and B of the same size, the commutator of A and B wi

ed by [A,B] = AB −BA.

ecall that A ∈ Cm×n is a partial isometry if it verifies A† = A∗. As mentioned in the Introduc

er to extend the square partial isometries, Hartwig and Spindelböck [9] defined the star-dagger

ort) matrices as the square matrices for which A∗ commutes with A†, that is, A ∈ Cn×n is S

†] = 0.

he following inclusions for Cn×n were proved in [9]:

{Orthogonal projectors} ⊆ {Partial isometries} ⊆ {SD},

2
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{Orthogonal projectors} ⊆ {Idempotents} ⊆ {SD}.

gether with the SD matrices, three other types of matrices were studied in [9]. The first of them

bi-normal matrices. A matrix A ∈ Cn×n is bi-normal if [AA∗, A∗A] = 0. This type of matrice

tension of normal matrices to matrices of arbitrary index. The other two classes are called bi-da

i-EP matrices. A matrix A ∈ Cn×n is called bi-dagger and bi-EP, if (A†)2 = (A2)† and [PA, QA]

ctively. Note that both bi-dagger and bi-EP are extensions of EP matrices to matrices of arbit

. The relationship between these matrix classes as given on [9] is given below:

{bi-normal} ⊆ {bi-dagger} ⊆ {bi-EP}.

s also proved

{SD} ∩ {bi-normal} = {SD} ∩ {bi-dagger} = {SD} ∩ {bi-EP}.

[12] H. Wang introduced a new triangular decomposition of Schur’s type for a square matrix. It

d that for any matrix A ∈ Cn×n of index k = Ind(A), there exists a unitary matrix U ∈ Cn×n such

A = U


 T S

0 N


U∗,

T is a nonsingular matrix of size t × t whose diagonal entries are nonzero eigenvalues of A, and

tent with Ind(N) = k. This representation of A is called the core-EP decomposition of A. Notice

s nonsingular (that is, k = 0) if and only if t = n, and A is nilpotent if and only if t = 0.

enceforth, we can assume Ind(A) = k ≥ 1 whenever the core EP decomposition is used.

a 2.1. Let A ∈ Cn×n be written as in (2.2), m ∈ N, and s = ⌈ k
m⌉. Then Ind(Am) = s and

Am = U


 Tm T̃m

0 Nm


U∗, T̃m :=

m−1∑

i=0

T iSNm−1−i,

core-EP decomposition of Am with t = rk(Tm) = rk(Ams), and Nm is nilpotent of index s

ular, the Moore-Penrose inverse of Am is given by

(Am)† = U


 (Tm)∗∆m −(Tm)∗∆mT̃m(Nm)†

Ω∗
m∆m (Nm)† − Ω∗

m∆mT̃m(Nm)†


U∗,

∆m := (Tm(Tm)∗ +ΩmΩ∗
m)−1 and Ωm := T̃m(In−t −QNm).

. Let r = ms − k. Note that Ind(Am) = s. In fact, when m < k, we have m(s − 1) < k by defin

ling function. Therefore, rk((Am)s) = rk(Ak+r) = rk(Ak+r+m) = rk((Am)s+1) and rk((Am)

3
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+r) = rk(Ak) < rk(Ak−1) ≤ rk((Am)s−1).

e other hand, if k ≤ m, then rk(Am) = rk(Ak+r) = rk(Ak+r+m) = rk((Am)2).

as rk(Tm) = rk(T ) = rk(Ak) = rk((Am)s) and clearly Nm is nilpotent of index s, we get that (2.

re-EP decomposition of Am. Finally, (2.4) follows from [6, Theorem 3.9].

enceforth In will refer to the identity matrix of order n. From above lemma we derive the follo

ssions for the orthogonal projectors

Am = U


 It 0

0 PNm


U∗, QAm = U


 (Tm)∗∆mTm (Tm)∗∆mΩm

Ω∗
m∆mTm QNm +Ω∗

m∆mΩm


U∗, m ∈ N.

ark 2.2. (i) T̃1 = S and ∆1 = (TT ∗ +Ω1Ω
∗
1)

−1, where Ω1 = S(In−t −QN ).

