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Abstract

The generation of magnetic fields in space plasmas and in astrophysics is usually described within the framework of

magnetohydrodynamics. Turbulent helical flows produce magnetic fields very efficiently, with correlation length scales

larger than those characterizing the flow. Within the context of the solar magnetic cycle, a turbulent dynamo is

responsible for the so-called alpha effect, while the Omega effect is associated to the differential rotation of the Sun.

We present direct numerical simulations of turbulent magnetohydrodynamic dynamos including two-fluid effects

such as the Hall current. More specifically, we study the evolution of an initially weak and small-scale magnetic field in

a system maintained in a stationary regime of hydrodynamic turbulence, and explore the conditions for exponential

growth of the magnetic energy. In all the cases considered, we find that the dynamo saturates at the equipartition level

between kinetic and magnetic energy, and the total energy reaches a Kolmogorov power spectrum.

r 2005 Published by Elsevier Ltd.
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1. Introduction

Within the framework of magnetohydrodynamics

(MHD), dynamo mechanisms involve an efficient

conversion of kinetic energy into magnetic energy. The

onset of a dynamo can often be studied within the

kinematic approximation. During this stage, the velocity

field remains unaffected by the relatively weak magnetic

field, whose intensity grows exponentially fast. Kine-

matic dynamos have been intensively studied in recent

years and are reasonably well understood (see Childress

and Gilbert (1995) for a review). On the other hand, the

study of the nonlinear stages leading to the saturation of

the dynamo is just beginning, thanks to the advent of

fast computers allowing high Reynolds number simula-
e front matter r 2005 Published by Elsevier Ltd.
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tions. The solar cycle has been thoroughly studied

within the context of the so-called alpha-Omega model.

The Omega effect corresponds to the enhancement of

the toroidal magnetic field, caused by the stretching of

(initially poloidal) field lines by the solar differential

rotation. On the other hand, the alpha effect is required

to convert part of the toroidal magnetic field back to

poloidal field to maintain the cycle. The role of the alpha

effect is performed by a small scale and turbulent flow,

concentrated in the solar convective region. In this paper

we focus on a numerical study of turbulent MHD

dynamos, with the main goal of providing some insight

toward a microscopic theory of the alpha effect.

The relevance of two-fluid effects has been pointed

out in several astrophysical problems in recent years

(Balbus and Terquem, 2001; Sano and Stone, 2002;

Mininni et al., 2002, 2003a). Within the solar-terrestrial

environment, two-fluid effects are very important to

determine the efficiency of magnetic reconnection at the

Earth’s magnetopause and magnetotail (Øieroset et al.,

www.elsevier.com/locate/jastp
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2001; Deng and Matsumoto, 2001). Simulations of

magnetic reconnection including the Hall current, are

reported elsewhere (Morales et al., 2004). The standard

magnetohydrodynamic framework for the study of

astrophysical plasmas may not be adequate in the

presence of strong magnetic fields and/or low particle

densities. Under these circumstances, Ohm’s law should

be extended to include two-fluid effects through the Hall

and the electron pressure terms.

In the present work, we report results from direct

numerical simulations of dynamo action in MHD and

Hall-MHD with strong kinetic helical forcing.

The paper is organized in the following fashion. In

Section 2 we introduce the theoretical framework and

the equations. In Section 3 we give a brief overview of

recent results on turbulence and turbulent dynamos. Our

numerical results are presented in Section 4. Finally, we

list our conclusions in Section 5.
2. The two-fluid MHD equations

The standard one-fluid MHD approximation, exten-

sively used to study the dynamics of plasmas in

astrophysical environments, breaks down when the

kinetic terms contained in the generalized Ohm’s law

are not negligible. Assuming a fully ionized plasma of

protons and electrons and neglecting the electron’s

inertia, the generalized Ohm’s law reduces to (Priest

and Forbes, 1998)

E þ
u� B

c
¼

1

ne

j � B

c
� =pe

� �
þ

4pZ
c2

j, (1)

where n is the electron density (which is equal to the

proton density because of the assumed charge quasi-

neutrality), e is the electron charge, c is the speed of

light, and Z is the electric resistivity. The two-fluid effects

are the Hall current and the electron pressure (i.e. the

two first terms on the right-hand side).

