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Self-Induced Decoherence and the
Classical Limit of Quantum Mechanics

Mario Castagnino and Olimpia Lombardi†

In this paper we argue that the emergence of the classical world from the underlying
quantum reality involves two elements: self-induced decoherence and macroscopicity.
Self-induced decoherence does not require the openness of the system and its interaction
with the environment: a single closed system can decohere when its Hamiltonian has
continuous spectrum. We show that, if the system is macroscopic enough, after self-
induced decoherence it can be described as an ensemble of classical distributions
weighted by their corresponding probabilities. We also argue that classicality is an
emergent property that arises when the behavior of the system is described from an
observational perspective.

1. Introduction. Both physicists and philosophers agree in believing that
classical mechanics should be a limiting case of quantum mechanics: If
quantum mechanics is correct, then its results must coincide with the
results of classical mechanics in the appropriate limit. In this paper we
shall argue that the classical limit of quantum mechanics involves two
elements: the first one is the physical phenomenon of decoherence; the
second one is macroscopicity. Although the role of decoherence in the
emergence of classicality has been pointed out by many authors in the
last years, we shall move away from the mainstream position with respect
to the explanation of decoherence. Instead of appealing to the einselection
approach, here the classical limit will be explained by means of the self-
induced approach according to which decoherence does not require the
openness of the system and its interaction with the environment. We shall
show that, in this new scenario, the classical limit can be described by
Figure 1.
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Figure 1.

ean quantum mechanics where the interference terms that preclude clas-
sicality have vanished. In turn, macroscopicity turns Boolean quantum
mechanics into classical statistical mechanics formulated in phase space.
This means that the classical limit of quantum mechanics is not classical
mechanics but classical statistical mechanics: If the system is macroscopic
enough, after decoherence it can be described in terms of an ensemble of
classical densities, each one of them with its own probability of occurrence.
We shall also argue that classicality is an emergent property that arises
from the underlying quantum level when the system is described from an
observational point of view. Finally, we shall consider the possibility of
applying this account of the classical limit to the problem of quantum
chaos.

2. Self-Induced Decoherence. In the original formulation of the algebraic
formalism of quantum mechanics, the algebra of observables was a C*-
algebra which does not admit unbounded operators. For this reason, the
self-induced approach to decoherence appeals to a nuclear algebra (see
Treves 1967; Castagnino and Ordoñez 2004) whose elements are nuclei or
kernels.1 This nuclear algebra is used to generate two additional topologies
by means of the Nelson operator: one of them corresponds to a nuclear
space V0 of generalized observables; the other topology corresponds to
the space VS of states, dual of V0.

Following previous works (Antoniou et al. 1997; Laura and Castagnino
1998a, 1998b), we shall symbolize an observable belonging to VO by a
round ket FO) and a state belonging to VS by a round bra (rF. The result
of the action of the round bra (rF on the round ket FO) is the expectation
value of the observable FO) in the state (rF:

AOS p (rFO). (1)r

If the basis is discrete, can be computed as usual, that is, as the traceAOSr
of rO. But if the basis is continuous, Tr(rO) is not well defined; never-

1. By means of a generalized version of the GNS theorem (Gel’fand-Naimark-Segal),
it can be proved that this nuclear formalism has a representation in a rigged Hilbert
space (Iguri and Castagnino 1999).
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theless, can always be rigorously computed since is a linear(rFO) (rF
functional belonging to VS and acting on an operator belonging toFO)
VO.

Let us consider the simple case of a quantum system whose Hamiltonian
has a continuous spectrum:

FH )FqS p qFqS, q � [0, �), (2)

where q and FqS are the generalized eigenvalues and eigenvectors of FH),
respectively. The task is now to express a generic observable FO) in the
eigenbasis of the Hamiltonian. Following the formalism of van Hove
(1955), a generic observable FO) belonging to the space VO reads

′ ′ ′FO) p O(q)Fq)dq � O(q, q )Fq; q )dqdq , (3)� � �
where O(q) and O(q, q′) are generic distributions, and andFq) p FqSAqF

are the generalized eigenvectors of the observable FO);′ ′Fq; q ) p FqSAq F
{Fq), Fq; q′)} is a basis of VO. On the other hand, states are represented
by linear functionals belonging to the space VS, which is the dual of VO;
therefore, a generic state (rF belonging to VS can be expressed as