T̃2 = TS + SN and ∆2 = (T 2(T 2)∗ +Ω2Ω
∗
2)

−1, where Ω2 = (TS + SN)(In−t −QN2).

If SN∗ = 0 then Ω1 = S and ∆1 = (TT ∗ + SS∗)−1.

If S(N∗)2 = 0 then Ω2 = TS + SN(In−t −QN2) and ∆2 = (T 2(T 2)∗ +Ω2Ω
∗
2)

−1.

ar-dagger matrices and the core-EP decomposition

this section, we provide some results concerning the characterizations of partial isometries and

r matrices by using the core-EP decomposition.

ecall that the concept of unitary (isometry) matrices has been extended as partial isometry to rectang

ces, using the Moore-Penrose inverse. Later, the concept of partial isometry was extended to

ces. Also, from [9, Remark 3] it follows that the class {normal} is a subset of {SD}. Further, the

s coincide in case of nonsingular matrices.

ext, we characterize partial isometries and their powers by using the core-EP decomposition.

rem 3.1. Let A ∈ Cn×n be written as in (2.2) and m ∈ N. Then the following conditions are equiva

m is a partial isometry;

m is a partial isometry, ∆m = It, and T̃m(Nm)∗ = 0.

. By definition, Am is a partial isometry if (Am)∗ = (Am)†. So, from (2.3) and (2.4) we have (Am

† if and only if the following conditions simultaneously hold:

m)∗∆m = (Tm)∗;

(Tm)∗∆mT̃m(Nm)† = 0;

4
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∗
m∆m = T̃ ∗

m;

Nm)† − Ω∗
m∆mT̃m(Nm)† = (Nm)∗.

and ∆m are nonsingular, clearly conditions (i)-(iv) are equivalent to ∆m = It, T̃m(Nm)∗ = 0,

∗ = (Nm)†. Thus the conclusion.

llary 3.2. Let A ∈ Cn×n be written as in (2.2). Then the following conditions are equivalent:

is a partial isometry;

is a partial isometry, ∆1 = It, and SN∗ = 0.

. Follows from Theorem 3.1 for m = 1 and Remark 2.2 (i).

om [9], we know that if A is a partial isometry, A2 need not be a partial isometry.

ple 3.3. Let A =




2/3 −1/3 0

2/3 2/3 0

−1/3 2/3 0


. A straightforward computation yields

A† =




2/3 2/3 −1/3

−1/3 2/3 2/3

0 0 0


 , A2 =




5/9 2/9 −4/9

2/9 8/9 2/9

−4/9 2/9 5/9


 , (A2)† =




5/9 2/9 −4/9

2/9 8/9 2/9

−4/9 2/9 8/9


 .

it is clear that A is a partial isometry but A2 is not.

ext, we give necessary and sufficient conditions for the square of a partial isometry to be a pa

try.

llary 3.4. Let A ∈ Cn×n be written as in (2.2) such that A is a partial isometry. Then the follo

tions are equivalent:

2 is a partial isometry;

2 is a partial isometry, ∆2 = It, and SN(N2)∗ = 0.

. It is a consequence from Theorem 3.1 for m = 2, Corollary 3.2, and Remark 2.2 (ii).

ote that if A is written as in (2.2), a necessary condition for A to be a partial isometry is that N is a

l isometry. Since the class of square partial isometries is a proper subset of the class of SD matric

ural to ask whether a similar result is valid for the case of SD matrices. Next, we answer that ques

e, we need the following auxiliary lemma.

5
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a 3.5. Let A ∈ Cn×n. Then the following conditions are equivalent:

is SD;

A∗A,A] = 0;

mA∗A = AA∗Am, for all integer m ≥ 2;

†AmA∗ = A∗AmA†, for all integer m ≥ 2.

ermore, if A is written as in (2.2), then SN∗ = 0 and T̃mS∗ = Tm−1SS∗.

. (a) ⇔ (b). By [9, Proposition 2].

(c). Note that [AA∗A,A] = 0 is equivalent to A2A∗A = AA∗A2. Now, the implication follow

tion on m.

(b). Trivial.

(d). It follows that by pre and post- multiplying by A† in AmA∗A = AA∗Am and by using the

∗ = A†AA∗ = A∗AA†.

