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In recent years, an increase in multidrug-resistant fungal strains has been

observed, which, together with the limited number of clinically available

antifungal agents, highlights the need for the development of new antifungal

agents. Due to the proven antifungal activity of silver nanoparticles (AgNPs),

there is a growing interest in their use in the treatment of fungal infections.

Nanoparticles are usually synthesised through a variety of physical and chemical

processes that are costly and pollute the environment. For this reason, biogenic

synthesis is emerging as an environmentally friendly technology and new

strategies are increasingly based on the use of biogenic AgNPs as antifungal

agents for clinical use. The aim of this review is to compare the antifungal

activity of different biogenic AgNPs and to summarise the current knowledge

on themechanisms of action and resistance of fungi to AgNPs. Finally, a general

analysis of the toxicity of biogenic AgNPs in human and veterinary medicine is

performed.
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Introduction

In recent decades, fungal infections have increased and become a major public health

threat. More than 300 million people suffer from severe fungal diseases and more than

2 million people die each year from mycoses, making fungal diseases one of the leading

causes of death worldwide. Moreover, the problem of mycoses is exacerbated by the

increase in emerging pathogenic fungi, but also by resistance to the limited antifungal

drugs available, which significantly reduces the effectiveness of treatments (Denning et al.,

2017; GAFFI, 2021).

From this perspective, Candida auris infections have become a global threat to human

health for four main reasons: It has caused public health outbreaks; it is difficult to identify

using standard laboratory methods; it has a high mortality rate; and some strains are

resistant to all classes of available antifungal drugs commonly used to treat Candida

infections (Du et al., 2020; CDC, 2021). On the other hand, there are certain mycoses

whose treatment remains ineffective and leads to disability, including certain superficial

fungal infections and implantation mycoses. This situation, which has a significant social

impact, also includes the economic factor caused by the need for expensive drugs and

lengthy medical care, which in many cases leads to patients not adhering to treatment

(GAFFI, 2022).
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The lack of antifungal drugs is mainly due to the difficulty in

finding selective therapeutic targets against fungi, as they have a

cellular and molecular biology very similar to that of animal cells

(Konopka et al., 2019). This has prompted research into metals as

alternative antifungal agents or as cofactors/adjuvants that

enhance the efficacy of existing drugs (Xu et al., 2013; Mussin

et al., 2019; Mani Chandrika and Sharma, 2020; Cruz-Luna et al.,

2021; Lin et al., 2021).

Among the various metals, silver has a long history in

medicine as an antimicrobial agent (Rai et al., 2009).

Currently, silver nanoparticles (AgNPs) occupy a prominent

place as potential antifungal agents for clinical use due to

their broad spectrum of antimicrobial activity and their

enormous number of applications in the health sciences,

ranging from topical formulations to catheters impregnated

with AgNPs (Rai et al., 2009; Ahamed et al., 2010; Burdușel el

et al., 2018; Mosleh-Shirazi et al., 2021a).

AgNPs are particles that have all three dimensions on the

nanometre scale (10–9 m). These nanoparticles can be synthesised

by physical, chemical and biological methods. However,

biological synthesis stands out because it is environmentally

friendly, economically viable and easy to transfer to industrial

production (Siddiqi et al., 2018; Mussin et al., 2021).

Biogenic synthesis of AgNP is a green synthesis method that

uses organisms (plants, bacteria, fungi and algae) as a source of

biomolecules that serve as reducing agents for silver ions (Ag+),

coating agents and stabilisers of AgNP (Siddiqi et al., 2018;

Rozhin et al., 2021).

Since natural coating agents can impart some functionality to

the nanoparticles, such as antioxidant properties, anti-

inflammatory properties, lower toxicity, modulation of

immune response, etc., they are considered better candidates

for use in human and veterinary medicine compared to

nanoparticles obtained by physical and chemical methods

(Vigneshwaran et al., 2007; Haggag et al., 2019; Sadeghipour

et al., 2020; Mosleh-Shirazi et al., 2021b; Mujaddidi et al., 2021;

Mussin et al., 2021; Rozhin et al., 2021). However, there are no

organised data on the antifungal activity of biogenic AgNPs, nor

on the mechanisms of action and resistance of fungi to AgNPs.