The full dynamics of an incompressible plasma which

includes these effects can be described by the so-called

Hall-MHD equations. The Hall-MHD equations consist

of the regular Navier–Stokes equation,

qU

qt
¼ � U � rð ÞU þ B � rð ÞB

� r Pþ
B2

2

� �
þ F þ

1

R
r2U ð2Þ

and the modified induction equation

qA

qt
¼ ðU � �r � BÞ � B þ �rpe þ

1

S
r2A. (3)

We also assume incompressibility

= �U ¼ 0 (4)
and adopt the gauge

= � A ¼ 0 (5)

for the vector potential A.

Eqs. (2)–(5) are the complete set of dimensionless

equations, which we integrate numerically (see Section

4). The velocity U and the magnetic field B are expressed

in units of a characteristic speed U0 (we choose U0 equal

to the Alfven speed) and � measures the relative strength

of the Hall effect. The coefficient � is defined as

� ¼ LHall=L0, (6)

where L0 is a characteristic length scale (the size of the

box in our simulations is 2p). The Hall length LHall ¼

c=opi is the so-called ion skin depth. R in Eq. (2) is the

kinetic Reynolds number, defined as

R ¼
U0L0

n
, (7)

where n is the kinematic viscosity of the fluid, and S in

Eq. (3) is the magnetic Reynolds number,

S ¼
U0L0

Z
, (8)

where Z is the magnetic diffusivity.

In Section 4 we numerically integrate the curl of Eqs.

(2)–(3). The total pressure p and the electron pressure pe

are self-consistently obtained in term of the fields U and

B, from the divergence of Eqs. (2)–(3) and enforcing the

conditions given by Eqs. (4)–(5).
3. MHD turbulence and turbulent dynamos

Astrophysical and space plasma flows are character-

ized by Reynolds numbers much larger than unity, with

typical values as large as R�Rm�10
10212. These flows

are therefore likely to be in a strongly turbulent regime.

The theoretical framework for the study of turbulence

was first developed for non-magnetic fluids, thanks to

the pioneering work of Kolmogorov (1941). Notwith-

standing, the following general description applies to

either hydrodynamic or MHD turbulent regimes.

In large Reynolds number flows, energy is an

approximately conserved quantity. The nonlinear terms

play an essential role, which is to stochastically

redistribute energy fluctuations from one wavenumber

to another. Only those excitations at sufficiently large

wavenumbers decay by dissipative effects. As a result,

this nonlinear redistribution continuously replenishes

the energy being drained at the large wavenumber region

(Montgomery, 1983). An increase in Reynolds number

only raises the value of the wavenumbers where the

dissipation takes over, but does not inhibit this net

energy flow in Fourier space. According to this scenario,
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three regions in Fourier space can be identified, each of

them displaying a different behavior:
1
 Energy-containing region: comprises those modes that

are being excited directly by an external driver, which

is usually located at small wavenumbers.
2
 Dissipation region: corresponds to those modes where

fluctuations are being efficiently quenched by dis-

sipative (viscous or resistive) effects, located at the

largest wavenumbers.
3
 Energy inertial region: where external forces and

dissipation are both negligible and only nonlinearities

play a role, transferring fluctuations from one mode

to another, while keeping the total energy constant.

Kolmogorov (1941), following essentially dimensional

arguments, has shown that when a three dimensional

incompressible fluid is submitted to external forcing with

a narrow spectrum, a direct energy cascade is generated

and a stationary energy spectrum is achieved, displaying

the well known Kolmogorov spectrum

Ek ¼ CK�
2=3k�5=3 (9)

in the energy inertial region, where CK is the Kolmo-

gorov constant and � is the energy dissipation rate.