(c). This follows by pre and post- multiplying by A in A†AmA∗ = A∗AmA† and by using the

† is an inner inverse of A.

ly, we assume that A is written as in (2.2) and satisfies (c) for m = k. Then Ak(A∗A) = (AA∗

is equivalent to

 T k T̃k

0 0




 T ∗T T ∗S

S∗T S∗S +N∗N


 =


 TT ∗ + SS∗ SN∗

NS∗ NN∗




 T k T̃k

0 0





 T kT ∗T + T̃kS

∗T T kT ∗S + T̃k(S
∗S +N∗N)

0 0


 =


 (TT ∗ + SS∗)T k (TT ∗ + SS∗)T̃k

NS∗T k NS∗T̃k




ce SN∗ = 0, because T is nonsingular. Moreover, from (2.3) it is clear that T̃mS∗ = Tm−1SS∗.

rem 3.6. Let A ∈ Cn×n be written as in (2.2). Then the following conditions are equivalent:

is SD;

is SD, T∆1 = ∆1T , SN
∗ = 0, and SN = ∆1SNN∗N .

. (a)⇒(b). By Lemma 3.5 we know that A is SD if and only if A(AA∗)A = (AA∗)A2. In partic

= 0. Moreover, from Remark 2.2 we have ∆−1
1 = TT ∗ + SS∗. In consequence,

A(AA∗)A = (AA∗)A2 ⇔


 T∆−1

1 T T∆−1
1 S + SNN∗N

0 N2N∗N


 =


 ∆−1

1 T 2 ∆−1
1 T̃2

0 NN∗N2


 ,

6
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T̃2 = TS + SN .

T is non-singular, it is clear that (3.1) holds if and only if

T∆1 = ∆1T, T∆−1
1 S + SNN∗N = ∆−1

1 (TS + SN), and N2N∗N = NN∗N2.

T∆1 = ∆1T , the second equality in (3.2) is equivalent to SN = ∆1SNN∗N . Also, by Lemma 3.5

that the third equality in (3.2) is equivalent to N being a SD matrix. This completes the implicat

(a). Follows from Lemma 3.5.

ow, we obtain conditions under which the square of an SD matrix is again SD.

rem 3.7. Let A ∈ Cn×n be written as in (2.2) such that A is SD. Then the following condition

lent:

2 is SD;

2 is SD, [T 2,∆−1
1 TT ∗+SNN∗S∗] = 0, SN(N2)∗ = 0, and (∆−1

1 TT ∗+SNN∗S∗)T̃2N
2 = T̃2N

2(N2

. According to Lemma 2.1 we have

A2 = U


T

2 T̃2

0 N2


U∗,

core EP decomposition of A2.

(b). From (3.3) and Theorem 3.6 we obtain

A2 is SD ⇔ T 2∆2 = ∆2T
2, T̃2(N

2)∗ = 0, T̃2N
2 = ∆2T̃2N

2(N2)∗N2, N2 is SD.

over, as A is SD, by applying again Theorem 3.6 we have that SN∗ = 0 and T∆1 = ∆1T . In consequ

Remark 2.2 we have ∆−1
1 = TT ∗ + SS∗, and so

∆−1
2 = T 2(T 2)∗ + T̃2(T̃2)

∗

= T 2(T 2)∗ + (TS + SN)(TS + SN)∗

= T 2(T 2)∗ + TSS∗T ∗ + SNS∗T ∗ + TSN∗S∗ + SNN∗S∗

= T (TT ∗)T ∗ + T (SS∗)T ∗ + SNN∗S∗

= T∆−1
1 T ∗ + SNN∗S∗

= ∆−1
1 TT ∗ + SNN∗S∗.

, the first and third equations in (3.4) lead respectively to

[T 2,∆−1
1 TT ∗ + SNN∗S∗] = 0, (∆−1

1 TT ∗ + SNN∗S∗)T̃2N
2 = T̃2N

2(N2)∗N2.

7
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the second equation in (3.4) leads to

SN(N2)∗ = 0.

the implication follows from (3.5), (3.6) and the last condition in (3.4).

(a). Easy.

llary 3.8. Let A ∈ Cn×n be written as in (2.2) such that SN = 0 and A is SD. Then A2 is SD if

f N2 is SD and [T 2, T ∗] = 0.