For this reason, this review aims to compare the antifungal

activity of different biogenic AgNPs and to summarise the

current knowledge on the mechanisms of action and

resistance of fungi to AgNPs. Finally, a general analysis of the

toxicity of biogenic AgNPs in human and veterinary medicine is

performed.

Antifungal activity of biogenic AgNPs

Thanks to their broad spectrum of antimicrobial activity and

their ability to effectively inhibit biofilm formation, biogenic

AgNPs have become one of the most promising options to

reduce morbidity and mortality associated with fungal

infections caused by resistant fungi (Ahamad et al., 2022).

The antimicrobial activity (antifungal, antibacterial, antiviral,

etc.) of biogenic AgNPs is largely determined by the following

factors:

The organism used for synthesis

Living organisms produce a variety of biological

molecules (metabolites, proteins, lipids, etc.) that are

involved in the reduction of Ag+, but also stabilise AgNPs

and prevent their agglomeration. Moreover, biomolecules are

the main protagonists of biological synthesis, as they

determine the coating agents that can confer the desired

biological properties to the synthesised AgNPs, such as:

antioxidant activity, stronger antimicrobial activity, lower

toxicity towards human/animal cells, modulation of the

immune response and much more (Mussin et al., 2021;

Spagnoletti et al., 2021).

It has even been shown that different AgNPs can be

obtained from different strains of the same species under

identical synthesis conditions (El-Bendary et al., 2021).

Therefore, the correct identification of the species used and

their preservation in a culture collection or herbarium is

crucial.

The growth conditions of organism

The chemical composition of the same organism may vary

according to the conditions of growth. It is therefore important

that these conditions are well defined, especially if you are aiming

for industrial production. In the case of plants, several points also

need to be defined, such as the part of the plant to be used, the

time of harvesting, post-harvest treatment, etc., (Mussin and

Giusiano, 2020). All these aspects can influence the chemical

composition and thus the properties of the synthesised AgNPs.

The physicochemical properties of AgNPs

The size, shape and coating agent of biogenic AgNPs

determine their antifungal activity. These properties are

strongly influenced by the synthesis conditions, such as:

Temperature, reaction time, pH, biological molecules, molar

ratio of reagents, speed and type of stirring, etc. (Song and

Kim, 2009; El Badawy et al., 2010; Monteiro et al., 2012; Li

et al., 2013; Agnihotri et al., 2014; Gavade et al., 2015; Ahmed

et al., 2016). Therefore, standardisation of the synthesis

conditions allows obtaining identical nanoparticles in each

production batch.
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TABLE 1 Antifungal activity of biogenic AgNPs.

Synthesis from Size (nm) Target (number
of strains)

MIC
(µg/ml)

Control drug Ref

FLZ ITZ TER NYT AMP

Plants

Acanthospermum australe
(Loef.) Kuntze

12–16 Candida albicans ATCC
90028

4 0.125 Mussin et al.
(2021)

Candida albicans (24) 4a ≤0.125

Candida glabrata ATCC
2001

4 0.5

Candida glabrata (6) 4a 0.03

Candida krusei ATCC
6258

4 0.5

Candida krusei (21) 4a ≤0.5

Candida tropicalis
ATCC 750

4 0.125

Candida tropicalis (16) 4a ≤0.125

Candida parapsilosis (11) 8a ≤0.125

Epidermophyton
foccosum (4)

4a ≤0.03

Malassezia globosa CBS
7986

0.125 0.015

Malassezia globosa (9) 0.125a 0.03

Malassezia furfur CBS
7019

0.25 0.03

Malassezia furfur (40) 0.25a 0.03

Malassezia restricta 1 0.03

Malassezia sympodialis
CBS 7222

0.03 0.03

Malassezia
sympodialis (25)

0.03a 0.03

Microsporum canis (33) 4a ≤0.125

Microsporum
gypseum (19)

16a ≤0.25

Trichophyton
mentagrophytes (22)

16a ≤1

Trichophyton rubrum (31) 4a ≤0.5

Trichophyton
tonsurans (6)

4a ≤0.125

Allium cepa 1–9 Fusarium avenaceum 110 Gautam et al.
(2020)

Fusarium culmorum 110

Fusarium graminearum 90

Allium sativum 2–10 Fusarium avenaceum 90 Gautam et al.
(2020)

Fusarium culmorum 110

Fusarium graminearum 110

Annona reticulata 7.67–8.34 Candida albicans 62.5 Parthiban et al.
(2019)

Caesalpinia ferrea (Tul.)
Martius

30–50 Candida albicans ATCC
10231

312.5 0.331 0.125 Soares et al. (2018)

Candida glabrata CCT
0728

1,250 0.663 0.25

Candida guilliermondii
CCT 1890

156.25 1.326 0.0312

Candida kruzei CCT 1517 312.5 2.64 2

(Continued on following page)
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TABLE 1 (Continued) Antifungal activity of biogenic AgNPs.