Kolmogorov’s ideas, mainly based on scaling properties

of the ideal equations and on the existence of a net

energy flow through the corresponding inertial range,

are usually known as cascade theory and have been

applied to a number of turbulent systems including two

and three-dimensional MHD turbulence (Montgomery,

1983). The power spectra predicted by cascade theory

for the energy inertial range have in many cases been

confirmed by experiments and numerical simulations.

As we have seen, the approximate conservation of

energy in turbulent flows plays a decisive role in our

understanding of stationary turbulent regimes. The

Hall-MHD system has three ideal quadratic invariants,

the total energy (i.e. kinetic plus magnetic),

E ¼
1

2

Z
ðU2 þ B2ÞdV , (10)

the magnetic helicity,

H ¼
1

2

Z
A � B dV , (11)

and the generalized cross-helicity,

K ¼
1

2

Z
ðB þ �xÞ � ðAþ �UÞdV . (12)

In MHD turbulence (i.e. ignoring two-fluid effects), the

energy follows a cascade toward the microscale (just as

for hydrodynamic turbulence), and the magnetic helicity

follows an inverse cascade to the smallest wavenumbers

of the system (Biskamp, 1993). This inverse cascade of

magnetic helicity is associated with the self-organization
of turbulent MHD flows, since the spatial patterns of the

magnetic field are seen to progressively shift toward

larger scales.

Recent high-resolution MHD simulations (see for

instance Haugen et al., 2003, and also our Section 4)

show that the energy power spectrum for stationary

MHD turbulence in its energy inertial range is also

consistent with the Kolmogorov law given in Eq. (9). In

the next section we show that this behavior is

maintained when the Hall effect is considered, i.e.

Hall-MHD turbulence also displays a Kolmogorov

energy power spectrum. This is one of the main results

obtained by these numerical simulations. We also

observe the signature of an inverse helicity cascade.

Even though we do not have enough spatial resolution

to quantitatively study this inverse cascade, we clearly

observe the accumulation of magnetic helicity at the

largest scales of the system, both in pure MHD and

Hall-MHD simulations.
4. Numerical simulations

4.1. Description of the code

We developed a parallel pseudospectral code (see

details in Mininni et al., 2003b), which was ran in a

Beowulf cluster using the MPI library (i.e. Message

Passing Interface). We integrated the Hall-MHD equa-

tions (2)–(3) in a cubic box with periodic boundary

conditions and applying a 2
3
-rule dealiasing. The

equations were evolved in time using a second order

Runge–Kutta method. The total pressure Pþ B2=2 was

computed in a self-consistent fashion at each time step

to ensure the incompressibility condition r �U ¼ 0

(Canuto et al., 1988). Similarly, the electron pressure

pe was computed consistently with the gauge condition

r � A ¼ 0.

We present results from different runs with 1283

spatial grid points and Z ¼ n ¼ 0:02. The kinetic and

magnetic Reynolds numbers for these simulations was

R ¼ S � 300. Simulations begin by subjecting the

Navier–Stokes equation to a stationary helical force F
(given by eigenfunctions of the curl operator) operating

at a macroscopic scale kforce ¼ 3 (Mininni et al., 2003b)

to reach a hydrodynamic turbulent steady state. The

resulting statistically steady state is characterized by a

positive kinetic helicity. The kinetic helicity is defined as

Hk ¼
1
2

R
U � xdV , and is known to play a significant

role in generating magnetic fields through the so-called

alpha effect (Krause and Rädler, 1980).

