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a b s t r a c t

In this paper a triangular prism solid element for the analysis of thin/thick shells undergoing large elas-
tic–plastic strains is developed. The element is based on a total Lagrangian formulation and uses as strain
measure the logarithm of the right stretch tensor (U) obtained from a modified right Cauchy–Green
deformation tensor (�C). Three are the introduced modifications: (a) a classical assumed strain approach
for transverse shear strains (b) an assumed strain approach for the in-plane components using informa-
tion from neighbor elements and (c) an averaging of the volumetric strain over the element. The objective
is to use this type of elements for the simulation of shells avoiding transverse shear locking, improving
the membrane behavior of the in-plane triangle and to handle quasi-incompressible materials or mate-
rials with isochoric plastic flow. Several examples are presented that show the transverse-shear locking
free behavior, the importance of the improvement in the membrane approach and the wide possibilities
of the introduced element for the analysis of shell structures for both geometric and material non-linear
behavior.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the solid mechanics field, for the simulation of shell struc-
tures (i.e. when one of the dimensions of the solid is small com-
pared with the other two), the use of finite elements that
consider reasonable hypothesis about the shell normal behavior
(Kirchhoff–Love or Reissner–Mindlin hypothesis) are preferred.
This leads to elements where the geometric configuration is de-
scribed by the movement of the middle surface only with an
important economy in computer resources of both memory and
CPU time.

However the use of solid elements for the simulation of shells
has grown a lot in the last fifteen years promoted by the continu-
ous improvement in computer facilities and also by the necessity
to improve different aspects of the models to obtain more faithful
simulations. Some of the advantages when using solid elements
are: (a) no assumption of the stress state is needed so general tri-
dimensional constitutive relations can be used; (b) contact forces
effects are correctly included, in particular friction; (c) large trans-
verse shear deformations and/or strain discontinuities across the
thickness can be considered; (d) avoid special transition elements
between shell elements and solid elements; (e) boundaries non-
parallel to the shell normal or director can be correctly modeled;
(f) Rotation vectors or local triads, that are in general costly and
difficult to parameterize and update, are not needed.

The most used solid elements for shell analysis are the hexahe-
dral elements, particularly the 8-node brick. Solid elements based
on the standard displacement formulation when used to simulate
shells show different type of locking: transverse shear, membrane,
curvature thickness and volumetric. Shear locking increases for
slender shells or if the behavior is mainly bending. Volumetric
locking appears when dealing with incompressible or nearly
incompressible materials or elastic–plastic materials with iso-
choric plastic flow (metals typically). If just one element is used
across the thickness it can not fit the Poisson effect at all points.
If the shell is initially curved artificial transverse strains and stres-
ses appear under pure bending due to curvature thickness locking.
Finally membrane locking specially appears on initially curved
shells when the behavior is mainly bending without middle surface
stretching. On low interpolation order elements membrane locking
does not appear, but the mesh density necessary to achieve conver-
gence increases. These numerical locking problems indicate that
the interpolation functions used (and their gradients) can not fit
the solid behavior and many times make the solutions obtained
useless.

There have been numerous advances in the development of so-
lid elements aimed to cure the different locking problems. In many
cases the objective is to generate models with just one element
across the thickness. In that case the elements are denoted solid-
shell elements and mainly use assumed natural strains (ANS) and
enhanced assumed strains (EAS) formulations, with the inclusion
of internal degrees of freedom that are locally condensed. To cure
the transverse shear locking, the classical approximation by Dvor-
kin and Bathe [5] is the most used when full integration is consid-
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ered (see for example [10,20]) and a variation of it when reduced
integration is preferred (see for example [3]). To cure membrane
and curvature thickness locking elements with both (ANS and
EAS) formulations have been proposed. The usual solutions for vol-
umetric locking are to use selective reduced integration (SRI) or
averaging the volumetric strain over the element. If one element
is used across the thickness both techniques lead to a too flexible
behavior, that is why also the EAS technique has been applied for
the volumetric approach in solid-shell elements. One and four inte-
gration points are used on the middle surface (in the first case sta-
bilization is needed to avoid hourglass modes), while across the
shell thickness at least two points are needed to capture the bend-
ing effect (until 7 points are used in elastic–plastic problems). The
implementation is quite more complex that the standard solid case
and the element may show some instabilities when reduced inte-
gration is used or for large strains when the EAS technique is con-
sidered [17]. In Schwarze and Reese [17] a detailed state of the art
for this type of elements can be found. In spite of the improve-
ments solid-shell elements can not model discontinuities across
the thickness, as typical appear in composite laminates, and the
discretization across the thickness must be increased with a loss
of some of their comparative advantages.

One of the motivations of this work is the simulation of com-
posite laminates with non-linear behavior, including delamination,
that requires more than one element across the thickness. In that
line the present development intends to cure transverse shear
locking in bending dominated problems, improve the membrane
behavior to allow coarser meshes and to relieve the volumetric
locking (for isotropic plastic flow), but it is not intended to improve
the transverse strain variation (Poisson effect in bending domi-
nated problems).

Curiously there are not developments for triangular prism solid-
shell elements. Probably the reason is the few possibilities given by
the standard interpolation functions. One obvious and important
advantage of a triangular prism element is that the triangular mesh
generators are quite more efficient to give elements with good as-
pect ratio.

The behavior of the standard (displacement base) 6-node
‘‘prism’’ and 8-node ‘‘brick’’ is quite different, that’s why the strat-
egies to cure the different locking problems may be different. The
transverse shear locking of the former is quite lower while the lat-
ter has a better in-plane behavior. Note also that for the same mesh
density (measured in the number of nodes) a SRI strategy for the
volumetric strain implies the double number of integration points
for the prism than for the brick.