Synthesis from Size (nm) Target (number
of strains)

MIC
(µg/ml)

Control drug Ref

FLZ ITZ TER NYT AMP

Citrus limetta 18 Candida albicans MTCC
3018

6.69 Dutta et al. (2020)

Candida glabrata MCC
1445

10.7

Candida parapsilosis MCC
1438

10.7

Candida tropicalis MCC
1434

10.7

Elettaria cardamomum 5–80 Aspergillus niger ITCC
7122

8 Jamdagni et al.
(2021)

Alternaria alternata ITCC
6531

32

Botrytis cinerea ITCC 6192 32

Fusarium oxysporum
ITCC 55

32

Penicillium expansum
ITCC 6755

64

Eucalyptus camaldulensis 8.65 Candida albicans ATCC
90028

0.25 0.25 Wunnoo et al.
(2021)

Candida albicans (20) 0.25–0.5 0.25–0.5

Lysiloma acapulcensis 1.2–62 Candida albicans ATCC
49476

0.13 Garibo et al. (2020)

Mangifera indica 65 Candida albicans PTCC
5027

0.016 0.002 Salati et al. (2018)

Candida albicans (11) 0.016a 0.008

Candida glabrata PTCC
5297

0.002 0.004

Candida glabrata 0.016 0.004

Candida krusei PTCC
5295

0.016 0.004

Candida krusei (7) 0.016a 0.002

Maytenus royleanus 10–15 Candida albicans 125 Ahmad et al.
(2016)

Candida tropicalis 62.5

Pulicaria vulgaris Gaertn 14.3–50.7 Candida albicans ATCC
10231

60 Sharifi-Rad and
Pohl, (2020)

Candida glabrata ATCC
90030

40

Rosa canina 13–21 Candida albicans 128 Gulbagca et al.
(2019)

Tropaeolum majus ND Aspergillus niger 125 Valsalam et al.
(2019)

Candida albicans 250

Mucor sp 31,2

Penicillium notatum 31,2

Trichoderma viridiae 62,5

Zingiber officinale 1–6 Fusarium avenaceum 110 Gautam et al.
(2020)

Fusarium culmorum 90

Fusarium graminearum 110

(Continued on following page)
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TABLE 1 (Continued) Antifungal activity of biogenic AgNPs.

Synthesis from Size (nm) Target (number
of strains)

MIC
(µg/ml)

Control drug Ref

FLZ ITZ TER NYT AMP

Bacteria

Anabaena variabilis 11–15 Candida albicans MCC
1151

12.5 Ahamad et al.
(2022)

Citrobacter sp 5–15 Candida albicans 100 16 Mondal et al.
(2020)

Candida glabrata 150 16

Candida tropicalis 150 ˃64

Lysinibacillus sphaericus 3–38 Candida albicans ATCC
10231

76–228 El-Bendary et al.
(2021)

Aspergillus niger 305

Nostoc linckia 5–60 Candida albicans MTCC
4748

0.61b Vanlalveni et al.
(2018)

Aspergillus niger 0.40b

Pseudomonas indica 2.4–53.5 Mucor racemosus 100 Salem et al. (2022)

Rhizopus microsporus 50

Syncephalastrum
racemosum

50

Fungi

Arthroderma fulvum 13–18 Aspergillus flavus IFM
55648

2 >64 0.125 Xue et al. (2016)

