This article was downloaded by: [Ana Georgina Flesia]

On: 08 December 2012, At: 07:30

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Communications in Statistics - Theory and Methods

Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/lsta20

A Note on Distinguishing Random Trees Populations

Ana Georgina Flesia ®

# CIEM-CONICET, FaMAF-UNC, Ciudad Universitaria, Cérdoba, Argentina
Version of record first published: 07 Dec 2012.

To cite this article: Ana Georgina Flesia (2013): A Note on Distinguishing Random Trees Populations, Communications in
Statistics - Theory and Methods, 42:2, 239-251

To link to this article: http://dx.doi.org/10.1080/03610926.2011.579371

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to
anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should
be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims,
proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in
connection with or arising out of the use of this material.



http://www.tandfonline.com/loi/lsta20
http://dx.doi.org/10.1080/03610926.2011.579371
http://www.tandfonline.com/page/terms-and-conditions

Downloaded by [Ana Georgina Flesia] at 07:30 08 December 2012

Taylor & Francis

Taylor & Francis Group

Communications in Statistics—Theory and Methods, 42: 239-251, 2013
Copyright © Taylor & Francis Group, LLC e
ISSN: 0361-0926 print/1532-415X online

DOI: 10.1080/03610926.2011.579371

A Note on Distinguishing Random Trees Populations

ANA GEORGINA FLESIA

CIEM-CONICET, FaMAF-UNC, Ciudad Universitaria,
Cérdoba, Argentina

This article addresses the problem of identifying differences between populations
of trees. Recently, a sophisticated test was proposed by Busch et al. (2009), the
BFFS test, a Kolmogorov type of test that maximizes the differences between the
information of the samples, but it does not have a naive computation, since it
involves a search over the set of trees that grows exponentially fast. An algorithm for
computing the test statistic was devised in Busch et al. (2009), considering a search
for a minimum cut over a transport network in a Ford Fulkerson type routine. The
test was shown powerful but complex at the time to apply it in practice. On the
contrary, we propose a very simple statistical test based on the distance between
empirical mean trees, as an analog of the two sample Z statistic for comparing
two means. Despite its simplicity, we can report that the test is quite powerful
to separate distributions with different means, but it does not distinguish between
different populations with the same means. In that case, the BFFS test should be
applied. Nevertheless, on a real data set from proteomics, also discussed on Busch
et al. (2009), our test obtained the same results, making it a valuable preliminary
evaluation tool for random trees population discrimination.

Keywords Protein functionality; Random trees.

Mathematics Subject Classification 62H30; 68T05; 92B15; 92C55.

1. Introduction

Random trees have long been an important modeling tool. Tree models arise
naturally when a collection of observed objects are all descended from a common
ancestor via a process of duplication followed by gradual differentiation. There
are two broad approaches to constructing random evolutionary trees in this
setting: forwards in time “branching process” models, such as the Galton-Watson
process, and backwards-in-time “coalescent” models such as Kingman’s coalescent
introduced in Kingman (1982). But there are other trees in the statistics and
computer science literature, like phylogenetic or evolutionary trees, probabilistic trees,
search trees, tries, and others, all of them with particularities related to the field
of applications from whom have arisen. Some important references, among others,
for these constructions are Holmes (2003) for the classical approach to phylogeny,
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Sturmfels and Patcher (2005) for the new ideas of algebraic statistics, and Devroye
(1998) for the classical computer science approach to probabilistic trees, tries, and
its relationships with branching processes.

In this article, we consider trees that have a root and evolve forward in time in
discrete generations, and each parent node has up to m offspring nodes in the next
generation, as in Busch et al. (2009) (BFFS from now on). Otter (1949) and Neveu
(1986) defined a tree as a subset of the nodes satisfying the condition “son present
implies father present,” the natural sigma algebra is the minimal one containing
cylinders, sets of trees defined by the presence/absence of a finite number of nodes.
The natural topology is the one generated by the cylinders as open sets. Under
distances associated to this topology the space of trees is a compact metric space.
In this context, BFFS prove law of large numbers for empiric samples of trees and
an invariance principle on the space of continuous functions defined on the space
of trees. In many cases, binary search trees, tries, and other probabilistic trees can
be embedded into this set-up; see, for instance, Devroye (1998).