In this paper some improvements on the standard 6-node
‘‘prism’’ [22] are proposed. To avoid volumetric locking an averag-
ing of the volumetric strain throughout the element is performed
(restricted to use at least two elements in the thickness). Regarding
the transverse shear we start from the proposal for quadratic trian-
gular shell elements [14], thus in the direction normal to the shell
an ANS approximation for some components of the metric tensor
will be obtained. Finally for the in-plane metric tensor components
we resort to the adjacent elements to define an ANS also [7]. The
ultimate goal is to have a simple element that does not require
any stabilization nor presents instabilities in large deformation
and suitable for contact problems.

Next section summarizes the equations of solid mechanics most
relevant to this work. Section 3 presents the formulation of the so-
lid element. The improvements in the standard element standard
are presented next, starting with the improvement in the in-plane
behavior, followed by the transverse shear formulation and the
strategy to avoid volumetric locking. Section 5 presents several
examples showing the very good behavior of the element and fi-
nally some conclusions are summarized.

2. Lagrangian description of the solid

Consider a continuum body with reference configuration X0 at
the initial time t ¼ 0. We denote by X the original position of the
material points of the solid with respect to an arbitrary global
Cartesian system. By RðXÞ ¼ t1; t2; t3½ � we denote the local orthogo-
nal triad where the material is mechanically characterized. The po-
sition of the material points at any instant time is described by
xðX; tÞ. The deformation gradient F is defined as:

F ¼ $xðX; tÞ ð1Þ

that can also be referred to the local material triad (we will use a hat
ð̂ Þ to denote variables referred to this system when necessary)

F̂ ¼ FR ð2Þ

Then the corresponding right Cauchy–Green deformation C and
Green–Lagrange strain E tensors are written as:

Ĉ ¼ F̂T F̂ ¼ RT CR ð3Þ

Ê ¼ 1
2

Ĉ� 1
� �

ð4Þ

The associated stress measure (through the virtual work princi-
ple) is the second Piola–Kirchhoff stress tensor Ŝ that can be re-
lated to the Cauchy stress tensor r by

Ŝ ¼ detðF̂Þ F̂�1 r F̂�T ð5Þ

that allows to write the internal virtual work as:Z
V0

Ŝ : dÊdV0 ð6Þ

where V0 is the undeformed original volume of the solid.
This conjugated stress–strain pair has some drawbacks when

dealing with large strain elastic–plastic constitutive relations, then
we introduce the Hencky deformation tensor e, that requires the
spectral decomposition of C

C ¼ LT K2 L ð7Þ

where K2 is a diagonal matrix collecting the eigenvalues k2
i of C and

L includes the associated (unit) eigenvectors. Then it is possible to
write the Hencky deformations as:

ê ¼ L̂T lnðKÞ L̂ ð8Þ

This strain measure is a proper extension of the one-dimen-
sional logarithmic (natural) strain and measure strains with re-
spect to the original triad. With T̂ will be denoted the associated
stress measure, that can be related to Ŝ using the following
expressions:

(a) defining the rotated tensors

TL ¼ L̂T T̂L̂

SL ¼ L̂T Ŝ L̂ ð9Þ

(b) the relationship between the 2nd Piola–Kirchhoff tensor and
Hencky stress is (See for example Ref. [4]):

SL½ �aa ¼
1
k2
a

TL½ �aa

SL½ �ab ¼
ln ka=kb

� �
1
2 k2

a � k2
b

� � TL½ �ab ð10Þ

(c) finally

Ŝ ¼ R̂L SLR̂T
L ð11Þ
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The purpose of calculating Ŝ is that the momentum equations
are written as shown in Eq. (6) due to the computational complex-
ity to obtain the variation of the Hencky strain (Eq. (8)).

With the aim of considering inelastic behavior, it will be as-
sumed that the elastic strains are small and that it is feasible to
decompose additively the Hencky strain tensor into an elastic
and a plastic component

ê ¼ êe þ êp ð12Þ

For isotropic materials it is also assumed that there is a linear
relationship between the Hencky stress measure T̂ and the elastic
strain component êe (defined by a constant constitutive tensor D):

T̂ ¼ D : êe ð13Þ

For a composite laminate, one possibility is to consider it as a
unique equivalent material. In that case Eq. (13) can be applied di-
rectly. Such approach is generally valid only for the elastic range. A
second possibility, computationally more costly but with a wider
generality, is to analyze separately each component when neces-
sary and their interaction (a simplified version of the serial/parallel
mixing theory) [16,13]. In the later case it is convenient to express
the components of the strain tensor ê in terms of the orthotropy
principal directions of each component

êi ¼ RT
i êRi ð14Þ

where Ri ¼ ti
1; t

i
2; t

i
3

� �
are the orthotropy principal directions of com-

ponent i with respect to the local system R. The mixture theory al-
lows to treat separately the evolution of each component,
computing its stress state and then computing the equivalent stress
state of the composite in terms of the volume fractions of each
component.

3. Solid finite element

The kinematic described above has been implemented on a 6-
node triangular prism element. The reference and deformed ele-
ment configurations are described by the standard isoparametric
interpolations [22].