Aspergillus fumigatus IFM
40808

1 >64 0.030

Aspergillus terrrus JLCC
30844

1 >64 0.250

Candida albicans ATCC
90028

0.5 0.250 0.030

Candida krusei ATCC
6258

0.125 16 0.250

Candida parapsilosis
ATCC 22019

0.125 8 0.250

Candida tropicalis JLCC
31384

0.250 0.250 0.250

Fusarium moniliforme
JLCC 31463

4 >64 >16

Fusarium oxysporum
JLCC 31768

2 >64 >16

Fusarium solani JLCC
30866

2 >64 >16

Aspergillus oryzae 19–60 Trichophyton rubrum
ATCC MYA-443

>7.5 ≤16 ≤0.126 4 Pereira et al. (2014)

Trichophyton rubrum (8) >7.5 ≤32 ≤1 ≤0.25

Aspergillus sydowii 1–24 Aspergillus flavus IFM
55648

1 >64 0.125 Wang et al. (2021)

Aspergillus fumigatus IFM
40808

2 >64 0.03

Aspergillus terrus JLCC
30844

2 >64 0.25

Candida albicans ATCC
90028

0.25 0.25 0.03

(Continued on following page)
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TABLE 1 (Continued) Antifungal activity of biogenic AgNPs.

Synthesis from Size (nm) Target (number
of strains)

MIC
(µg/ml)

Control drug Ref

FLZ ITZ TER NYT AMP

Candida glabrata ATCC
66032

0.125 8 0.25

Candida parapsilosis
ATCC 22019

0.25 8 0.25

Candida tropicalis ATCC
9928

0.125 0.25 0.25

Cryptococcus neoformans
ATCC 36556

0.25 2 0.0625

Fusarium moniliforme
JLCC 31463

2 >64 >16

Fusarium oxysporum
JLCC 30866

4 >64 >16

Fusarium solani ATCC
36031

1 >64 >16

Sporothrix schenckii JLCC
32757

0.25 >64 0.125

Aspergillus terreus 7–23 Aspergillus niger ATCC
16404

0.312 0.156 Lotfy et al. (2021)

Candida albicans ATCC
10231

1.25 0.156

Candida glabrata 2–15 Candida albicans 62 Jalal et al. (2018)

Candida dubliniensis 125

Candida glabrata 250

Candida krusei 125

Candida parapsilosis 250

Candida tropicalis 250

Cryptococcus laurentii 35 (74%) and
400 (13%)

Alternaria sp. NRRL 6410 4 Fernández et al.
(2016)

Aspergillus niger NRRL
1419

4

Botrytis cinerea BNM 0528 4

Penicillium expansum 4

Rhizopus sp. NRRL 695 4

Epicoccum nigrum 1–22 Aspergillus flavus IFM
55648

0.5 >64 0.125 Qian et al. (2013)

Aspergillus fumigatus IFM
40808

1 >64 0.03

Candida albicans ATCC
90028

0.5 0.25 0.03

Candida krusei ATCC
6258

0.125 16 0.25

Candida parapsilosis
ATCC 22019

0.125 8 0.25

Candida tropicalis JLCC
31384

1 0.25 0.03

Cryptococcus neoformans
IFM 45687

0.25 2 0.0625

Fusarium solani JLCC
30866

1 >64 >16

Sporothrix schenckii JLCC
32757

0.25 >64 0.125

Fusarium oxysporum ND Candida albicans ATCC
26790

4.35 >128 Longhi et al. (2016)

Candida albicans (2) 1.74 64–128

(Continued on following page)
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TABLE 1 (Continued) Antifungal activity of biogenic AgNPs.

Synthesis from Size (nm) Target (number
of strains)

MIC
(µg/ml)

Control drug Ref

FLZ ITZ TER NYT AMP

Fusarium oxysporum 2–100 Trichophyton rubrum 1–2 1–5 Marcato et al.
(2012)

Fusarium oxysporum 4.8–64.9 Candida albicans ATCC
10231

1.68 Ishida et al. (2014)

Candida albicans ATCC
24433

1.68

Candida glabrata ATCC
2001

1.68

Candida krusei ATCC
6258

0.84

Candida parapsilosis
ATCC 22019

0.84

Candida tropicalis ATCC
13803

1.68

Cryptococcus gattii ATCC
56990

0.84

Cryptococcus neoformans
ATCC 28957

0.42

Fusarium oxysporum 14.9–41.1 Candida albicans (16) 7.8a 1 0.03125 2 0.5 Fonseca et al.
(2022)