′ ′ ′(rF p r(q)(qFdq � r(q, q )(q; q Fdqdq , (4)� � �
where {(qF, (q; q′F} is a basis of VS, that is, the cobasis of {Fq), Fq; q′)},
and it is defined by the relations2 ,′ ′ ′′ ′ ′′′(qFq ) p d(q � q ) (q; q Fq ; q ) p

, and . The only condition that the dis-′ ′′ ′′′ ′ ′′d(q � q )d(q � q ) (qFq ; q ) p 0
tribution r(q) and r(q, q′) must satisfy is that of leading to a well-defined
expectation value of the observable FO) in the state (rF.

With respect to the formalism of van Hove, the new approach intro-
duces two restrictions. The first one consists in considering only the ob-
servables FO) whose O(q, q′) are regular functions; these observables
define what we shall call “van Hove space,” . Since the statesVHV O VO O

are represented by linear functionals over the space of observables, in this
case they belong to the dual of the space . The second restrictionVHVO

consists in considering only the states (rF whose r(q, q′) are regular func-
tions; these states belong to a convex space S included in the dual of

, since they satisfy the usual conditions of quantum states: hermiticity,VHVO

2. These are just the generalization of the relationship between the basis {FiS} and the
cobasis {AjF} in the discrete case: .AjFiS p dij
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non-negativity and normalization of the diagonal terms.3 Under these
restrictions, decoherence follows in a straightforward way. According to
the unitary von Neumann equation, . Therefore, the�iHt iHt(r(t)F p e (r Fe0

expectation value of the observable in the state readsVHFO) � V (r(t)F � SO

AOS p (r(t)FO)r(t)

′′ �i(q�q )t ′ ′p r(q)O(q)dq � r(q, q )e O(q, q )dqdq . (5)� � �
Since O(q, q′) and r(q, q′) satisfy the condition of being regular functions,
when we take the limit for , we can apply the Riemann-Lebesguet r �
theorem4 according to which the second term of the right hand side of
equation (5) vanishes. Therefore,

lim AOS p lim (r(t)FO) p r(q)O(q)dq. (6)r(t) �
tr� tr�

But this integral is equivalent to the expectation value of the observable
FO) in a new state (r*F where the off-diagonal terms have vanished:

(r F p r(q)(qFdq ⇒ AOS p (r FO) p r(q)O(q)dq. (7)� r �* *
*

Therefore, for all and for all , we obtain the limitVHFO) � V (rF � SO

lim AOS p AOS . (8)r(t) r
*tr�

This equation shows that the definition of self-induced decoherence in-
volves the convergence of the expectation value of any observable be-
longing to to a value that can be computed as if the system were inVHVO

a state represented by a diagonal density operator (r*F. It can be proved
that decoherence also obtains when the spectrum of the Hamiltonian has
a single discrete value non-overlapping with the continuous part; but if
the Hamiltonian’s spectrum has more than one non-overlapping value in
its discrete part, the system does not decohere (for details, see Castagnino
and Lombardi 2004).

3. The restrictions on operators and states do not diminish the generality of the self-
induced approach, since the observables not belonging to and the states not be-VHVO

longing to S are not experimentally accessible and, for this reason, in practice they are
approximated, with the desired precision, by regular observables and states for which
the self-induced approach works satisfactorily (for a full argument, see Castagnino and
Lombardi 2004).

4. The Riemann-Lebesgue theorem states that iff (thatixy 1lim e f(y)dy p 0 f(y) � L∫xr�

is, iff ).Ff(y)Fdy ! �∫
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Up to this point we have considered a simplified case where the Ham-
iltonian was the only dynamical variable. But in a general case we must
consider a CSCO , whose eigenvectors are{FH ), FO ), . . . , FO )} Fq, o ,1 N 1

. In this case, (r*F will be diagonal in the variables q, q′ but not. . . , o SN

in general in the remaining variables. Therefore, a further diagonalization
of (r*F is necessary: as the result, a new set of eigenvectors {Fq, r , . . . ,1