. Since SN = 0, then T̃2N = (TS+SN)N = 0. Thus, as A is SD, by Theorem 3.7 it is clear that

and only if N2 is SD and [T 2,∆−1
1 TT ∗] = 0. However, [T 2,∆−1

1 TT ∗] = 0 is equivalent to [T 2, T ∗]

eorem 3.6 gives that SN∗ = 0 and T∆1 = ∆1T . Now, the affirmation follows from the nonsingul

and ∆1.

rem 3.9. Let A ∈ Cn×n be written as in (2.2) such that SN∗ = 0. Then the Moore-Penrose inv

is given by

A† = U


 T ∗(TT ∗ + SS∗)−1 0

S∗(TT ∗ + SS∗)−1 N†


U∗.

rticular, if A is SD then the Moore-Penrose inverse of A is as in (3.7).

. The equality (3.7) is an immediate consequence from (2.4) for m = 1, and Remark 2.2.

rticular, if A is SD, the last affirmation of the theorem follows from Lemma 3.5.

artwig and Spindelböck [9, Proposition 8] proved that if A is a partial isometry then:

A2 is a partial isometry ⇔ A is bi-normal ⇔ A is bi-dagger ⇔ A is bi-EP.

the set of isometries partial is a proper subset of the class SD, it naturally leads one to think abou

ty of such equivalences for the larger class of SD matrices. The following theorem clarifies this situa

rem 3.10. Let A ∈ Cn×n. If A is SD, then any one of the following three statements implies A

is bi-normal;

is bi-dagger;

is bi-EP.

8
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. Since A is SD, it is well known that (a), (b), and (c) are equivalent [9]. So, it is sufficient to ass

ne of the three statements holds. Suppose A is bi-dagger, that is, (A2)† = A†A†. Since A∗A† = A

tain (A2)∗(A2)† = A∗A∗A†A† = A†A†A∗A∗ = (A2)†(A2)∗. It follows that A2 is SD.

owever, the reciprocal implications are false. In fact, for example take the matrix

A =


1 1

0 0


 .

A is idempotent, we know that it is SD, and so is A2. However, A is not bi-EP. Similarly, since

bi-EP contains both the bi-normal and bi-dagger matrix classes, the remaining reciprocal implica

so false.

i-EP matrices and the core-EP decomposition

this section, we derive a characterization of bi-EP matrices by using the core-EP decomposition.

rem 4.1. Let A ∈ Cn×n be written as in (2.2). Then the following conditions are equivalent:

is bi-EP;

N , QN +Ω∗
1∆1Ω1] = 0 and Ω1(In−t − PN ) = 0;

is bi-EP and Ω1(In−t − PN ) = 0;

is bi-EP and S(In−t − PN )(In−t −QN ) = 0.

. (a) ⇔ (b). From (2.5), direct calculations yield

QAPA =


 T ∗∆1T T ∗∆1Ω1PN

Ω∗
1∆1T (QN +Ω∗

1∆1Ω1)PN


 , PAQA =


 T ∗∆1T T ∗∆1Ω1

PNΩ∗
1∆1T PN (QN +Ω∗

1∆1Ω1)


 .

finition, A is bi-EP if and only if QAPA = PAQA if and only if all the following three conditions h

T ∗∆1Ω1PN = T ∗∆1Ω1;

(QN +Ω∗
1∆1Ω1)PN = PN (QN +Ω∗

1∆1Ω1).

T and ∆1 are nonsingular, (i) holds if and only if Ω1(In−t − PN ) = 0.

finition of the commutator, it is clear that (ii) is equivalent to [PN , QN +Ω∗
1∆1Ω1] = 0.

(c). Note that under condition Ω1(In−t − PN ) = 0, it follows that [In−t − PN ,Ω∗
1∆1Ω1] = 0.

the equivalence follows from the identity

[PN , QN +Ω∗
1∆1Ω1] = [PN , QN ] + [PN ,Ω∗

1∆1Ω1] = −[In−t − PN ,Ω∗
1∆1Ω1] + [PN , QN ].