Candida dubliniensis 15.6 32 0.03125 2 2

Candida glabrata 7.8 >64 >16 2 0.5

Candida parapsilosis 7.8 16 0.125 8 2

Candida tropicalis (6) 7.8a 2 0.03125 4 2

Metarhizium roberts 15–25 Candida albicans ATCC
10231

1.56 Różalska et al.
(2018)

Candida albicans ATCC
90028

6.25 1

Candida glabrata ATCC
90030

3.12

Candida parapsilosis
ATCC 22019

6.25

Penicillium chrysogenum 19–60 Trichophyton rubrum
ATCC MYA-443

0.5 ≤16 ≤0.126 4 Pereira et al. (2014)

Trichophyton rubrum (8) 0.5–5 ≤32 ≤1 ≤0.25

Pleurotus ostreatus 4–15 Candida albicans (3) 5–7 13–19 8 Yehia and
Al-Sheikh, (2014)

Candida glabrata (4) 16 23–33 7

Candida krusei (2) 4–11 13–19 5–7

Candida parapsilosis 10 16 5–7

Candida tropicalis (2) 7–28 16 5

Rhodotorula glutinis 15 (65%), 160 (17%)
and 220 (18%)

Alternaria sp. NRRL 6410 2 Fernández et al.
(2016)

Aspergillus niger NRRL
1419

2

Botrytis cinerea BNM 0528 2

Penicillium expansum 2

Rhizopus sp. NRRL 695 2

aThe most frequent MIC, is expressed.
bMIC, expressed as nM; ATCC, american type culture collection; BNM, national bank of microorganisms; CBS, westerdijk fungal biodiversity institute, formerly known as “Centraal Bureau

voor Schimmelcultures"; CCT: collection of tropical cultures.

FLZ, fluconazole; ITZ: itraconazole; TER, terbinafine; NYT, nystatin; AMP, Amphotericin B; IFM, institute for food microbiology; ITCC, indian type culture collection; JLCC, culture

collection of jilin university; MCC, microbial culture collection from the national centre for microbial resource; MIC, minimum inhibitory concentration; MTCC, microbial type culture

collection and gene bank; ND, no determined; NRRL, agricultural research service culture collection; PTCC, persian type culture collection.
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Target organism

Due to genetic variability between species of the same genus

and between strains of the same species, a given nanoparticle may

exhibit different levels of antimicrobial activity (Mussin et al.,

2019, 2021). Therefore, to obtain meaningful statistical values,

the test must be performed against a considerable number of

strains of the same species.

In addition, when assessing antimicrobial activity, it is

important to note that a standardised method should be used

that is widely accepted by the scientific community, as

parameters such as the concentration of the inoculum,

temperature and incubation time, among others, influence the

assessment of antimicrobial activity. One of the most widely

accepted methods is the broth microdilution method proposed

by the Clinical and Laboratory Standards Institute (CLSI). This

method provides a quantitative assessment of the in vitro

inhibitory activity of a compound against a microorganism by

determining the minimum inhibitory concentration (MIC),

defined as the lowest concentration of the compound that can

inhibit the growth of the microorganism, expressed in μg/ml. In

addition, the method provides for the use of reference strains,

quality control strains and positive inhibitory controls

(antimicrobial drugs for clinical use) to ensure that the

microdilution test is performed correctly and that the results

are reproducible and comparable.

Table 1 summarises the most important papers in which the

MIC of biogenic AgNPs against fungi of clinical importance was

determined using a broth dilution method. Analysis of these

studies leads us to the following conclusions:

• Fungi and plants are the main organisms that have been

used for the synthesis of biogenic AgNPs to study

antifungal activity.

• Comparing the works in which the same species was used

to synthesise AgNPs (Marcato et al., 2012; Ishida et al.,

2014; Longhi et al., 2016; Fonseca et al., 2022), we found

that nanoparticles with different properties can be obtained

from the same species. Therefore, it is important to

consider all the above aspects about the factors that

determine the antifungal activity of a biogenic AgNP,

otherwise each synthesised nanoparticle must be

considered as a different compound.

• Candida albicans ATCC 90028 is the most commonly used

reference strain for evaluating the antifungal activity of

biogenic AgNPs.

• Fluconazole and itraconazole are the main control

drugs used.