Let v, v* be distributions that give mass only to finite trees. The goal is to test
differences between the population laws

Hy:v=v" H,:v#V (1)

using i.i.d. random samples with distribution v and v*, respectively. Intuitively, if
the expected mean of each population is different, a naive test for this problem will
reject the null hypothesis when the distance between the empirical means associated
with each sample is large enough, but it will fail if the population have different
laws but the same expected mean. A Kolmogorov-type of test have been devised
for this problem in Busch et al. (2009), but a direct approach to calculate effectively
the test statistic is quite difficult, since it is based on a supremo defined over
the space of all trees, which grows exponentially fast. In Busch et al. (2009), an
algorithm for computing the BFFS test was introduced, in the context of multiple
discrimination of proteins into families. This algorithm searches for a minimum cut
over a network, using a Ford Fulkerson type of routine. In this article, we will
report a good performance of the naive test over the same protein discrimination
problem worked out on Busch et al. (2009), the problem of checking the coherence
of hypothesized functionality families. We suppose that each family of proteins is
related to a random tree, and the alleged members of each family form a sample of
the law of the random tree that characterizes the family. We check if there is enough
information in the samples to reject the hypothesis of equal populations.

In addition, we studied the naive distance-based test over simulations of Galton
Watson processes, concluding that the power of the test is smaller than the BFFS
test for specific cases but its computational simplicity calls for its application as a
preliminary approach to the problem.

This article is organized as follows. Section 2 describes the class of metric spaces
we consider. Section 3 develops the details of the simulations and the real data
example from genomics. The conclusions of the article are given in Sec. 4

2. Trees, Distances and Tests

We will review the definition of BFFS tree that can be roughly thought of as a
set of nodes satisfying the condition “son present implies father present.” Following
Busch et al. (2009), we will consider an alphabet s¢ = {1, ..., m}, with m > 2 integer,
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representing the maximum number of children of a given node of the tree. Let V =
{1,11,21,...,ml1,111,211...}, the set of finite sequences of elements in s/, all of
them finishing with the symbol 1, which represents the root of the tree. The full tree
is the oriented graph ¢, = (V, E) with edges E C V x V given by E = {(v,av) : v €
V, a € }, where av is the sequence obtained by concatenation of v and a. In the
full tree, each node (vertex) has exactly m outgoing edges (to its offsprings) and one
ingoing edge (from her father), except for the root who has only outgoing edges.
The node v =aq,...a,l is said to belong to the generation k; in this case, we write
gen(v) = k. Generation 1 has only one node, the root.
We define a BFFS tree as a function ¢ : V — {0, 1} satisfying

1(v) = 1(av) )

for all v € V and a € A. Abusing notation, a tree ¢ is identified with the subgraph
of the full tree t = (V,, E,) with

V,={veV:t(v)=1} and E, ={(v,av) € E: t(v) = t(av) = 1}. 3)

In Fig. 1, we observe a BFFS tree of depth 4. With this type of notation, the father
of a node is written as a suffix in the description of the son, as it is often done in
the definition of a Variable Length Markov Chain.

Let T be the set of all trees, and let ¢ : V — IR* be a strictly positive function such
that )" ., ¢(v) < oo. We define a distance between two trees in 7 as a weighted sum
over the nodes that are present in a tree and absent in the other, following the formula

d(t,y) =3 o)|t(v) — y()|. (4)

veV

The natural sigma algebra is the minimal one containing cylinders, sets of trees
defined by the presence/absence of a finite number of nodes. The natural topology

121 221

1121 2121

Figure 1. An example of BFFS tree of depth 4. The leaves are written in boldface. (color
figure available online)
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is the one generated by the cylinders as open sets. So it is easy to prove that the
distance d we defined before generates the natural topology, and (7, d) becomes
a compact metric space; see Busch et al. (2009). We denote % the o-field of Borel
subsets of 7, induced by the metric d.

Random trees. A random tree with distribution v is a measurable function
T:Q— T such that (T € A) = / v(dr) (5)
A

for any Borel set A € %, where (Q), F, ) is a probability space and v a probability
on (7, B).