XðnÞ ¼
X6

I¼1

NI
nð ÞXI ð15Þ

xðnÞ ¼
X6

I¼1

NIðnÞxI ¼
X6

I¼1

NIðnÞ XI þ uI
� �

ð16Þ

where XI; xI, are uI are respectively the original coordinates, the
present coordinates and the displacements of node I. The shape
functions NIðnÞ are the usual Lagrangian polynomials in terms of
the local coordinates n defined over the corresponding master ele-
ment, that combine area coordinates (n;g) on the triangular base
with a linear interpolation (f) along the prism axis:

N1 ¼ zL1 N4 ¼ zL2

N2 ¼ nL1 N5 ¼ nL2

N3 ¼ gL1 N6 ¼ gL2

ð17Þ

where we have used:

z ¼ 1� n� g

L1 ¼ 1
2

1� fð Þ

L2 ¼ 1
2

1þ fð Þ

ð18Þ

The computation of the Cartesian derivatives of the shape func-
tions is performed in a standard way, defining the Jacobian matrix
at each integration point

J ¼ @X
@n

ð19Þ

then

NI
X ¼ J�1 NI

n ð20Þ

At each element a local Cartesian triad, coincident with the
principal orthotropy directions of the constitutive material, is
defined

R ¼ t1; t2; t3½ � ð21Þ

thus the Cartesian derivatives respect to this system (Y) can be writ-
ten as

N̂I
Y ¼ RT NI

X ð22Þ

this allows to compute the deformation gradient F̂ as a function of
the present nodal coordinates

F̂ij ¼
XNN

I¼1

N̂I
j xI

i ð23Þ

and the components of tensor Ĉ

Ĉij ¼ F̂kiF̂kj ð24Þ

To evaluate the constitutive equations the strain tensor is
decomposed in its volumetric and deviatoric parts. This decompo-
sition is performed in a multiplicative form at each integration
point

Ĉ ¼ det Ĉ
� �h i1

3
ĈD ¼ J

2
3ĈD ð25Þ

where the volumetric and deviatoric strains are defined as

D ¼ ln J ð26Þ

êD ¼ ln Ĉ
1
2
D

� �
ð27Þ

as a result

ê ¼ D
3

1þ êD ð28Þ

The volumetric strain component is averaged over the element
(�D) when volumetric locking may appear due to isochoric plastic
flow, leading to a modified strain tensor at each integration point

e ¼
�D
3

1þ êD ð29Þ

Adopting the hypothesis of additivity of elastic and plastic
strain components, the strain tensor is written as:

�e ¼ �ep þ �ee ð30Þ

For materials with yield surface independent of the mean press, the
trace of the plastic component is null so �D is purely elastic. The
associated stress tensor is derived from an hyperelastic constitutive
law, assuming a linear relation between stress tensor and the elastic
component of the strain tensor

T̂ ¼ D �ee ð31Þ

For an isotropic material with isochoric plastic strain, the elastic
relation may be written as

T̂ ¼ 2G �ee
D þ K �D ð32Þ

with G and K the usual shear and bulk moduli respectively.
If the von Mises or the Hill yield criterion is used it is then pos-

sible to work separately with deviatoric and volumetric compo-
nents, thus facilitating the integration of the constitutive
equations.

276 F.G. Flores / Comput. Methods Appl. Mech. Engrg. 253 (2013) 274–286



Author's personal copy

As an alternative to the logarithmic strain, the spectral decom-
position (7) allows to easily deal with large strain hyperelastic
materials (elastomers), using models such as Ogden, Mooney-Riv-
lin, neo-Hookean, etc., that are usually defined in terms of a strain
energy written in terms of the principal stretches.

4. Improvements in the standard element

If the triangular prism element described above is to be used for
large strain elastic–plastic analysis of shells including contact the
element must be improved substantially. With that aim different
modifications are made over the metric tensor C. In what follows
the deformation gradient, the Cauchy Green deformation tensor
and the Hencky strain tensor will be written in the local system
but to alleviate notation the above hat will be dropped.

The discretization of a shell using triangular prism elements im-
plies two steps (a) a discretization of the shell middle surface with
three-node triangles and (b) a discretization in the thickness direc-
tion using one or more solid prism elements based on the triangles
defined before. In a standard way it will be assumed that the 6-
node connectivity associates nodes 1–3 and nodes 4–6 with planes
nearly parallel to shell middle surface and that the later ones are
above the former ones along the shell normal at a distance equal
to the layer thickness. Thus middle surface normal direction (local
y3) is almost coincident with local natural coordinate f.

As the kinematic formulation of the element is based on the
right Cauchy–Green deformation tensor, an interesting possibility
is to directly modify the components of C associated to the behav-
ior intended to improve

C ¼
C#

11 C#
12 C�13

C#
21 C#

22 C�23

C�31 C�32 C33

2
64

3
75 ð33Þ

where the components with the upper index # are those that have
the main influence on the in-plane behavior of the shell and those
denoted with an � are those associated with the transverse shear.
Then the deformation tensor may be divided into three parts

C ¼ C1 þ C2 þ C3 ð34Þ

where

C1 ¼ C11t1 � t1 þ C22t2 � t2 þ C12 t1 � t2 þ t2 � t1� �
ð35Þ

corresponds with the components on the tangent plane

C2 ¼ C13 t1 � t3 þ t3 � t1� �
þ C23 t2 � t3 þ t3 � t2� �

ð36Þ

are those components mainly associated with the transverse shear
strains and

C3 ¼ C33t3 � t3 ð37Þ

is used to compute the through the thickness strain.

4.1. Improvements on the in-plane behavior using the adjacent
elements

To enhance the in-plane behavior we resort to the adjacent
elements (in-plane neighbors) to define a four-elements patch
involving 12 nodes (see Fig. 1(a)). Thus an in-plane quadratic inter-
polation (linear along f coordinate) can be defined. Here we follow
the convective option used in rotation-free shell elements [7] that
averages at the element center the metric tensor components
computed at each mid-side points. In this case exactly the same
computations can be performed at both upper and lower faces
(see Fig. 1(b) with the notation of the lower face), and a subsequent

interpolation to the integration points. The local quadratic shape
functions associated to the lower face are:

I N N0n N0g
1 zþ ngð Þ �1þ gð Þ �1þ nð Þ
2 nþ gzð Þ 1� gð Þ z� gð Þ
3 gþ znð Þ z� nð Þ 1� nð Þ
7 z