• Biogenic AgNPs show a MIC range of 0.002–315.5 μg/ml

against different fungal species. However, considering only

the papers in which a control drug and a quality control

strain were used for the CLSI broth microdilution method

(Candida krusei ATCC 6258 and Candida parapsilosis

ATCC 22019), the MIC range of AgNPs was 0.03–4 μg/

ml against the tested fungal species. This shows, firstly, the

importance of using standardised method controls and,

secondly, that biogenic AgNPs have similar or even better

antifungal activity than certain clinically used antifungal

agents.

• Antifungal activity varies depending on the biogenic AgNP

synthesised. Against the quality control strains, Candida

krusei ATCC 6258 and Candida parapsilosis ATCC 22019,

the biogenic AgNPs showed MIC ranges of 0.125–4 μg/ml

and 0.125–6.25 μg/ml, respectively.

Mechanism of action

As mentioned earlier, the antifungal activity of biogenic

AgNPs is highly dependent on the size, shape and coating

agents. The great diversity of biogenic AgNPs therefore makes

it difficult to decipher a single mechanism of action. For this

reason, most research has focused on determining the

mechanism of action of chemically synthesised AgNPs, which

is attributed to the attachment of AgNPs to the surface of the

fungus as a result of electrostatic attraction (Figure 1). The

extracellular accumulation of AgNPs leads to a dynamic

release of Ag+, which actively enter the cell and lead to an

increase in the intracellular concentration and also the

intracellular biosynthesis of AgNPs (Chwalibog et al., 2010; Le

et al., 2012; Vazquez-Muñoz et al., 2014; Lara et al., 2015; Mussin

et al., 2019). So far, no cell receptors or membrane channels have

been described for the uptake of silver. However, the high-affinity

copper transporter (Ctr1) has been identified as an importer of

Ag+ (Ruta et al., 2018; Horstmann et al., 2019).

Once inside the cell, Ag+ and AgNPs act at
different levels

• They lead to an accumulation of intracellular reactive

oxygen species (ROS), which trigger apoptosis (Madeo

et al., 1999; Hwang et al., 2012; Radhakrishnan et al., 2018).

• The intracellular accumulation of Ag+ alters efflux systems.

It induces efflux of potassium ions and causes almost

complete loss of intracellular potassium ions, resulting

in inhibition of plasma membrane H+-ATPase activity

(Vagabov et al., 2008; Cyert and Philpott, 2013).

• Ag+ enter the mitochondria via the mitochondrial copper

transporter Pic2, which has a higher affinity for Ag+ than

for copper ions (Cu+). This leads to a decrease in Cu+

concentration and an accumulation of Ag+ in the

mitochondrial matrix, resulting in a decrease in the

activity of the copper-dependent cytochrome c oxidase

and consequently decreasing the rate of cellular respiration

(Vest et al., 2013).
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• Ag+ and AgNPs modulate the transcriptome, epigenome

and metabolome and significantly alter the vital functions

of fungal cells. Down-regulation of tricarboxylic acid cycle

genes, genes related to redox metabolism and genes

involved in ergosterol synthesis and lipid metabolism

have been reported, leading to structural changes mainly

at the level of biological membranes (Das and Ahmed,

2012; Babele et al., 2019; Horstmann et al., 2019; Barros

et al., 2021).

Our studies suggest that AgNPs have fungicidal action

against the major fungi that cause skin infections. A

fungicidal agent causes death of fungal cells, while a

fungistatic agent inhibits the growth or multiplication of the

fungus without causing death (Mussin et al., 2021). However, the

results are suggestive and further studies should be conducted.

AgNPs have also been shown to be more effective when

combined with antifungal drugs. Synergistic effects have been

reported with fluconazole, itraconazole, ketoconazole,

clotrimazole, terbinafine, natamycin, nystatin, amphotericin B

and echinocandins (Gajbhiye et al., 2009; Xu et al., 2013; Padalia

et al., 2015; Patra and Baek, 2017; Mussin et al., 2019; Aabed and

Mohammed, 2021; Yassin et al., 2022).

Resistance mechanisms

Since the antifungal activity of AgNPs is the result of several

simultaneous processes, this has led to the assumption that fungi

cannot develop resistance mechanisms to AgNPs.