4.2. MHD dynamos

Once the hydrodynamic stage of the simulation

reaches a steady state, a non-helical and very weak
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magnetic seed was introduced. This initial magnetic seed

was generated by a d-correlated vector potential

centered at kseed ¼ 35. The run was continued with the

same external helical force in the Navier–Stokes

equation, to study the growth of magnetic energy due

to dynamo action. The kinetic and magnetic dissipation

length scales were properly resolved in the computa-

tional domain, i.e. we made sure that the dissipation

wavenumbers remain smaller than the maximum wave-

number allowed by the dealiasing step, namely

kmax ¼ 128=3 � 43.
Fig. 1. Slice of a 2563 MHD simulation displaying the

component of magnetic field perpendicular to the slice. Above:

right after inserting the magnetic seed. Below: when the

stationary regime is reached.
Fig. 1(a) shows the spatial distribution of one of the

components of the magnetic field right after the seed has

been implanted, for a purely MHD run with 2563 grid

points. Fig. 1(b) shows the shift toward much larger

spatial scales by about the time when the dynamo

reaches saturation. Both the exponentially fast growth

of magnetic energy and its net flow toward larger spatial

scales are the essential ingredients for a turbulent

dynamo. Within this context, turbulent dynamos can

be defined as those turbulent microscale flows with the

ability to generate large-scale magnetic fields.

Fig. 2 shows the kinetic and magnetic spectra at

different times for a purely MHD simulation (� ¼ 0).

The dotted curve at the lower right corresponds to the

spectrum of the magnetic seed. During the initial

kinematic stage, the magnetic energy grows uniformly

at all wave numbers. After the saturation (t � 5) the

emergence of a large-scale field can be clearly seen in the

spectrum. At t � 18:4, when the system has already

reached equipartition, the magnetic energy at large

scales (small wave numbers) still remains growing

slowly. As a result, the large scale magnetic field reaches

super-equipartition with the kinetic energy. An excess of

magnetic energy can be also observed at small scales.

As mentioned in the previous section, the slope of the

total (magnetic plus kinetic) energy spectrum in the

inertial range is consistent with Kolmogorov’s law

(Eq. (9)) and in good agreement with simulations of

helical MHD turbulence with higher spatial resolution

(Haugen et al., 2003).

To assess the tendency of the magnetic helicity to

follow an inverse cascade, we performed simulations

with the forcing wavenumber placed at kforce ¼ 10, so

that there is room for an inverse cascade to proceed.

Fig. 3 shows the energy spectra taken at different times
Fig. 2. Mean kinetic energy spectrum (thick line), total energy

spectrum (thick dashed line), and magnetic energy spectrum at

different times (� ¼ 0 and R ¼ 300). The Kolmogorov’s slope is

shown as a reference.
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Fig. 3. Mean kinetic energy spectrum (thick line), total energy

spectrum (thick dashed line), and magnetic energy spectrum at

different times (� ¼ 0 and kforce ¼ 10).

Fig. 4. Magnetic (below) and kinetic energy (above) as a

function of time for two runs with � ¼ 0:1 and � ¼ 0 (R ¼ 300).
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for a purely MHD run, just as in Fig. 4, but with a larger

value of kforce. At sufficiently long times, we can clearly

see the accumulation of magnetic energy at the largest

scales of the system (i.e. k ¼ 1). As mentioned in the

previous section, this inverse cascade reflects in the

progressive simplification of the magnetic spatial pat-

terns of the system.

4.3. Hall-MHD dynamos

The Hall effect is expected to affect the MHD results

on the generation of magnetic fields by inductive

motions in a conducting fluid (dynamo effect). More

specifically, it is expected to modify the growth and

evolution of magnetic energy, since the addition of the

Hall term to the MHD equations leads to the freezing of

the magnetic field to the electron flow (in the non-

dissipative limit) rather than to the bulk velocity field.

Although the Hall effect might not be relevant for the

solar dynamo, it is likely to play a significant role in

other astrophysical objects, such as accretion disks
(Sano and Stone, 2002). In a previous paper (Mininni

et al., 2003b), we showed that three distinct dynamo

regimes can be tentatively identified: (1) Hall-enhanced,

(2) Hall-suppressed, (3) MHD. These regimes arise as a

result of the relative ordering between the relevant

lengthscales of the problem. Namely, the energy-

containing scale of the flow, the Hall length, and the

correlation length of the magnetic seed. The direct

simulations presented here, performed at higher spatial

resolution and larger Reynolds numbers, fully confirm

this preliminary result. We also study the spectral

distribution of the generated magnetic fields and

compare with results arising from pure MHD simula-

tions.