2 z� 1ð Þ 1
2� z
� �

1
2� z
� �

8 n
2 n� 1ð Þ n� 1

2

� �
0

9 g
2 g� 1ð Þ 0 g� 1

2

� �
ð38Þ

Then, over both upper and lower element face defined by the
three nodes of the element and another three from the adjacent
elements:

1. We compute a local system (t1; t2) on the shell tangent plane,
with t3 normal to the face.

2. At each mid-side point (GK ) we evaluate the in-plane Jacobian
(Xn;Xg) and we project it over the directions (t1; t2)

J ¼
Xn � t1 Xg � t1

Xn � t2 Xg � t2

� 	
ð39Þ

3. We compute the shape function derivatives, that involve four
nodes only, at each mid-side point GK

NI
1

NI
2

" #K

¼ J�1
K

NI
n

NI
g

" #K

ð40Þ

4. This allows to compute the in-plane deformation gradient

(fK
1 ; f

K
2 ) and with it CK

ij (i; j ¼ 1;2) that is afterward averaged over

the face Cf
ij (f ¼ 1;2 for lower and upper face respectively).

5. When and adjacent element is missing (boundary), as originally
proposed for rotation-free shells, the values of the components
of Cij computed from the 3-node central triangle are included
for the averaging.

For the prism element, two integration points are used along

the normal direction f ¼ �3�
1
2

� �
. At these points the in-plane com-

ponents of the Cauchy–Green tensor are interpolated using

Cij fð Þ ¼ L1C1
ij þ L2C2

ij ð41Þ

The modified tangent matrix �Bf relating the incremental dis-
placements du with the incremental tensor components can be
written as:

d

1
2 C11

1
2 C22

C12

2
664

3
775 ¼ L1d

1
2 C1

11

1
2 C1

22

C1
12

2
664

3
775þ L2

1
2 C2

11

1
2 C2

22

C2
12

2
664

3
775 ¼ d

E11

E22

2E12

2
64

3
75 ð42Þ

and

d

1
2Cf

11

1
2Cf

22

Cf
12

2
664

3
775¼1

3

X3

K¼1

d

1
2 CK

11

1
2 CK

22

CK
12

2
664

3
775¼1

3

X3

K¼1

X4

J¼1

fK
1 NJ Kð Þ

1

fK
2 NJ Kð Þ

2

fK
1 NJ Kð Þ

2 þ fK
2 NJ Kð Þ

1

� �
2
6664

3
7775duJ Kð Þ ¼ �Bf

3�18duf

ð43Þ

where array duf include only the nodes on each face f (lower or
upper). Note that index J ¼ 1 . . . 4 because at each mid-side point
only four nodes contribute to the gradient, that is why the special
notation duJ Kð Þ.

4.1.1. Geometric stiffness matrix
The geometric stiffness matrix results from:
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duT KgDu¼
Z

V

@

@u
d

1
2C11

1
2C22

C12

2
664

3
775

0
BB@

1
CCA

T
S11

S22

S12

2
64

3
75DudV

¼
X2

G¼1

1
3

VolG

X2

f¼1

Lf
X3

K¼1

X4

I¼1

X4

J¼1

duI NJ
1NJ

2

h i S11 S12

S21 S22

� 	
NJ

1

NJ
2

" #
DuJ

( ) Kð Þ

ð44Þ

where the sum on G is the numerical integration with 2 Gauss
points along direction f.

4.2. Transverse shear formulation

The transverse shear approach is based as usual on an interpo-
lation of mixed tensorial components. Here we will adopt the gen-
eral methodology presented in Oñate et al. [14] for the cure of
transverse shear locking on Reissner–Mindlin shell elements. There
a 6-node quadratic triangular element is proposed with a linear
variation of the transverse shear strain tangent to the side. This
approximation can be easily particularized for linear elements
[21] assuming a constant value of the transverse shear strain
tangent to the side. The relevant components of the right Cau-
chy–Green tensor can be written as:

Cn3

Cg3

� 	
¼
�g �g 1� g
n n� 1 n

� 	 ffiffiffi
2
p

C1
t3

�C2
g3

C3
n3

2
664

3
775 ¼ P n;gð Þ~c ð45Þ

where the transverse shear components (Cn3; Cg3) has been defined
with respect to a mixed coordinate system, i.e. that includes the in-
plane natural coordinates (n;g) and the spatial local coordinate in
the transverse direction (y3). The components of interest are com-
puted at each side (1 n ¼ g ¼ 1

2

� �
, 2 n ¼ 0;g ¼ 1

2

� �
and 3 n ¼ 1

2 ;
�

g ¼ 0Þ, see Fig. 2) as a function of the deformation gradient along
the side and the gradient in the normal direction y3:

On the other hand, the numerical integration is performed with
two points along the prism axis (n ¼ g ¼ 1

3), whereby:

Cn3

Cg3

� 	
¼
�1

3 �1
3

2
3

1
3 �2

3
1
3

" # ffiffiffi
2
p

C1
t3

�C2
g3

C3
n3

2
664

3
775¼

ffiffiffi
2
p

C1
t3�C2

g3þC3
n3

3
�1
þ1

� 	
þ

C3
n3

C2
g3

" #

ð46Þ

For the purpose of having an element without spurious zero-en-
ergy deformation modes, it is necessary to have at least four strain
values, therefore it is not enough to compute just two values over
the middle surface (similar to a selected reduced integration). Here
we will compute the three natural strains for the two values of f
corresponding to the integration points (another option is to com-
pute them at f ¼ �1 and an interpolation to the Gauss points).
With this scheme, using (46), the number of components of the
Cauchy–Green tensor will be the minimum necessary, thus it will
be unnecessary to use any type of stabilization.