, corresponding to a new CSCO , emerges. Thisr S} {FH ), FR ), . . . , FR )}N 1 N

set defines the eigenbasis ′ ′{Fq, r , . . . , r ), Fq, r , . . . , r ; q , r , . . . ,1 N 1 N 1

of the van Hove space of observables , where′ VHr )} V Fq, r , . . . , r ) pN O 1 N

and ′ ′ ′Fq, r , . . . , r SAq, r , . . . , r F Fq, r , . . . , r ; q , r , . . . , r ) p Fq,1 N 1 N 1 N 1 N

. (r*F will be completely diagonal in the cobasis′ ′ ′r , . . . , r SAq , r , . . . , r F1 N 1 N

of states, corresponding′ ′ ′{(q, r , . . . , r F, (q, r , . . . , r ; q , r , . . . , r F}1 N 1 N 1 N

to the new eigenbasis of (for details, see Castagnino and Laura 2000a,VHVO

Section II-B). This new CSCO can be called ‘preferred CSCO’ since its
eigenvectors define the basis that diagonalizes (r*F.

Summing up, self-induced decoherence does not require the openness
of the system of interest and its interaction with the environment: A single
closed system can decohere since the diagonalization of the density op-
erator does not depend on the openness of the system but on the continuous
spectrum of the system’s Hamiltonian.

3. Macroscopicity. In order to obtain the classical limit, the second step
is to represent the diagonal state (r*F resulting from decoherence in the
corresponding phase space and to apply the macroscopic limit .5 As� r 0
it is well known, the Wigner transformation maps states and operators
into functions on phase space:

Wr p r(q, p), WO p O(q, p). (9)

Moreover, we know that the Wigner transformation yields the correct
expectation value of any observable in a given state when we are dealing
with regular functions; however, it has not been defined when singular
functions are involved. The peculiarity of our case is that (r*F is precisely
the singular part of the initial state (rF (compare (4) and (7)). Therefore,
the Wigner transformation of singular states must be defined in this case.

5. In the rest of the paper we shall use the counterfactual limit in order to� r 0
simplify expressions, but in any case such a limit represents the factual limit �/S r 0
corresponding to the situations in which the characteristic action S of the system is
much greater than �. For an explanation of the difference between factual and coun-
terfactual limits, see Rohrlich 1989 and, with a different terminology, Bruer 1982.
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In fact, the task is to find the classical distribution rc(q, p) resulting
from applying the limit to the Wigner transformation of (r*F:� r 0

r (q, p) p lim W(r F p r(q) limW(qF dq. (10)c �* [ ]
�r0 �r0

Under the only reasonable requirement that the Wigner transformation
leads to the correct expectation value of any observable in a given state
also in the singular case, it can be proved that, when H is the only dy-
namical variable (see Castagnino 2004):

lim W(qF p d(H(q, p) � q), (11)
�r0

where H(q, p) is the Wigner transformation of the quantum Hamiltonian
H, . As a consequence, the classical distribution rc(q, p)H(q, p) p WH
becomes

r (q, p) p r(q)d(H(q, p) � q)dq. (12)c �
This result has a clear physical interpretation. We know that the classical
distribution rc(q, p) is defined in a 2-dimensional phase space, and H(q,

is the only global constant of motion. As a consequence, rc(q, p)p) p q

represents an infinite sum of classical densities representedd(H(q, p) � q)
by the hypersurfaces in phase space, and averaged by theH(q, p) p q

corresponding value of the function r(q). On the other hand, r(q) is
normalized and non-negatively defined due to its origin, since it represents
the diagonal components of the initial quantum state (rF (see (4)); this
fact is what permits it to be interpreted as a probability function. There-
fore, rc(q, p) can be conceived as the infinite sum of the classical densities
defined by the global constants of motion H(q, p)pq and weighted by
their corresponding probabilities given by the quantum initial condition

.(r(t p 0)F
In the general case H is not the only dynamical variable, but the system

has a CSCO consisting of observables . AsN � 1 {FH ), FO ), . . . , FO )}1 N

we have seen, in this case a preferred CSCO {FH ), FR ), . . . , FR )}1 N

emerges, in such a way that (r*F becomes diagonal in the new basis of
states . In this case, (r*F

′ ′ ′{(q, r , . . . , r F, (q, r , . . . ,r ; q , r , . . . , r F}1 N 1 N 1 N

results:

. . . . . .(r F p r(q, r , . . . , r )(q, r , . . . , r Fdqdr dr , (13)� � � 1 N 1 N 1 N*
r r q1 N
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and the classical distribution rc(f) becomes (for a detailed proof, see
Castagnino and Gadella 2007):