The simulation shown in Fig. 1 corresponds to pure

MHD, i.e. it does not consider two-fluid effects. Fig. 4

shows the kinetic and magnetic energy as a function of

time both for an MHD (i.e. � ¼ 0) and also for a Hall-

MHD run with � ¼ 0:1 and R ¼ 300.

For any given value of � we can define a wavenumber

kHall ¼ 1=�. All wavenumbers smaller than kHall are

expected to be strongly affected by the Hall current. This

choice of � ¼ 0:1 (and therefore kHall ¼ 10) corresponds

to the Hall-enhanced regime, as defined in Mininni et al.

(2003b).

At early times, the evolution of magnetic energy in

MHD and Hall-MHD is rather similar, suggesting that

the Hall effect does not play much of a role during the

initial stages of the dynamo. This stage corresponds to

the so-called kinematic dynamo, during which: (1) the

magnetic field grows exponentially fast, being advected

by the strong velocity field U, (2) the flow evolves

essentially unaffected by the relatively weak magnetic

field. The kinematic regime breaks down when the

magnetic energy becomes non-negligible in comparison

to the kinetic energy. Both runs are eventually seen to

settle down at a saturation level characterized by the

approximate equipartition between kinetic and magnetic

energy. However, in Fig. 4 we can also observe that

when the Hall term is included, the stationary level of

magnetic (and kinetic) energy is comparatively larger.

Fig. 5 shows the kinetic, magnetic, and total energy

spectra at different times for a Hall-MHD run with

� ¼ 0:1. Except for �, all the parameters and initial

conditions in this run are the same as those correspond-

ing to Fig. 2. Therefore, a direct comparison between the

evolution of both spectra can be made. During the

kinematic stage, the evolution is similar to the MHD

run, with the entire magnetic spectrum growing at

almost the same rate. The difference observed in

Mininni et al. (2003b), that the large-scale magnetic

field is slightly larger than in its MHD counterpart, is

now increased as a result of the larger Reynolds number

and larger scale separation.

Note that while the MHD spectrum shows super-

equipartition at small scales (the magnetic energy is



ARTICLE IN PRESS

Fig. 5. Mean kinetic energy spectrum (thick line), total energy

spectrum (thick dashed line), and magnetic energy spectrum at

different times (� ¼ 0:1 and R ¼ 300).

(a)

(b)

Fig. 6. Total compensated energy spectrum k5=3��2=3Ek (thick

line), kinetic energy spectrum (thin line), and magnetic energy

spectrum (dashed line) at t ¼ 5:5 for a run with (a) � ¼ 0, and

(b) � ¼ 0:1.

Fig. 7. Mean kinetic energy spectrum (thick line), total energy

spectrum (thick dashed line), and magnetic energy spectrum at

different times (� ¼ 0:1 and kforce ¼ 10).
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larger than the kinetic energy at large wave numbers),

the Hall-MHD leads to equipartition at these scales.

Nonetheless, the total energy spectrum also follows a

Kolmogorov slope, just as for the MHD case.

To quantitatively estimate the slope of the spectra,

and also to obtain the corresponding Kolmogorov’s

constants, in Fig. 6 we display compensated power

spectra, i.e. we plot k5=3��2=3Ek as a function of k.

Fig. 6(a) corresponds to the MHD limit (i.e. � ¼ 0),

while Fig. 6(b) has kHall ¼ 10 (� ¼ 0:1). Both spectra
have been computed at t ¼ 5:5, which approximately

corresponds to the nonlinear saturation of the dynamo.