Expected value. The expected value or d-mean of a random tree T is the set (of trees)
IE,T which minimizes the expected distance to T:

IE,T:= argmin / d(t, y)v(dy). (6)

The set IE,T is not empty; see Busch et al. (2009). Any element of the set IE,T
is also called a d-mean or d-center. Since [E,T depends only on the distribution v
induced by T on 7, it may also be denoted as [E,(v).

Empiric mean trees. Let T = (7,...,7T,) be a random sample of T (independent
random trees with the same law as 7). The empiric mean tree (empiric d-center,
sample d-mean) is defined as the random set of trees given by

_ 12
T:= argr%n;;d(ﬂ, f). (7)

This formula may show the problem as more difficult that it is, since it is calling for a
search over the whole set of trees, that grows exponentially in the number of nodes. But
it is easy to prove that the empiric mean tree of a set of trees can be built by majority
vote over the nodes. That means, that at least one of them can be defined as the tree
whose nodes are present only if they are present in at least half of the sample.

Proposition 2.1. Let T = (Ty, ..., T,) be a random sample of T , and let t* be the tree
defined as the tree whose nodes are present only if they are present in at least half of
the sample. Then t* is an empiric mean tree.

Proof. Let first notice that if t € 7

12 12
=2 d(T, 1) ==> % dWIT,(v) — t(v)|
n i=1 n i=1 veV
12 12
= o)=Y IT(v) =)+ Y é@)= D [Ti(v) —1(v)|
veV, ni veUVy. /v, ni—
# trees in the sample v is not present
= ¢
veV, n
# trees in the sample v is present
+ Y ¢ .

veUVr, [V, n
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So, to reduce the average of distances we have to reduce both summands, keeping
and adding nodes to the candidates of empiric means. The first point to notice is
that the first summand is reduced when the candidate # keeps nodes that are present
in many trees of the sample. If 7 keeps a node that is not in any tree of the sample,
the first summand adds the full value of ¢(v). The second summand is reduced when
the tree ¢+ do not keep a node that is present only in a few trees of the sample. The
cut off that balance the presence-absence relationship for each node is then 1/2.

Remark 2.1. We should notice that if the number of trees in the sample is odd, the
empiric mean is unique, but if the sample size is even, the node that it is present in
exactly a half of the sample can be kept or not, without increasing the distance, so
we will have at least two empiric means, one will have the least of possible present
nodes, and the other the most.

Remark 2.2. In Wang and Marron (2007), BFFS trees are considered as structural
trees, and attributes have been added to each node, in order to model more complex
data, like human blood vessel systems. These real-life tree-like objects needs a
mathematical model with richer structure, but as the authors pointed out, the
simplicity of the tree model is lost, and the generalization of the measure introduced
on the space did not allow an easy computation of the mean tree. The same
problem was pointed out by Banks and Constantine (1998), considering binary
labeled trees. Hamming type of metrics, like the BFFS metric have the capability of
easy computation and should be the choice when the problem allows it. On spaces
of binary labeled trees, like phylogenetic trees, a popular choice of metric is the
Robinson Foulds metric, but the mean tree is not longer computable without a
search over the entire (finite) space. Consensus trees have been proposed, but the
idea of a unique consensus tree when merging different databases of trees has been
challenged, (Bryant, 2003), and a statistical test of differences of populations is still
needed; see Stockham et al. (2002) for a data mining approach to the problem based
on clustering.

Example 2.1 (Galton-Watson Related Population of Trees). We consider now
only binary (not labeled) trees, that is, m = 2. The extension to an arbitrary
number of offsprings m is straightforward. In a binary binomial Galton-Watson
model, the offspring number is 0, 1, or 2 with probabilities (1 — p)>, 2p(1 — p),
and p?. The expected mean tree keeps a node v, if and only if gen(v) < k,, where
ko = max{k € {0,1...}: p* > 1/2}. When p < 1/2, the expected mean tree is the
empty tree. For instance, if p = 0.5 and p* = 0.75, the expected mean trees are
T,= {1} and T, = {1, 11, 12}, the full trees of depth 1 and 2, respectively, but for
p €[0.5,0.70] the population have the same expected mean tree. This is a very
simple parametric case where the maximum likelihood test has maximum power, so
it is not of much use to introduce a new test in this setting, if we knew that we have
a Galton Watson process producing our observations. We consider this example
only to asses the power of the proposed test via simulation.