The mixed components computed at the sampling points 1–3
are:

~c ¼

ffiffiffi
2
p

C1
t3

�C2
g3

C3
n3

2
664

3
775 ¼

ffiffiffi
2
p

f1
t � f

1
3

�f2
g � f

2
3

f3
n � f

3
3

2
664

3
775 ð47Þ

where the fK
i are the present configuration derivatives respect to the

coordinates indicated by the index at each sampling point K. This
allows to compute the mixed tensor:

C2 ¼ Cn3 tn � t3 þ t3 � tn
� �

þ Cg3 tg � t3 þ t3 � tg� �
ð48Þ

where tn tg t3
� �

are the dual base vectors of the local base

tn tg t3
� �

¼ @X
@n

@X
@g

@X
@y3

h i
, and then to compute the modified Cartesian

components (again denoted by an over bar):

C13¼ t1 �C2 � t3¼ t1 � Cn3 tn� t3þ t3� tn
� �

þCg3 tg� t3þ t3� tg� �� �
� t3 ð49Þ

denoting by aj
i ¼ ti � tj (with i ¼ 1;2;3 and j ¼ n;g;3)

C13 ¼ Cn3 an
1a3

3 þ a3
1an

3

� �
þ Cg3 ag

1a3
3 þ a3

1a3
g

� �
¼ Cn3an

1 þ Cg3ag
1 ð50Þ

and similarly for the other component of interest. Thus using the
condition aj

i ¼ dj
i results

C13

C23

" #
¼

an
1 ag

1

an
2 ag

2

" #
Cn3

Cg3

� 	
¼ J�1

p

Cn3

Cg3

� 	
ð51Þ

where J�1
p is the inverse of the isoparametric mapping restricted to

the surface tangent plane. Note that due to the way in which the lo-
cal system has been defined the components in (51) are null in the
reference configuration.

The necessary components of the deformation gradient with re-
spect to the natural coordinates at the sampling points (1–3) are
obtained valuing the shape functions derivatives:
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Fig. 1. Patch of elements.
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Fig. 2. Points for the computation of the transverse shear strains.
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Recalling the shape functions (17) of the six-node triangular prism
element, the tangent gradients evaluated at the sampling points
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Until now we have written the gradients of x (with respect to nat-
ural coordinates) at the sampling points in terms of the nodal coor-
dinates. The gradients with respect to the transverse direction can
be expressed as:
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Þ are the components in direction y3 of the inverse of the

Jacobian of the isoparametric mapping (third column j�1
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Once the transverse shear components have been obtained,
they can be expressed in the Cartesian system as shown in (51)
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The transverse shear components of tensor C2 respect to the
Cartesian system stem from replacing Eqs. (47) into (45) and these
into (51)
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The tangent matrix Bs, relating displacement increments with
strain increments, results from first computing at the sampling
points
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and (with a notation abuse)
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then interpolate to the integration points using (46) and finally con-
vert to the Cartesian system

Bs n;gð Þ ¼ J�1
p P n;gð Þ~Bs ð62Þ

The Green–Lagrange strain components associated to the trans-
verse shear are directly the interpolated values
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While the nodal equivalent forces can be expressed as:
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where the generalized shear forces �Q at each Gauss point are
defined as:
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4.2.1. Geometric stiffness matrix
The above expressions allow to advance in obtaining the

geometric stiffness matrix:
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that, for example, for the first side is:
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4.3. Volumetric behavior

To avoid volumetric locking (for quasi-incompressible materials
or isochoric plastic flow) an averaging of the volumetric strain over
the two integration points is performed. This leads to an exces-
sively flexible behavior when just one element is used across the
thickness. Thus for those materials at least two elements will be
used through the thickness. Besides that to capture the details of
the elastic–plastic behavior four points are at least necessary thus
one element is insufficient.
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5. Numerical examples

In the set of examples shown below we denote by Wedge the
standard triangular prism described in Section 3. The same ele-
ment but incorporating any of the improvements described above,
to improve membrane behavior or to cure shear or volumetric
locking, is denoted by Prism and different suffixes. The suffix B

indicates that the volumetric averaging is performed; suffix S indi-
cates that includes ANS for transverse shear and suffix Q indicates
that the improvement in the membrane behavior has been
activated.

For large scale simulations with strong non-linearities associ-
ated to geometrical instabilities, complex constitutive models or
frictional contact, it is very common to use explicit algorithms
for the integration of the momentum equations. These algorithms
are conditionally stable and when shells are discretized with solid
elements the critical time increment depends on the thickness of
the layers. This may lead to very low critical time increments with
prohibitively large CPU times. For these type of models Olovsson
et al. [15] proposed a simple selective mass scaling strategy that
makes the critical time increment independent of the through
the thickness discretization. Such a technique has been used here.

Results obtained with other elements developed by the author
have been used with comparative purposes. Solag: 8-node solid
element based on the formulation described in Section 3 with vol-
umetric strain average; Solag-S: same as above but includes an
assumed strain approach for transverse shear [9]. LBST and BBST

are rotation-free thin shell triangular elements, the former [6] uses
the standard constant strain triangle for the membrane part, while
the later includes an assumed strain approach for the membrane
part [8] almost identical to the formulation presented above.

5.1. Cantilever beam with a point load

This first example (extracted from [15]) considers the dynamic
behavior of a cantilever beam with length, width and thickness
L ¼ 1; b ¼ 0:1 and t ¼ 0:01 respectively. The mechanical proper-
ties are Young’s modulus E ¼ 1� 102 GPa, Poisson’s ratio m ¼ 0
and mass density d ¼ 1000 kg=m3. The point load applied at the
free side has a value of 100 N with a Heaviside step time function.
As the problem is elastic with m ¼ 0 there is no Poisson’s effect
across the thickness nor volumetric locking. The behavior is purely
bending and it is useful to evaluate the shear locking and assess the
proposed cure. The discretization includes ten uniform divisions
along the length, one in the width and one element through the
thickness (see Fig. 3). The volumetric approach is standard, i.e.
we are not considering an averaging in the element or a selective
reduced integration (as this leads in this case to a very flexible
behavior).