The parameter � is the time average (during the

stationary regime) of the energy dissipated by viscosity

and electric resistivity per unit time. In a turbulent

stationary regime, this time-averaged dissipation rate is

approximately equal to
R

F �U dV , which is the power

delivered by the external force F to the flow (see Eq. (2)).

During the stage of purely hydrodynamic turbulence

(i.e. before the magnetic seed is introduced) we obtained

a dissipation rate � � 38. When the dynamo reaches

saturation, the dissipation rate for the MHD case (i.e.

� ¼ 0) settles at � � 28, and for the Hall dynamo

(� ¼ 0:1) it approximately remains at � � 38. The slight

reduction in the dissipation rate for the MHD case is

consistent with a similar reduction of the r.m.s. value of

the velocity field at the scale where the external force

operates. This reduction becomes apparent by

comparing the peaks of the kinetic energy spectra in

Figs. 2 and 5.

The flat portion of the total energy spectra in Fig. 6

indicates the energy inertial range, and the height of the

plateau provides the value of the corresponding

Kolmogorov constant CK. For the purely MHD case,

the Kolmogorov constant is CK � 1:39, in close agree-

ment with other simulations performed at higher spatial

resolution (Haugen et al., 2003). For the Hall-MHD

case, the Kolmogorov constant is CK � 1:66, i.e. slightly
larger than its MHD counterpart. An excess of magnetic

energy can be observed at small scales in Fig. 6(a), which

corresponds to the MHD limit (i.e. � ¼ 0). It is

interesting to note that a similar feature has been

reported by Bruno et al. (1985) (see also Marsch and Tu,

1990) in connection to solar wind Alfvenic fluctuations

performed by the Helios spacecraft. This excess of

magnetic energy seems to vanish when the Hall effect
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becomes non-negligible, with the kinetic and magnetic

spectra closer to an equipartition regime, as shown in

Fig. 6(b).

In Fig. 7 we also show similar signatures of an inverse

cascade, but for a Hall-MHD run with � ¼ 0:1 and

kforce ¼ 10. Note, however, that the kinetic energy (thick

trace) at large scales (k � 1) is about one order of

magnitude larger than in the MHD case. Even though

the Hall effect is expected to have a strong influence on

wavenumbers larger than kHall ¼ 10, its effect is also

apparent at smaller wavenumbers as well.
5. Conclusions

In the present paper we quantitatively study the

ability of turbulent microscale plasma flows to generate

large-scale magnetic fields, i.e. the efficiency of turbulent

dynamos. In particular, we assess the potential relevance

of the Hall effect, which is known to be non-negligible in

a number of plasma flows of astrophysical interest.

We present results of direct numerical simulations of

turbulent dynamo action both in pure MHD (one-fluid

MHD) and Hall-MHD (two-fluid MHD). We find that

the Hall-MHD dynamo works more efficiently when the

Hall length is somewhat larger than the dissipation scale.

This result is consistent with the scenario of the so-called

Hall-enhanced regime, as reported elsewhere (Mininni et

al., 2003b), from simulations at smaller spatial resolution.

Both for pure MHD and Hall-MHD, the dynamo is

observed to saturate at a level of approximate equiparti-

tion between magnetic and kinetic energy, after an initial

stage during which the magnetic energy grows exponen-

tially fast. The total energy spectrum in both cases reaches

the Kolmogorov power spectrum. For the case of MHD

turbulence, this result is consistent with previous estimates,

but to our knowledge this is the first time that the energy

spectrum is derived for Hall-MHD turbulence.

We also observe the tendency of the magnetic helicity

to follow an inverse cascade, with the ensuing accumu-

lation of magnetic structure at the largest spatial scales

of the system. For the Hall-MHD case, we also observe

a non-negligible amount of kinetic energy being

transferred to large scales, indicating that the macro-

scopic features of Hall-MHD flows might differ from

those predicted by the one-fluid MHD approximation.

These global features observed in turbulent MHD

dynamos are expected to provide a basis for a

microscopic theory of the alpha effect, which is essential

for a better understanding of large scale dynamos.
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