. . .r (f) p r(q, r , . . . , r )d(H(f) � q)d(R (f) � r )c � � � 1 N 1 1
r r q1 N

. . . . . .d(R (f) � r )dqdr dr , (14)N N 1 N

where now and ,f p (q, p) p (q , . . . , q , p , . . . , p ) R (f) p WR1 N�1 1 N�1 i i

with to N. This means that, in this case, rc(f) is defined on ai p 1
–dimensional phase space, and there are global constants2(N � 1) N � 1

of motion , . Therefore, in this general case the classicalH(f) p q R (f) p ri i

distribution rc(f) defined on can be conceived as an infinite sum2(N�1)�
of classical densities defined by the corresponding global constants of
motion , and weighted by the cor-H(f) p q R (f) p r , . . . , R (f) p r1 1 N N

responding probability .6r(q, r , . . . , r )1 N

4. The Emergent Character of Classicality. In its traditional form, a
coarse-grained description arises from a partition of a phase space into
discrete and disjoint cells. This mathematical procedure defines a projector
(see Mackey 1989). In other words, a traditional coarse-graining amounts
to a projection whose action is to eliminate some components of the state
vector corresponding to the fine-grained description—only certain com-
ponents are retained as “relevant”. If this idea is generalized, coarse-
graining can be conceived as an operation that reduces the number of
components of a generalized vector representing a state. From this view-
point, taking a partial trace is a particular case of coarse-graining, since
a partial trace reduces the number of the components of the density
operator on which it is applied. Therefore, a reduced density operator rr,
which describes the open system in the einselection approach to decoh-
erence (Paz and Zurek 2002, Zurek 2003), is a coarse-grained state since
it is an improper mixture (d’Espagnat 1995) resulting from tracing over
the environmental degrees of freedom (for a detailed discussion, see Cas-
tagnino and Lombardi 2004).

In the context of the self-induced approach, decoherence is not produced
by the interaction between the system of interest and its environment, but
results from the own dynamics of the whole quantum system governed
by a Hamiltonian with continuous spectrum. Of course, this characteri-
zation does not contradict the fact that the off-diagonal terms of a density

6. This account of the classical limit has been applied to the so called ‘Mott problem’
(Castagnino and Laura 2000b) and to the description of a closed quantum universe
(Castagnino and Lombardi 2003).
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operator representing a quantum state will never vanish through the uni-
tary evolution described by the von Neumann equation: What decoher-
ence shows is that the expectation value of any observableAOS FO) �r(t)

will evolve in such a way that, for , it can be computed as theVHV t r �O

expectation value of FO) in a diagonal state (r*F. Formally this is ex-
pressed by the fact that, even though we can strictly obtain the limit

lim AOS p AOS , (15)r(t) r
*tr�

the state (r(t)F has only a weak limit (Castagnino and Laura 2000a):

w � lim (r(t)F p (r F. (16)*
tr�

This weak limit means that, although the off-diagonal terms of the density
operator (r(t)F never vanish through the unitary evolution, the system
decoheres from an observational point of view, that is, from the viewpoint
given by the observable FO), for all .VHFO) � VO

In other words, can be thought as representing the stateAOS p (rFO)r

(rF of the system ‘viewed’ from the perspective given by the observable
FO) and, in this sense, also involves a sort of coarse-graining. OfAOSr
course, since in this case we are dealing with continuous variables, we
cannot strictly speak of reducing the number of components of a vector
state. However, the action of the functional onto the observable(rF � S

can be characterized in terms of a generalized notion of pro-VHFO) � VO

jection, which permits to be conceived as the result of a projectionAOSr
of the state (rF. In fact, we can define a projector belonging to the space

:VHV � SO

P p FO)(r F, (17)O

where satisfies(r F � SO

(r FO) p 1 (18)O

in order to guarantee that P be a projector:

2P p FO)(r FO)(r F p FO)(r F p P. (19)O O O

In this case

(r F p (rFP p (rFO)(r F, (20)rel O

where is the projected part of (rF, relevant for decoherence. This(r Frel

means that is the result of the projection of (rF onto aAOS p (rFO)r

subspace of S defined by the state (rOF corresponding to the observable
FO). On this basis we can understand why can be conceived as aAOSr
coarse-grained magnitude, that gives us the partial description of (rF from



772 MARIO CASTAGNINO AND OLIMPIA LOMBARDI

the perspective given by FO). Therefore, decoherence is a coarse-grained
process, resulting in this case from the coarse-graining introduced by the
observable of interest in the underlying unitary dynamics.