If the standard 8-node solid element (Solag) is used a strong
shear locking occurs making the solution completely invalid.
Fig. 4 shows that the amplitude of the displacements is just 2% of
the correct value. Curiously if the standard prism element (Wedge)

is used the shear locking is not so severe. This is due to the partic-
ular characteristics of the present example and the mesh used. If
for the 8-node element four integration points are used as sug-
gested by Liu et al. [11] the same severe locking is observed. How-
ever if the selected four integration points belongs to a plane (such
an element presents hourglass modes), the results do not show
locking for this example. Note that the four integration points of
two adjacent prism element belong to a plane in this simple exam-
ple but in contrast the element is correctly integrated and does not
present spurious modes. Both elements including ANS for trans-
verse shear (8-node Solag-S and 6-node Prism-S) give results al-
most identical to those obtained with the triangular shell element
BBST using the same discretization.

5.2. Scordelis-Lo cylindrical roof

The second example is a classical cylindrical roof under self
weight. The shell is supported by rigid diaphragms at the curved
sides and is free along the straight sides. Only one-quarter of the
roof is modeled due to symmetry. Structured meshes with the
same number of elements along each side (see Fig. 5(a)) were used.
Of the two possible mesh orientations the one shown in the figure
is considered with two elements across the thickness.

The Fig. 5(b) shows the convergence of the vertical displace-
ment of point A at the mid-point of the free side (reference value
is wA ¼ 3:610) as a function of the number of elements per side.
This is a membrane dominated problem then a good membrane
approach is crucial for a fast convergence. To emphasize this the
results obtained with shell elements LBST and BBST, which main
difference is the membrane approach, are included. Note that the
later rapidly reaches convergence to the target value. The figure
also includes four curves corresponding to different combinations
of the modifications proposed over the standard solid element.
Clearly the standard Wedge locks severely and it can also be seen
that modifying only the membrane behavior (Prism-Q) there are
no noticeable changes. When the modification in the transverse
shear is included (Prism-S) the results obtained are similar to
those of the triangular shell element with constant strain mem-
brane (LBST). Combining both shear and membrane improvements
(Prism-SQ) the results rapidly converge to the reference value.

5.3. Semi-spherical shell with a 18	 hole

This is a well-known double curved shell problem in the context
of large elastic displacements. The Fig. 6(a) shows the geometry

Y

X

Z

Fig. 3. Cantilever beam under point load.
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considered using symmetry conditions and the loads applied. The
discretization used includes two elements across the thickness
and 32 elements along each side. The mesh is relatively fine on
the shell surface due to the double curvature and because this is
an almost inextensional problem where the membrane behavior
is not significant. The middle surface radius is R ¼ 10 mm, and
the mechanical properties of the material are Young’s modulus
E ¼ 6:825� 104 GPa and Poisson ratio m ¼ 0:3. Two different values
of the thickness have been considered in order to assess the ele-
ment in thin (R=t ¼ 250) and very thin (R=t ¼ 1000) shell prob-
lems. The maximum element aspect ratios are 25 and 100 for the
thin and very thin case respectively.

The Fig. 6(b) shows the deformed configuration for an inward
displacement of the loaded point equal to 60% of the shell radius.
Whilst the Fig. 7 plots the displacement (absolute values) of the
loaded points where the largest displacement corresponds to the
inward load. For the case R=t ¼ 250 the results presented in Simo
et al. [19] using a shear deformable shell element are included
while for the case R=t ¼ 1000 those extracted from Ref. [17] ob-
tained with a sophisticated solid-shell brick element (Q1STs) are
plotted. Also for both thicknesses results obtained with thin shell
finite element BBST are shown. For the solid prism element four
different results are plotted. Those obtained with the standard dis-
placement formulation (Wedge) that locks severely and three com-
binations of the proposed modifications, all including the ANS for
transverse shear (index S) that is the most significant for this
example. For the present problem and mesh it may be seen that
the membrane formulation has a minor influence and when the

volumetric strain average is considered a more flexible behavior
is again obtained due to the relaxation of the Poisson effect. Note
that for the standard formulation the locking increase notoriously
for the very thin case, while for the modified version the results do
not show substantial differences for the different thickness values.

5.4. Simulation of the ply drop-off test

This example is intended to show how the element formulation
described in Section 3 combined with a simplified serial/parallel
mixing theory can be used to model non-linear behavior of com-
posites including delamination and failure. The Fig. 8 shows sche-
matically the test setup and the loads applied. The experimental
specimen has 18 layers in the thinner part and 27 layers in the
thicker part (layer thickness is 0:78 mm). The tensile force gener-
ates bending in the section with thickness variation and a strong
shear stress between the upper continuous and the lower discon-
tinuous layers that produces delamination between then. The de-
tails of the constitutive model used, the properties and
orientation of the layers and a detailed discussion of this test can
be found in Martinez et al. [13].

The finite element discretization includes 6 elements across the
thickness for the thinner part and 9 for the thicker part, i.e. each
element spreads over 3 layers of composite. Due to axial symmetry
half of the specimen is modeled with two divisions in width direc-
tion. Finally 33 non-uniform divisions are considered in the axial
direction, leading to a mesh with 1251 nodes and 1452 prism
elements.
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Displacements are imposed at both ends until a total elongation
of 1.8 mm. A first sight the problem can be classified as static, how-
ever the delamination is basically a dynamic problem that releases
energy with a strong stress redistribution than may lead to non-
convergence if an implicit static non-linear strategy is used (con-
tinuation method). Here an explicit integrator is considered with
a special strategy that allows the delamination process take place
before continuing the straining.