Example 2.2 (Variable Length Markov Chains and Related Population of Trees).
A Variable Length Markov Chain is a stochastic process introduced first by
Rissanen (1983) in the setting of information theory, and that have been recalled
lately by Bithlmann and Wyner (1999), and many others in the context of Protein
Functionality Modeling; see Bryant (2003) and references therein.
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In this model the probability of occurrence of each symbol at a given time
depends on a finite number of precedent symbols. The number of relevant precedent
symbols may be variable and depends on each specific sub-sequence. More precisely,
a VLMC is a stochastic process (X,,),cz, With values on a finite alphabet s/, such that

PIX, =-| X"} =x"]=PIX

—00 n

=X =x70 (8)

where x! represents the sequence x,, x,.,,...,x, and k is a stopping time that
depends on the sequence x,,_,, ..., x,_;. As the process is homogeneous, the relevant
past sequences (x,_;,...,x,_;) do not depend on n and are called contexts, and
denoted by (x_,, ..., x_;). The set of all contexts T can be represented as a rooted
tree ¢, where each complete path from the leaves to the root in ¢ represents a context.
Calling p the transition probabilities associated to each context in 7 given by (8),
the pair (z, p), called probabilistic context tree, has all information relevant to the
model; see Rissanen (1983) and Bithlmann and Wyner (1999).
As an example, take a binary alphabet s¢ = {1, 2} and transition probabilities

PX,=1|X"1=11]=0.7,
P[Xn = xn | Xﬁ;ol = X’l;}] = P[Xn = 1 |)(::21 = 2 1] = 04’ (9)
PX,=1|X,,=2]=0.2,

so that, if x,_, = 2, then the stopping time k = 1 and X, = 1 with probability 0.2;
otherwise, the stopping time is k = 2 and X, = 1 with probability 0.7 if both x,_;, =
x,_» = 1 or with probability 0.4 if x,_, = 1 and x,_, = 2. The set of contexts is 1 =
{111, 211, 21}, when the set of all active nodes of the associated rooted tree ¢ is
V., = {1,111, 211, 21, 1}, since 11 is an internal node in the path of the context 111
and 211, and 1 is the root. Another example over the same alphabet is given by the
transition probabilities

P[Yn =1 | Yn—l = 1] = 06’
PlY, =y, | Y =y =Py, =1|Y/7 =22]=04, (10)
PlY, =1y =12]=0.2.
The set of contexts is # = {11, 121, 221}, when the set of all active nodes of the
rooted tree y is V, = {1, 11, 121, 21, 221}, since 21 is an internal node in the path of

the context 12 and 22. The corresponding rooted trees r and y are represented in
Fig. 2. Let us compute the distance between the these two trees,

d(t,y) =3 o()[t(v) — y(v)|

veV

= ¢(D]e(1) = y(D] + (I D[e(11) — y(1 D[ + ¢21)[#(21) — y(21)]
+ ¢(111)]e(111) — y(111)] + p(12)|1(121) — y(121)]
+ ¢211)]1(211) — y(211)] + $(221)|1(221) — y(221))
=0+0+04@(111) + p(121) 4+ ¢(211) + $(221)
=4 x 0.36° = 0.186624,

considering ¢(v) = z5"¥, z = 0.36.
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(a) (b)
1 1
11 21 11 21
(0.2,0.8) (0.6,0.4)
111 211 121 221
(0.7,0.3) (0.4,0.6) (0.2,0.8) (0.4, 0.6)

Figure 2. An example of two probabilistic context trees over the alphabet A = {1, 2}. (a)
The tree ¢ represents the pair (z, p), where = {111, 211, 21} is the set of contexts and p
are the transition probabilities given by (9). (b) The tree y represents the pair (1, g), where
n = {121,221, 11} is the set of contexts and ¢ are the transition probabilities given by (10).
(color figure available online)

Now, let us suppose that we are given a sequence of symbols that have been
produced by a VLMC with an unknown context tree. There are several algorithms
that estimates the context tree associated to the chain using the sequence as an
input. Let us fix the rule of estimation, for example, the Probabilistic Suffix Trees
algorithm (PST) from Bejerano (2004). This rule is a random tree that generate trees
in 7 following a given probability distribution v that is associated to the chain. If we
have two independent samples of strings that have been hypothetically produced by
two different unknown chains, we would like to derive a test that will rule if there is
evidence in the samples to support that hypothesis. We should stress the fact that we
are not using the probability transitions but the structure of the estimated context
trees to derive the test, but we are not losing much information since such structure
is indirectly related to the probability of occurrence of all possible contexts.