At this point, it is worth stressing the role played by (r*F in this ex-
planation of decoherence. The diagonal operator (r*F does not denote
the real quantum state of the system in the infinite-time limit. The quantum
state of the system is always represented by (r(t)F, which does not strongly
converges to (r*F. It only approaches to (r*F in a weak sense, that is, in
a weak topology. In other words, (r(t)F always describes an unitary evo-
lution and, therefore, it does not tend to a definite strong limit for t r

. The only fact that we can strictly assert is that, in the infinite-time�
limit, the expectation value of the observable FO) can be computed as if
the whole system were in the quantum state (r*F. It is interesting to note
that could also be computed in the Heisenberg picture, where theAOSr
observable FO(t)) evolves with time whereas the state (rF is constant; in
this case we would obtain a diagonal operator FO*). This fact clearly
shows that the fundamental magnitude in the explanation of decoherence
is the expectation value and not the state (rF. In fact, is theAOS AOSr r(t)

magnitude that approaches a definite limit for , and no quantumt r �
law prevents it from having this kind of behavior. This situation is anal-
ogous to the familiar case of unstable dynamical systems, where it is
completely natural to obtain a non-unitary coarse-grained evolution from
an underlying unitary dynamics.

These considerations are particularly relevant to the interpretation of
the classical statistical description resulting from the classical limit. The
classical density distribution rc(q, p) arising from decoherence and macro-
scopicity tells us that the system behaves as a classical statistical system
from the perspective given by any observable . This means thatVHFO) � VO

our predictions about the expectation value of any relevant observable
on the quantum system will lead us to the same results as those we would
obtain on a classical system described as an ensemble of classical densities
weighted by their corresponding probabilities. Since those classical den-
sities are defined by the global constants of motion andH(f) p q

, with to N in a –dimensional phase space, eachR (f) p r i p 1 2(N � 1)i i

one of them can be conceived as a set of classical point-like states defined
by those constants of motion and the value of the remaining variables of
the phase space. But this fact does not mean that there actually exist
classical point-like states in the quantum level. The classical density dis-
tribution rc(q, p) does not correspond to the quantum state of the system;
it is a coarse-grained magnitude that describes the behavior of the system
from the observational point of view given by the observable of interest.
As a consequence, classicality is an emergent property that arises in a
coarse-grained level of description from an underlying quantum level.
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5. Perspectives: The Problem of Quantum Chaos. At present it is well
known that chaotic behavior is an ubiquitous feature of classical systems.
This contrasts with the fact that chaos in quantum systems seems to be
the exception rather than the rule. Some authors even consider that there
is no quantum chaos, since the models resulting from quantization of
chaotic classical systems do not exhibit chaotic behavior. However, on
the other hand, the opinion that there is some kind of conflict between
quantum mechanics and chaos sounds surprising in the light of the in-
creasing attention that quantum chaos has received from the community
of physicists during the last years. Perhaps the main reason for this con-
fusing situation is the disagreement about what ‘quantum chaos’ means.
If we consider that the problem of quantum chaos consists in explaining
how classical chaotic properties can emerge from the quantum realm, then
such a problem becomes a particular case of the classical limit of quantum
mechanics. Therefore, a detailed account of the classical limit turns out
to be a relevant element for the solution of the quantum chaos problem.

It is interesting to note the points of contact between this way of con-
ceiving the problem and the program of Belot and Earman (1997) about
this question. In the first place, we agree with Belot and Earman about
the kind of quantum systems considered in the problem. Whereas many
authors look for quantum chaos in open systems in order to obtain non-
unitary time evolutions (see Kronz 1998; Paz and Zurek 2002; Zurek
2003), Belot and Earman restrict their attention to the standard quantum-
mechanical treatments of closed quantum systems: they focus exclusively
on Schrödinger evolutions and ignore the measurement problem. As we
have seen, our account of the classical limit also applies to closed quantum
systems to the extent that self-induced decoherence does not require the
openness of the system and its interaction with the environment; this
explanation permits quantum systems to behave classically even in situ-
ations in which there is no measurement involved.