Few studies have analysed the possible mechanisms of fungal

resistance to silver. Terzioğlu et al. (2020) used the yeast

Saccharomyces cerevisiae as a model fungal organism to

investigate possible molecular mechanisms associated with

resistance to silver. Their results suggest that genes involved

in cell wall/membrane integrity, endocytosis and vesicular

transport activities, oxidative metabolism, cellular respiration

and copper homeostasis may play a role in silver resistance.

In particular, the missense mutation in the RLM1 gene, which

encodes a transcription factor involved in maintaining cell wall

integrity and has 707 potential gene targets, may play a key role.

On the other hand, using the filamentous fungus Aspergillus

nidulans, Antsotegi-Uskola et al. have suggested that the copper-

transporting ATPase type PI, CrpA, may play an important role

in the development of silver resistance (Antsotegi-Uskola et al.,

2017).

Due to the increasing use of silver and AgNPs in many areas

of human and veterinary medicine, further research is needed.

FIGURE 1
Mechanism of action of AgNPs on fungi. The figure was created with BioRender.com.
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Toxicity

The toxicity of AgNPs depends on the size, shape and coating

agents. For biogenic AgNPs, the coating agents play a very

important role in terms of toxicity to human cells and

modulation of the immune response (Mussin et al., 2021).

There is evidence that biogenic AgNPs are more

biocompatible than chemically synthesised AgNPs (Khan

et al., 2019; Quinteros et al., 2019). However, due to the

complex interactions between the different coating agents and

eukaryotic cells, each biogenic AgNP should be evaluated

individually to confirm its safety in humans and other animals.

The route of administration, exposure time and

pharmacokinetics also influence toxicity (Stensberg et al.,

2011; Aboelmaati et al., 2021; Mosleh-Shirazi et al., 2021a).

Therefore, it remains to be investigated whether the gradual

release of Ag+ and the broad spectrum of antimicrobial activity of

AgNPs may lead to changes in the normal microbiota of humans

and animals and whether this may have adverse effects over time.

Another interesting aspect of biogenic AgNPs is the reported

synergistic effects with antifungals (Gajbhiye et al., 2009; Xu

et al., 2013; Padalia et al., 2015; Patra and Baek, 2017; Mussin

et al., 2019; Aabed and Mohammed, 2021; Yassin et al., 2022),

suggesting that combined use may reduce toxicity by reducing

the required dose of one or both agents.

Conclusion and future perspective

The increase in multidrug-resistant fungal pathogens and the

limited number of clinically available antifungal drugs highlight

the need to develop new antifungal strategies to address these

problems in the face of an already complicated future.

AgNPs have been presented as a promising solution, but

biological AgNPs have been shown to have several advantages

over AgNPs produced by chemical and physical methods.

The antifungal activity of the different biogenic nanoparticles

varies according to their physicochemical properties, which are

determined by the organism used for synthesis, the growth

conditions of the organism, the physicochemical properties of

the AgNPs and the target organism. An important challenge for

future research is therefore to standardise these conditions and

determine the key biocomponents involved in the synthesis of

AgNPs to produce safe and effective drugs for the treatment of

fungal infections.

The wide variety of methods used to evaluate the antifungal

activity of these biogenic nanoparticles highlights the need to use

internationally accepted methods with appropriate controls to

obtain reproducible and comparable results. Since there may be

genetic variability within a species, it is important to test a

considerable number of isolates of the same species to obtain

meaningful results on the antifungal activity of a new agent

against a particular species.

Great progress has been made in elucidating the mechanism

of action of AgNPs on fungi. They have shown that they can act

on multiple targets, which makes them very promising as

antifungal agents for clinical use. In addition, further research

is being conducted for use in healthcare settings. In the near

future, these efforts will lead to a clearer picture of the antifungal

potential of biogenic AgNPs and help establish them in the field

of veterinary and human mycology.

The broad spectrum of antimicrobial activity and the potential

synergistic effects with antifungal drugsmake biogenic AgNPs viable

alternatives to overcome the problematic infections caused by

resistant fungi and the toxicity of currently available drugs. We

anticipate that biogenic AgNPs will be used as cost-effective broad-

spectrum antifungal agents. However, since toxicity and in vivo

effects have not yet been sufficiently researched, we think it more

likely that they will initially be used in human and veterinary

medicine as antimycotics for topical application or as

disinfectants for catheters, surgical materials, etc.
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