The Fig. 9 plots the load applied versus the total length change
of the specimen. The results included are the experimental ones
and those obtained with the standard element (Wedge) and includ-
ing the transverse shear approach (Prism_S). Also for the numer-
ical simulations the vertical displacement of point A (indicated in
Fig. 8) is plotted. The first part of the curves (before DL ¼ 1 mm)
show an excellent agreement between the experimental and the
numerical results. This implies that the specimen tangent stiffness
DF
DL

� �
is correctly determined by the constitutive model. Note that

the vertical displacement W is larger for the element with the
modified transverse shear than for the standard element. This is
due to the transverse shear locking of the later and although it does
not seem to be very strong it implies larger shear stresses so an
earlier failure may be expected for the standard element. The
experimental values indicate a change in strength between
DL ¼ 1 mm and 1.1 mm that is associated with the onset of delam-
ination. Also for the second part of the experimental data the tan-

gent stiffness diminish to an almost constant value as if the
delamination had reached the right end instantaneously. For the
numerical simulations the propagation of the delamination is more
gradual. The onset of delamination for the model using the Wedge

element occurs for DL ¼ 1 mm where a peak in the curve can be
seen while for the Prism-S element the delamination also stars
for DL ¼ 1 mm but the curve peak occurs for DL ¼ 1:15 mm but
with a faster delamination than for the standard element.

Finally Fig. 10 shows three different stages of the delamination
process where the contour field of an internal variable of the model
(a sort of equivalent deformation) has been drawn. Note that the
discontinuity produced by the delamination is here treated in a
continuous form.

5.5. Spherical dome under uniform step load

This is also a classical example [2] of the elastic and elastic–
plastic dynamic behavior of shells that appears in most of the com-
mercial non-linear finite element codes manuals (see for example
[1]). The comparisons are made against a converged finite element
solution obtained with an axisymmetric quadrilateral solid ele-
ment Q4P1 (4 elements across the thickness and 100 elements
along the meridian).

Two discretizations have been considered over one quarter of
the dome. A rather coarse one with 96 elements over the shell sur-
face and two element across the thickness. And a fine discretiza-
tion with 2888 elements on the middle surface and four

Load Factor

D
is

pl
ac

em
en

t

0 20 40 60 80 100
0

1

2

3

4

5

6

BBST
Prism-S
Prism-SQ
Prism-BSQ
Wedge
Simo

Load Factor

D
is

pl
ac

em
en

t

0 0.5 1 1.5 2
0

1

2

3

4

5

6

BBST
Prism-S
Prism-SQ
Prism-BSQ
Wedge
Q1STs

(a) (b)

Fig. 7. Semi-spherical shell with a hole. Displacements of the loaded points. (a) R=t ¼ 250 (b) R=t ¼ 1000.

356 mm

50mm

A

Fig. 8. Ply drop-off test specimen and load applied.

ΔL [mm]

Lo
ad

[k
N

]

w
[m

m
]

0 0.5 1 1.5
0

20

40

60

80

100

120

0

0.2

0.4
L-Exper.
L-Wedge
L-Prism_S
W-Wedge
W-Prism_S

Fig. 9. Ply drop-off test. Load–displacement results.

282 F.G. Flores / Comput. Methods Appl. Mech. Engrg. 253 (2013) 274–286



Author's personal copy

elements across the thickness. For the elastic case the volumetric
approach is standard while for elastic–plastic case the element
averaging is considered.

The Fig. 11(a), corresponding to the elastic model, plots the
apex displacement of the reference solution and those obtained
with the coarse mesh. The results show an important improvement
of the modified element respect to the standard one. The Fig. 11(b)
plots the results of the elastic–plastic case. Again the results of the
present element are quite better than the standard one but the
mesh must be refined to obtain results similar to the reference
solution.

5.6. Thin-walled elbow under in-plane bending and internal pressure

A pipe of radius r ¼ 19:83 cm and thickness t ¼ 1:041 cm is
formed by a straight cylinder of length 182:9 cm, a 90	 elbow with
radius 60:95 cm and a second cylinder of length 60:96 cm. The pipe

is fully clamped at one end and subjected to an imposed rotation at
the other end. This rotation involves all the nodes at the end sec-
tion keeping it plane and circular. The pipe may be internally pres-
surized, so two cases are considered (a) p ¼ 0 and (b) p ¼ 3:45 MPa.
The bending ovalize the cross section specially in the zone of the
elbow. The mechanical properties of the constituent material are:
E ¼ 194 GPa, m ¼ 0:264; d ¼ 7800 kg=m3 and associative plasticity
(von Mises) with isotropic hardening defined by the relation
ry ¼ 5:71� 108ðep þ 0:006Þ0:1. For comparison purposes two mod-
els were considered: one with 3-node triangular shell elements
(BBST) only and another that couples shell elements for the cylin-
drical parts and solid elements for the elbow. The discretization
used is rather coarse with 672 triangular elements over the middle
surface. For the coupled shell-solid model, three elements were
used across the thickness. The element aspect ratio (length/thick-
ness) of the solid elements ranges from 15 to 30. For the shell ele-
ments 6 integration points were used through the thickness to
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Fig. 10. Ply drop-off test. Deformed configurations.

Time [msec]

Ap
ex

D
is

pl
.

0 0.2 0.4 0.6 0.8 1
-0.1

-0.05

0

0.05

Q4P1
Wedge
Prism-SQ

Time [msec]

Ap
ex

D
is

pl
.

0 0.2 0.4 0.6 0.8 1
-0.08

-0.06

-0.04

-0.02

0

Q4P1
Wedge-Coarse
Wedge-Fine
Prism-BSQ-Coarse
Prism-BSQ-Fine

(a) (b)

Fig. 11. Spherical dome with uniform pressure. (a) elastic, (b) elastic–plastic.