The second point of agreement is related to the formalism adopted for
addressing the problem. Belot and Earman point out that physicists are
able to derive testable predictions from quantum mechanics with no ref-
erence to the measurement problem, and this fact can be justified by a
reliance on the notion of expectation values of observables and their
evolutions. On this basis, Belot and Earman develop their argumentation
in the language provided by the algebraic formalism of quantum me-
chanics. Our account of the classical limit also agrees with Belot-Earman’s
approach regarding this point since it is completely expressed in the con-
text of the algebraic formalism and relies on the time behavior of the
expectation values of the relevant observables of the quantum system.

But the most striking coincidence is the closeness between Belot-
Earman’s definition of quantum mixing and our definition of self-induced
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decoherence. In fact, according to the authors, an abstract dynamical
system (A, v), where A is a C*-algebra representing the algebra of ob-
servables, and v is an automorphism of A representing the time evolution
of the system, is mixing if there exists a v-invariant state JE such that
(Belot and Earman 1997, 161)

lim J(v A) p J (A) (21)n E
nr�

for any J acting on A and for any . It is not difficult to see thatA � A
we can replace J(vnA) with (r(t)FA) since these two expressions represent
the expectation value of the observable A in the time-dependent state J

in the first case and (r(t)F in the second case, and we can also replace
JE(A) with (r*FA) because both JE and (r*F represent the equilibrium
state where the expectation value of A does not undergo further changes;
we thus obtain

lim (r(t)FA) p (r FA). (22)*
tr�

Leaving aside the fact that Belot and Earman work with a C*-algebra
instead of a nuclear algebra, (22) is precisely the definition of self-induced
decoherence. Furthermore, it is easy to prove that (r*F is unique for each
set of values of the observables of the preferred CSCO.

At this stage, it seems right to conclude that if a quantum system satisfies
the conditions for decohering, it is a quantum mixing system according
to Belot-Earman’s definition, and vice versa. In fact, as the authors point
out, if a quantum system is mixing according their definition, then 1 is
the only eigenvalue of the transformation vn and is a simple eigenvalue.
It is quite clear that this property is also satisfied in the case of deco-
herence: (r*F is the only eigenvector of Ut and its corresponding eigenvalue
is 1. Can we conclude that self-induced decoherence is a necessary and
sufficient condition for quantum mixing?

The answer to this question is negative, because the classical system
arising from the classical limit of a quantum system that fulfills the con-
ditions imposed by Belot-Earman’s definition may be not classically mix-
ing. In fact, when the quantum system is endowed with a CSCO of

observables, which is sufficient for defining an eigenbasis for theN � 1
system’s states, the classical distribution rc(f) resulting from the classical
limit is defined on a phase space and has global constants2(N�1)� N � 1
of motion in involution. But, as it is well known, a classical system with
n degrees of freedom and n global constants of motion in involution is
integrable and, as a consequence, non-mixing.

This argument makes clear that the problem of quantum chaos requires
to study how non-integrability can be expressed in quantum mechanics.
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In particular, it is necessary to consider quantum systems endowed with
a CSCO of observables, with , that is a CSCO that doesA � 1 0 ≤ A ! N
not define an eigenbasis in terms of which the state of the system can be
expressed. This is the case of the systems, as the Helium atom, whose
quantum numbers are not sufficient for defining their states. The program
is, then, to extend our formalism in such a way that this kind of systems
can be theoretically described and their classical limit can be obtained.

6. Conclusions. On the basis of the assumption that the problem of the
classical limit amounts to the question of how the classical world arises
from an underlying quantum reality, the aim of this paper was to present
a theoretical and general answer to the question. Our account of the
classical limit involves two elements: self-induced decoherence, conceived
as a process that depends on the own dynamics of a closed quantum
system governed by a Hamiltonian with continuous spectrum, and macro-
scopicity, that allows the result of decoherence to turn into an ensemble
of classical densities on phase space weighted by their corresponding prob-
abilities. When these formal results are considered in the light of a gen-
eralized concept of coarse-graining, decoherence turns out to be a coarse-
grained process that, in the infinite-time limit and the macroscopic limit,
leads to classicality.
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