9
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(c) ⇔

A

Coro N is

bi-EP

Coro

(a) A

(b) N

5. B

In , we

prese

Lemm

(a) Q

(b) [Q

(c) Q

Proof

Lemm

(a) Q

(b) [Q

(c) Q

(d) A

Furth ∆2+

SΩ∗
2∆
 Jo

ur
na

l P
re

-p
ro

of

(d). It directly follows from the equality [PN , QN ] = 0.

bove theorem and Lemma 2.1 for m = 2 yield to the following corollaries.

llary 4.2. Let A ∈ Cn×n be written as in (2.2) such that Ω1 = 0. Then A is bi-EP if and only if

.

llary 4.3. Let A ∈ Cn×n be written as in (2.2). Then the following conditions are equivalent:

2 is bi-EP;

2 is bi-EP and (TS + SN)(In−t − PN2)(In−t −QN2) = 0.

i-dagger matrices and the core-EP decomposition

this section we characterize the bi-dagger matrices by using the core-EP decomposition. Before

nt several auxiliary results.

a 5.1. Let A,B ∈ Cn×n. Then the following conditions are equivalent:

ABB∗ is Hermitian;

A, BB∗] = 0;

AB = BQAB.

. It is consequence of the proofs of Theorem 2 and Theorem 4 in [8].

a 5.2. Let A ∈ Cn×n. Then the following conditions are equivalent:

AAA
∗ is Hermitian;

A, AA
∗] = 0;

AA = AQA2 ;

is bi-EP and [PAQA, AA∗] = 0.

ermore, if A is written as in (2.2), then any of the above conditions is equivalent to T ∗∆1 = T (T 2)∗

2, ∆
−1
1 (T ∗)−1SQN2 = TS +Ω1N − Ω2, Ω

∗
1∆1 = NΩ∗

2∆2, and Ω∗
1(T

∗)−1SQN2 = NQN2 −QNN .

10
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Proof

(b) ⇒ y 3].

Furth ∗) =

R(A2

when

Now,

that i

(d) ⇒

Final and

only

(i)

(ii)

(iii)

(iv)

Accor

(5.1)

since

Using 2 =

NQN

Lemm

(a) A

(b) [A
Jo
ur

na
l P

re
-p

ro
of

. (a) ⇔ (b) ⇔ (c). It is consequence of Lemma 5.1 with A = B.

(d). Firstly, we will prove that A is bi-EP which is equivalent to A2(A†)2A2 = A2 [9, Corollar

er, we note that this condition holds if and only if A2(A†)2A2(A2)∗ = A2(A2)∗ since R(A2(A2)

). Thus, it is sufficient to prove this last equality. In fact, as QAAA
∗ = AA∗QA, we obtain

A2(A†)2A2(A2)∗ = APA(QAAA
∗)A∗ = APA(AA

∗QA)A
∗ = A(PAA)A∗(QAA

∗) = A2(A2)∗,

ce A is bi-EP.

as PAQA = QAPA and QAAA∗ = AA∗QA we have

PAQAAA
∗ = QAPAAA∗ = QAAA

∗ = AA∗QA = AA∗PAQA,

s, [PAQA, AA
∗] = 0.

(b). As A is bi-EP, i.e., PAQA = QAPA, and [PAQA, AA
∗] = 0 we have

QAAA
∗ = QAPAAA

∗ = PAQAAA
∗ = AA∗PAQA = AA∗QA.

ly, assume that A is written as in (2.2). From (2.5) for m = 1, 2, we have that QAA = AQA2 if

if the following conditions simultaneously hold:

T ∗∆1 = T (T 2)∗∆2 + SΩ∗
2∆2;

T ∗∆1TS + T ∗∆Ω1N = T (T 2)∗∆2Ω2 + SQN2 + SΩ∗
2∆2Ω2;

Ω∗
1∆1 = NΩ∗

2∆2;

Ω∗
1∆1TS +QNN +Ω∗

1∆1Ω1N = NQN2 +NΩ∗
2∆2Ω2.

ding to (i) we have that (ii) is equivalent to T ∗∆1TS + T ∗∆Ω1N = SQN2 + T ∗∆1Ω2, that is,

∆−1
1 (T ∗)−1SQN2 = TS +Ω1N − Ω2

T and ∆1 are nonsingular.