Testing differences of populations. We consider measures v € @, the space of
probability measures that concentrate mass on trees with a finite number of nodes.
We describe the two-sample problem.

Let v, v* be distributions in Q. The goal is to test

Hy:v=v" H,:v#Y (11)

using iid. random samples T=(T,,...,T,) and T*=(T},...,T}) with
distribution v and v*, respectively.

Test Based on the Distance Between Mean Trees. When the expected d-means are
different, IET # IET*, one expects that the distance between the empirical mean
trees T, T will be positive, for functions ¢ which do not penalize too much the
first generations, as ¢(v) = z&"® with 0 < z < 1. A simple and naive test for this
problem will reject the null hypothesis when the distance between the empirical
means associated with each sample is large enough.

Computation. The lack of knowledge of the distribution of the distance between
empirical means may be overcame using Monte Carlo randomization. If the null
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hypothesis is v = v*, and

d,=d(T,T) =Y [T(v) - T (v)|p(v)

veV

is the empiric distance between the mean trees of the kth pair of simulated sample,
created by randomly rearranging the whole set of observations, and assigning the
first n; observations to the first sample and the rest to the second sample, we define
the quantile ¢, as the value such that

«=PAT,T)>q,).

This value can be approximated using the order statistics 4, ..., d"™) and taking
q, as dN0=2D (here [a] denotes the greatest integer not greater than a). For
the original samples T and T*, the test will reject the hypothesis if d(T, T*) > q,
at level «. The Type 2 error can be estimated analogously for each alternative
hypothesis v,,.

3. Computational Examples

Simulation. To study the performance of the tests on a controlled environment we
simulate several populations of trees using Galton-Watson processes and simple
variations of it. We carefully choose the parameters to challenge the power of the
tests.

Assume we have two random samples, each one from a Galton-Watson process
with possibly different parameters p and p*, denoted GP(p) and GP(p*). We we
would like to test if these samples come from the same process, that is,

Hy:T ~GP(p), T* ~GP(p*) p=p° H,:T~GP(p),T" ~GP(p*), p#p"

In our simulation we already know the parameters of the underlying
distributions v and v*. Thus, we have performed a Monte Carlo simulation test
sampling trees from a mixture of both laws at random, until we reach the size of the
first sample and label it sample 1. Then continue selecting with the same mixture,
until we reach the size of the second sample, and label it sample 2. We compute the
test statistics with these random samples, and store it, and repeat the process 1,000
times. Then we generate a fixed number of times a sample from the distribution v,
and a sample from the distribution v*, and calculate the test statistics with them.
If the true test statistic is greater than (1-¢)% of the random values, then the null
hypothesis is rejected at p < a. The percentage of rejections for each value of o is
considered a measure of the power of the test.

We computed the percentage of rejection over 1,000 tests of level « = 0.10, 0.05,
0.01, when 77, ..., T}, is GP(p*), with p* = 0.6, 0.75, 0.8, and 0.85, for sample
sizes n = 31, 51, 101, 151, and 201. The results are reported on Table 1.

These results are in agreement with our intuitive ideas. As the sample size
increases, the test is not able to reject the hypothesis of equal populations when
p=0.5 and p* = 0.6, since their expected mean trees are equal. But when the
expected mean trees are different, the test detects the difference with higher power
as the sample size increases.
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Table 1
Percentage of rejections over 1,000 tests, computed with with p = 0.5 and p* = 0.6,
0.75, 0.8, 0.85, sample size n = 31, 51, 101, 151, and 201

oa=0.1 n =31 n=>51 n =101 n=151 n =201
p=20.6 5.6 2.1 0 0 0
p=0.75 52.8 65 92.5 99.3 100
p=0238 86.2 93.7 99.9 100 100
p=0.85 99 99.9 100 100 100

o = 0.05 n=231 n=>51 n =101 n=151 n =201
p=0.6 5.60 02.1 0 0 0
p=0.75 52.80 47 92.5 99.3 100
p=038 78.60 93.7 94.7 100 100
p=0.85 97.80 99.8 100 100 100

o =0.01 n=31 n=>51 n =101 n=151 n =201
p=20.6 0.70 2.10 0 0 0
p=0.75 39.10 47.00 58.40 95.10 96.9
p=028 51.70 76.90 94.70 95.10 96.2
p=0.85 55.40 98.40 100 100 100