F.G. Flores / Comput. Methods Appl. Mech. Engrg. 253 (2013) 274–286 283



Author's personal copy

have the same number of integration points for both shell and solid
elements and to capture with detail the elastic–plastic bending.

The Fig. 12 shows the final deformed geometry of the tube for
the coupled mesh and the zone of the elbow for the shell only
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Fig. 12. In plane bending of an elbow. Final configuration (X = 1) with contour fill of the effective plastic strain over the external surface.
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model. The contours of equivalent plastic strain have been drawn
in both models for comparative purposes. A larger spread of the
plastic strain can be seen for the shell model than can be due to
the discontinuities that exist at the coupling zone. In both models
only half the pipe has been discretized due to symmetry.

The Fig. 13 plots the driving moment as a function of the rota-
tion of the end cross section for both load cases (without and with
internal pressure) and for both shell-only and coupled shell-solid
models. For comparison results with the coupled model using the
standard element and the two versions of the 8-node brick Solag

element are also plotted. For the present element two possibilities
have been considered, all of them with volumetric strain average:
(a) using just the volumetric strain average (Prism-B) and (b) with
both the membrane improvement and the ANS for transverse shear
(Prism-BSQ).

The coupled model including the standard solid element with
and without volumetric strain averaging is notoriously rigid due
to the shear locking (again this locking is less severe for the 6-node
element). There are no significant differences between the shell
model and the coupled model when the ANS approach transverse
shear is used. The differences between the results obtained with
the 8-node solid element and present element Prism-BSQ are
mainly due to the better membrane behavior of the later.

5.7. Deep drawing of a square sheet

The last example considered is the deep drawing of a thin sheet
corresponding to one of the benchmarks proposed in NUMI-
SHEET’93 [12]. The Fig. 14 shows the geometry of the tools. The
undeformed sheet is square with side length 150 mm. The elastic
mechanical properties of the mild steel considered are: elastic
modulus E ¼ 206 GPa and Poisson ratio m ¼ 0:3. For the plastic
behavior the classical Hill’s yield function with constant coeffi-
cients F ¼ 0:283, G ¼ 0:358, H ¼ 0:642, L ¼ 1:065, M ¼ 1:179,
N ¼ 1:289 was assumed. These coefficients were computed from
the Lankford ratios R0 ¼ 1:79; R90 ¼ 2:27 and R45 ¼ 1:51. Isotropic
hardening is defined by the yield stress along rolling direction (X
direction) r0 ¼ 567:3 0:00713þ ep

� �0:264.
The symmetry conditions shown in the figure have been consid-

ered, then just one quarter of the geometry has been included in
the model. The discretization of the sheet includes 30 elements
on each side (1800 elements in the plane) and 2 or 4 elements in
the thickness direction (a total of 3600 or 7200 elements). The
blank holder force used is 19.6 kN and the adopted friction coeffi-
cient is l ¼ 0:144. The simulation considered a punch stroke of
40 mm.

The Fig. 15 plots the punch force versus the punch travel. This
figure includes the results obtained with the 3-node triangular

shell element BBST with 5 through the thickness integration points
and with the standard element (denoted by We-2 and We-4) for
comparison. The results obtained with both thickness discretiza-
tion are included (denoted by P2 and P4) and four combination
of the proposed improvements, all including volumetric strain
averaging. It may be seen that only the combination of both mem-
brane and transverse shear improvement (SQ) lead to the correct
results. Note also that using 2 or 4 elements through the thickness
does not show noticeable differences. Besides that it must be said
that for the last part of the simulation not only the drawing forces
are incorrect, also an spurious localized increment of the plastic
strains appear for all but the combination SQ.

The Fig. 16 shows the contour fills of the effective plastic strain
for the solid models with two and four elements through the thick-
ness and for the model using shell element BBST. No differences
are noticeable between using 2 or 4 elements in the thickness dis-
cretization, note that the later implies roughly the double CPU time
than the former. The differences between the solid models and the
shell model are quite small.

Finally Table 1 compares the draw-in measurements for the
three simulations mentioned above with the maximum, minimum
and average experimental values presented in the conference [12]
and with those obtained with the eight-node solid shell element
described in Schwarze and Reese [17] using a similar in-plane
mesh but just one element across the thickness with seven integra-
tion points. Present results are well in the experimental range and
compare quite well with the experimental average for both rolling
and transverse directions but are rather large along the diagonal.

6. Conclusions

In this paper we have developed a triangular prism solid-shell
element suitable for nonlinear analysis with elastic–plastic large
strains. In the formulation assumed strain techniques have been
used to prevent transverse shear locking and to improve the mem-
brane behavior. To avoid volumetric locking the averaging of the
volumetric strain in the element has been used. The formulation

Prism-2 layers

XY

Z

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

Prism-4 layers BBST

Fig. 16. Equivalent plastic strain for the final punch travel.

Table 1
Draw-in at punch stroke 40 mm. Simulation vs experimental values [mm].

Direction Experimental BBST Q1STs Prism

Min. Max. Aver. Ref. [18] 2 Lay. 4 Lay.

0
	 26.75 29.60 27.96 27.94 29.00 27.64 27.78

90
	 26.75 29.59 27.95 27.03 29.00 27.69 27.94

45
	 14.60 16.31 15.36 17.43 16.41 16.80 16.82
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is simple and can effectively achieve the objectives. The main con-
clusions are:


 Transverse shear locking disappears completely in all cases
analyzed.

 For elastic problems it is even possible to use just one element

across the thickness without resorting to averaging the volu-
metric strain (for membrane dominated problems).

 In elastic–plastic problems, use of two elements through the

thickness give very good results.

 In membrane dominated problems (e.g. deep drawing) the

improvement of the membrane behavior is crucial to obtain
the correct results.

 The element did not show any problem in large elastic–plastic

strain cases.
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