(iii) we see that (iv) is equivalent to Ω∗
1∆1(TS+Ω1N−Ω2) = NQN2−QNN , that is, Ω∗

1(T
∗)−1SQN

2 −QNN by (5.1). The proof is complete.

a 5.3. Let A ∈ Cn×n. Then the following conditions are equivalent:

∗APA is Hermitian;

∗A,PA] = 0;

11
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(c) P

(d) A

Furth PN2

and S

Proof the

fact t

Final ly if

PNN

N

Theo

(a) A

(b) Q

(c) [Q

(d) Q

(e) A

Furth ∆2+

SΩ∗
2∆

∗ =

N∗PN

Proof king

A = B

The r

Coro tions

are eq

(a) A

(b) T = 0,

a
 Jo
ur

na
l P

re
-p

ro
of

AA
∗ = A∗PA2 ;

is bi-EP and [QAPA, A
∗A] = 0.

ermore, if A is written as in (2.2), then any of the above conditions is equivalent to PNN∗ = N∗

(In−t − PN ) = 0.

. (a) ⇔ (b) ⇔ (c) ⇔ (d). It directly follows from Lemma 5.2 by taking A∗ instead of A, and using

hat A is bi-EP if and only if A∗ is bi-EP.

ly, if A is written as in (2.2), from (2.5) for m = 1, 2, we have that PAA
∗ = A∗PA2 if and on

∗ = N∗PN2 and S(In−t − PN ) = 0. The proof is complete.

ow, we are able to obtain some new characterizations of bi-dagger matrices.

rem 5.4. Let A ∈ Cn×n. Then the following conditions are equivalent:

is bi-dagger;

AAA
∗ and A∗APA are Hermitian;

A, AA
∗] = 0 and [A∗A,PA] = 0;

AA = AQA2 and PAA
∗ = A∗PA2 ;

is bi-EP, [PAQA, AA
∗] = 0, and [QAPA, A

∗A] = 0.

ermore, if A is written as in (2.2), then any of the above conditions is equivalent to T ∗∆1 = T (T 2)∗

2, ∆
−1
1 (T ∗)−1SQN2 = TS +Ω1N −Ω2, Ω

∗
1∆1 = NΩ∗

2∆2, Ω
∗
1(T

∗)−1SQN2 = NQN2 −QNN , PNN

2 , and S(In−t − PN ) = 0.

. (a) ⇔ (b). Since A is bi-dagger if and only if (A2)† = (A†)2, the equivalence can be derived by ta

in [8, Theorem 2].

emainder of the proof directly follows from Lemma 5.2 and Lemma 5.3.

llary 5.5. Let A ∈ Cn×n be written as in (2.2) such that N is bi-dagger. Then the following condi

uivalent:

is bi-dagger;

∗∆1 = T (T 2)∗∆2+SΩ∗
2∆2, ∆

−1
1 (T ∗)−1SQN2 = TS+Ω1N−Ω2, Ω

∗
1∆1 = NΩ∗

2∆2, Ω
∗
1(T

∗)−1SQN2

nd S(In−t − PN ) = 0.

12
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Proof lying

again

U gger

matri gger.

The f

Coro and

only i

Proof ∗ =

N∗PN

Coro tions

are eq

(a) A

(b) N = 0.

Proof and

Corol

Coro s are

equiva

(a) A

(b) N

Proof N2 =

∆−1
1 (

Coro if N

is bi-

Proof esult

follow
 Jo
ur

na
l P

re
-p

ro
of

. As N is bi-dagger, by Theorem 5.4 (d) we have QNN = NQN2 and PNN∗ = N∗PN2 . So, by app

Theorem 5.4 the result follows.

nlike what happens with partial isometries, SD matrices and bi-EP matrices, in the case of a bi-da

x A written as in (2.2), it can be seen that N does not inherit the property of being also bi-da

ollowing results provide certain conditions under which N is also bi-dagger.

llary 5.6. Let A ∈ Cn×n be written as in (2.2) such that A is bi-dagger. Then N is bi-dagger if

f Ω∗
1(T

∗)−1SQN2 = 0.