Variable Length Markov Chain Modeling of Protein Functionality. A central problem
in computational biology is to determine the function of a new discovered protein
using the information contained in its amino acid sequence. Proteins are complex
molecules composed by small blocks called amino acids. The amino acids are
linearly linked, forming a specific sequence for each protein. There exist 20 different
amino acids represented by a one-letter code.

There are several problems related to protein functionality, but we will only
point out two of them here. One is the classification of the function of a new
protein with the help of a training set, and the other is clustering a group of new
and known proteins into meaningful functionality families. The goal of clustering
protein sequences is to get a biologically meaningful partitioning. Genome projects
are generating enormous amounts of sequence data that need to be effectively
analyzed. Given to the amount of available data, and the lack of proper definition,
clustering is a very difficult task, so there is a need for ways of checking the validity
of the partition proposed. As most databases are created by sequence alignment
related methods, an impartial way of checking validity would be to apply an
alignment-free, model-based methodology.

Most methods for clustering and classification need as input a similarity matrix,
usually computed by sequence alignment. Model-based clustering and classification
without sequence alignment is leaded by Markov Chain modeling. For example,
Bejerano and Yona (2001) modeled protein sequences with stationary Variable
Length Markov Chains (VLMC) in order to classify a new given protein as
belonging to the family whose model has higher probability of having produced that
string. This approach needs also a reliable training set in order to build an accurate
estimate of the unknown context tree of the chain.
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In this section, we propose checking the coherence of of selected protein families
performing a simultaneous hypothesis test, as in Busch et al. (2009). Some partial
results were included in Flesia and Freiman (2007).

We would like to test if several families that are members of a well known
database are simultaneously significantly different. The Pfam database is known
to be a good reference for protein functionality clustering, so it would provide a
benchmark for assessing the performance of our approach.

We start modeling each functionality family of proteins as realizations of an
unknown VLMC. But instead of learning the model using all the sequences of
a given family to estimate the context tree with the Probabilistic Suffix Trees
algorithm (PST), we consider this rule as a random tree that generate one tree in
T per sequence. The probability distribution v of the random tree is associated to
the chain that rules the family in an unknown fashion. If we have two independent
samples of strings that have been hypothetically produced by two different unknown
chains, we estimate with each of them the context tree of its chain and then consider
we have two independent samples of trees, each one following a distribution
associated to the family. We then test if there is enough evidence in the samples
to reject the hypothesis of equal distribution. If we do reject the hypothesis, we
consider the two families significantly different.

Let T be the space of trees with m = 20 possible children per node (the symbols
of the amino acid alphabet), and fixed maximum length M = 3 and the parameter of
the distance fixed as z = 0.36. We test if families selected from de P-FAM database
(Bateman et al., 2004), are simultaneously significantly different using the following
two-step procedure.

(1) Transform the amino acid chains into trees via the Probabilistic Suffix Trees
(PST) from Bejerano (2004), obtaining 10 samples of trees of maximum depth 3.

(2) Apply a Bonferroni correction to the 45 pairwise BFFS-based comparisons,
meaning each test is performed with a level of significance of o = 0.05/45 =
0.001 to get a simultaneous comparison of the 10 families, with overall level
o = 0.05.

We run all the pairwise tests at level 0.001. We also run the tests under the
null hypothesis splitting each data set at random in two subsets. Table 2 shows
the critical and the observed values for all pairwise tests of different families (non
diagonal terms). For the null hypotheses the observed value and the p-value appear
in boldface at the diagonal. Despite the crude nature of the Bonferroni method, the
hypothesis of equal distribution is rejected in all cases when the samples came from
different populations, confirming the coherence of the selected protein families. In
the case of the same family split in halves, we can observe p-values ranging from
0.12-0.90, values that can be used also to analyze the coherence of the family.