. As A is bi-dagger, according to Theorem 5.4 we have Ω∗
1(T

∗)−1SQN2 = NQN2 −QNN and PNN

2 . Now, Theorem 5.4 completes the proof.

llary 5.7. Let A ∈ Cn×n be written as in (2.2) such that S(N∗)2 = 0. Then the following condi

uivalent:

is bi-dagger;

is bi-dagger, T ∗∆1 = T (T 2)∗∆2+SΩ∗
2∆2, Ω

∗
1∆1 = NΩ∗

2∆2, TS+Ω1N = Ω2, and S(In−t−PN )

. By hypothesis SQN2 = 0. Hence Ω∗
1(T

∗)−1SQN2 = ∆−1
1 (T ∗)−1SQN2 = 0. Now, Corollary 5.5

lary 5.6 complete the proof.

llary 5.8. Let A ∈ Cn×n be written as in (2.2) such that SN∗ = 0. Then the following condition

lent:

is bi-dagger;

is bi-dagger, T ∗∆1 = T (T 2)∗∆2 + SΩ∗
2∆2, Ω

∗
1∆1 = NΩ∗

2∆2, and S(In−t − PN ) = 0.

. By hypothesis SQN = 0. Moreover, since S(N∗)2 = 0, we have SQN2 = 0. Therefore Ω∗
1(T

∗)−1SQ

T ∗)−1SQN2 = TS +Ω1N − Ω2 = 0. Now, Corollary 5.5 and Corollary 5.6 complete the proof.

llary 5.9. Let A ∈ Cn×n be written as in (2.2) such that S = 0. Then A is bi-dagger if and only

dagger.

. Since S = 0, T̃2 = 0. Thus, Ω1 = Ω2 = 0, ∆1 = (TT ∗)−1, and ∆2 = (T 2(T 2)∗)−1. Now, the r

s from Corollary 5.8.

13
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6. So

In isely,

in th eing

bi-da

T f EP

matri EP

if Ak with

Ind(A Ck,†
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Both

(6.1)

(6.2)

where

B

(6.3)

T

Exam

Clear N =




1

0

0

Cons
 Jo
ur
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l P

re
-p

ro
of

me considerations about matrices of index 2

this section, we study the concepts of k-EP matrix and k-index EP matrix when k = 2. More prec

is case we prove that both 2-EP matrices and 2-index matrices are equivalent to the matrix b

gger.

he concepts of k-EP matrices and k-index-EP matrices were introduced to extend the class o

ces to square complex matrices of arbitrary index. A matrix A with Ind(A) = k is called k-index

is EP [13]. The class of all k-index EP matrices is denoted by Ck,iEP
n . A matrix A ∈ Cn×n

) = k is called k-EP matrix if AkA† = A†Ak [10]. The class of all k-EP matrices is denoted by

classes of matrices can be characterized by using core-EP decomposition given in (2.2):

A ∈ Ck,iEP
n ⇔ S = 0, [13, Theorem 2.3]

A ∈ Ck,†
n ⇔ S(In−t −QN ) = 0 and T̃k(In−t − PN ) = 0, [6, Theorem 3.10]

T̃k =
∑k−1

j=0 T
jSNk−1−j .

y using (6.1) and (6.2), one can easily verify that [13, Remark 2.1]

Ck,iEP
n ⊆ Ck,†

n .

he following examples show that the class Ck,iEP
n is strictly included in Ck,†

n .

ple 6.1. Consider the matrix

A =




1 0 −1 1

0 0 −1 0

0 0 0 1

0 0 0 0



.

ly, Ind(A) = 3. Denoting T = 1, S =
[
0 −1 1

]
and N =




0 −1 0

0 0 1

0 0 0


, we have I3 − Q

0 0

0 0

0 0


 and I3 − PN =




0 0 0

0 0 0

0 0 1


. Therefore,

S(I3 −QN ) =
[
0 0 0

]
, (T 2S + TSN + SN2)(I3 − PN ) =

[
0 0 0

]
.

equently A ∈ Ck,†
n by (6.2). However, since S ̸= 0, according to (6.1) we have A /∈ Ck,iEP

n .