4. Final Remarks

We proposed a naive test to compare two populations of trees with laws that do not
have the same expected mean. The procedure is very simple, since it is based on the
idea that the empiric mean tree of each sample, a strong consistent estimator of the
expectation of the law that generates each population, should be separated in terms
of BFFS distance, a Hamming type of distance with easy computation. The test will
reject the hypothesis of equal populations if the distance between the empiric means
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Table 2
Critical value and observed value of 45 pairwise comparisons at level o = 0.001.
Test rejects when the observed value is greater than the critical value. In boldface,
observed value and p-value when testing the same population, N = 1, 000. The
distance’s parameter zeta is equal to 0.36

Family actin adh-short  adh-zinc ank ATP-synt-A
actin (0.49, 0.71) (241, 9.85) (3.37,10.44) (3.47,9.84) (4.62,11.21)
adh-short (1.36, 0.43) (1.91,4.91) (2.44,5.55) (2.05,5.27)
adh-zinc (1.66, 0.57) (2.58, 5.30) (3.05, 6.70)
ank (1.86, 0.81) (4.27, 8.37)
ATP-synt-A (1.67 0.52)
Family beta-lactamase cox2 cpnl0 DNA-pol efhand

actin (3.76,9.71)  (4.04, 11.46) (5.52, 12.20) (4.01, 9.73) (3.06, 11.79)
adh-short (2.52,391) (2.14, 6.24) (2.42, 6.20) (3.61, 6.44) (1.86, 6.07)
adh-zinc (2.64,5.14) (2.51,7.38) (2.79,7.91) (2.58,5.90) (2.23, 6.93)
ank (3.14, 5.32)  (3.03,7.94) (5.04,10.32) (2.51, 3.16) (2.74, 8.79)

ATP-synt-A  (3.34,6.25) (2.75,4.95) (2.61,5.28) (4.88,8.98) (2.08, 6.27)
beta-lactamase (1.819, 0.93) (2.98, 6.94) (2.83,6.52) (3.16, 6.58) (2.74, 6.49)

cox2 (2.05,0.09) (2.95,6.99) (3.77,9.19) (1.67, 6.49)
cpnl0 (1.30, 0.02) (6.46, 11.86) (2.02, 3.86)
DNA-pol (1.81, 0.23) (3.58, 10.24)
efhand (0.65, 0.93)

is big enough to ensure a small Type 1 error. The quantile of the distribution was
derived by Monte Carlo randomization, and the power was studied through Galton
Watson simulations.

In addition, we addressed a problem of functional genomics, to check the
coherence of hypothesized functionality families. We suppose that each family of
proteins is related to a random tree, and the alleged members of each family form a
sample of the law of the random tree that characterizes the family. We check if there
is enough information in the samples to reject the hypothesis of equal populations,
using a Bonferroni simultaneous testing procedure. Summarizing, our framework is
the following:

e cach family ¥ of protein domains induce a (different, hopefully) probability
distribution v on the space of trees 7;

e given two families ¥ and ¥ we consider their associated signatures, i.e., the
probability laws = and v' on the space 7;

e for each family 7; we take a sample of protein sequences of size n;, and for
each sequence in the sample we construct the pst context tree estimator, as
described in Bejerano (2004). We obtain a sample of size n; of iid random
elements on 7 with distribution 7;; and

o finally, for each pair of families F;, F; we test if both distributions © ; and © 7
are the same.

This approach will not work if the two populations have the same expected
mean tree, as in the case of two samples of strings that have been generated by
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chains with the same context tree but different transition probabilities. A more
sophisticated test was already proposed by Busch et al. (2009), a Kolmogorov type
of test that maximizes the differences between the information of the samples, but
it does not have a naive computation, since it involves a search over the set of
trees that grows exponentially fast. An algorithm for computing the test statistics
was devised, considering a search for a minimum cut over a transport network, and
applying a Ford Fulkerson routine. It is not a naive approach at all, and obtains
similar results as the ones shown in Sec. 3 on the protein discrimination problem.
On the other hand, the power of the test, computed also over Galton Watson
simulations, is higher and it may be applied even if the mean trees of the samples
are the same; see Busch et al. (2009) for details.

This suggests applying this simple test as a preliminary approach, and if there
is no rejection, implement the BFFS test.
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