14
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A ts of

2-EP,

Rem are

equiva

Theo

(a) A

(b) A

(c) A

(d) A

(e) A

Proof

(b) ⇒
(c) ⇒
(a) ⇒
(d)⇒
(e)⇒

Coro plies

A is b

Proof

T

Exam

Then

H

Jo
ur

na
l P

re
-p

ro
of

s can be seen in the above example Ind(A) = 3. Next, we show that if Ind(A) = 2, the concep

2-index EP matrix, and bi-dagger are equivalent.

ark 6.2. Clearly, if Ind(A) = k ≤ 1, the concepts of k-EP , k-index EP matrix, and bi-dagger

lent since they coincide with the concept of EP matrix.

rem 6.3. Let A ∈ Cn×n with Ind(A) = 2. Then the following conditions are equivalent:

is 2-index EP (or equivalently A2 is EP);

2 is bi-dagger;

2 is bi-EP;

is 2-EP (or equivalently A2A† = A†A2);

is bi-dagger.

. (a)⇒(b) As A2 is EP and Ind(A) = 2, clearly Ind(A2) ≤ 1. Thus, A2 is bi-dagger.

(c) Follows from (2.1).

(a) As Ind(A2) ≤ 1 and A2 is bi-EP then A2 is EP.

(d) Follows from (6.3) for k = 2.

(e) By [10, Proposition 2.13].

(a) By [10, Lemma 2.4].

llary 6.4. Let A ∈ Cn×n with Ind(A) = 2. Then any one of conditions (a)-(e) in Theorem 6.3 im

i-EP.

. Follows from (2.1).

he following example shows that the reciprocal of above result is false.

ple 6.5. Let

A =




1 0 0 0 0

0 1 0 0 1

0 0 1 0 0

0 0 0 0 1

0 0 0 0 0




.

, Ind(A) = 2, A is bi-EP but A is not bi-dagger.

owever, for the case of nilpotent matrices of index 2, the reciprocal of Corollary 6.4 is true.

15
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equiva

(a) A
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Proof

(e)⇒
(f)⇒( ence

(A†)2
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Theo D if
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rem 6.6. Let A ∈ Cn×n a nilpotent matrix with Ind(A) = 2. Then the following conditions

lent:

is 2-index EP (or equivalently A2 is EP);

2 is bi-dagger;

2 is bi-EP;

is 2-EP (or equivalently A2A† = A†A2);

is bi-dagger.

is bi-EP.

. Equivalences (a) to (e) were proved in Theorem 6.3.

(f) By (2.1).

e) Clearly, (A2)† = 0. Further, A is bi-EP (i.e. PAQA = QAPA) we have A(A†)2A = 0 wh

= 0. Thus, (A2)† = (A†)2, that is, A is bi-dagger.

llary 6.7. Let A ∈ Cn×n be written as in (2.2) such that Ind(A) = 2. Then A is bi-EP if and on

tisfies any one of conditions (a)-(e) in Theorem 6.6 and S(In−t −QN − PN ) = 0.

. From Theorem 4.1 we know that A is bi-EP if and only if N is bi-EP and S(In−t−QN )(In−t−PN )

, by using the fact that N is nilpotent with Ind(N) = 2, the result follows by Theorem 6.6.

e finish this section with two results concerning bi-dagger matrices and SD matrices of index 2.

rem 6.8. Let A ∈ Cn×n be written as in (2.2) such that Ind(A) = 2. Then A is bi-dagger if and

is bi-dagger, T ∗∆1 = T (T 2)∗∆2 + ST̃ ∗
2∆2, Ω

∗
1∆1 = NT̃ ∗

2∆2, and S(In−t − PN ) = 0.

. As Ind(A) = 2, clearly N2 = 0. Therefore, Ω1N = SN and Ω2 = T̃2 = TS +SN . Thus, TS +Ω1

0. Now, as S(N∗)2 = 0, Corollary 5.7 completes the proof.

ark 6.9. From Theorem 6.8, one can note that if A is written in its core-EP decomposition (2.2)

) = 2, a necessary condition for A to be bi-dagger is that N is also bi-dagger.

rem 6.10. Let A ∈ Cn×n be written as in (2.2) such that Ind(A) = 2 and A is SD. Then A2 is S

nly if [T 2,∆−1
1 TT ∗ + SNN∗S∗] = 0.

. It is a direct consequence from Theorem 3.7.

16
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