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Abstract

The large-scale dynamics of plasma flows can often be described within a
fluidistic approximation known as one-fluid magnetohydrodynamics. Complex
flows such as those corresponding to turbulent regimes are ubiquitous in laboratory
plasmas and in astrophysics, because of their typically very large Reynolds
numbers.

Numerical simulations have become a powerful tool for the study of complex
plasma flows in recent years. The aim of the present paper is to introduce
the reader to some of the standard numerical approximations used for the
integration of the magnetohydrodynamic equations. In particular, we focus on
pseudo-spectral methods and on how to develop parallel codes to speed up
large Reynolds number simulations. We show the results arising from numerical
simulations of astrophysical interest such as the development of turbulent flows in
reduced magnetohydrodynamics and the generation of magnetic fields by dynamo
mechanisms in three dimensional magnetohydrodynamics.

1. Introduction

Numerical simulations have become an important tool for fluid
mechanics in recent years. The large-scale dynamics of plasma
flows can often be described within a fluidistic approximation
known as one-fluid magnetohydrodynamics. Complex flows such
as those corresponding to turbulent regimes are ubiquitous in
laboratory plasmas and in astrophysics, because of their typically
very large Reynolds numbers.

The aim of the present paper is to introduce the reader to
some of the standard numerical approximations to the integration
of nonlinear partial differential evolution equations, such as
those of magnetohydrodynamics (MHD). More specifically,
we focus on the so called Fourier-Galerkin methods for
problems with periodic boundary conditions, computationally
more efficient than finite difference methods. To illustrate the use
of these techniques, we show numerical results from simulations
performed to study different astrophysical problems, such as the
development of turbulence in externally driven reduce MHD
(RMHD) or the generation of magnetic field by a turbulent
dynamo in three dimensional MHD.

In section 2 we write down the MHD equations, Section 3
contains a summary of the numerical techniques used in our
codes, while the development of parallel versions of these codes
is discussed in section 4. In section 5 we show results from
simulations of the reduced MHD equations, and in section 6
we present results from three dimensional MHD simulations.
In section 7 we list the main conclusions of the present
paper.
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2. Theoretical framework

Magnetohydrodynamics is a reasonable theoretical framework
to describe the macroscopic dynamics of plasmas, i.e. on typical
lengthscales much larger than their collisional mean free paths
and on timescales much longer than their collisional frequencies.
If we also assume the flows to be incompressible, the MHD
equations are

�tB = ∇ × (U × B) + �∇2B, (1)

�tU = −(U · ∇)U + (∇ × B) × B − ∇p + �∇2U, (2)

∇ · B = 0, ∇ · U = 0. (3)

The magnetic field in these equations is in velocity units, i.e.
B = B[Gauss]/

√
4��, and � is the (constant) mass density of the

plasma. The dissipation coefficients � and � are the resistivity and
kinematic viscosity, respectively. We can transform Eqs. (1)–(3)
into a dimensionless set of equations by scaling the velocity
and magnetic fields to a characteristic speed U0, and lengths to
a typical length L0. Two dimensionless numbers will naturally
arise to measure the relative importance of nonlinearities com-
pared to dissipation. Namely, the well known Reynolds number,
R = U0L0/�, and the magnetic Reynolds number, Rm = U0L0/�.

Many astrophysical flows are characterized by Reynolds
numbers much larger than unity (R ∼ Rm ∼ 1010−12) for which
nonlinearities are the dominant physical process. The effect of
nonlinear terms is to stochastically redistribute excitations from
one wavenumber to another, while excitations at sufficiently large
wavenumbers decay by dissipative effects. Therefore, a net flow
of energy in Fourier space is established, known as the energy
cascade. Kolmogorov 1941 [1], following essentially dimensional
arguments, has shown that an externally driven three dimensional
incompressible fluid displays a stationary energy spectrum given
by Ek ∝ k−5/3. Kolmogorov’s ideas are usually known as cascade
theory and have been applied to a number of turbulent systems
including two and three-dimensional MHD turbulence [2]. The
power spectra predicted by cascade theory for the energy inertial
range, have in many cases been confirmed by experiments and
numerical simulations.

3. Numerical recipes

In this section we describe several basic concepts about the
numerical simulation of MHD flows using spectral methods (for a
general overview on spectral methods applied to fluid simulations
see [3], and also [4], [5] and [6]). Hereafter we will focus
on Galerkin-Fourier methods, which are the proper ones for
problems displaying periodic boundary conditions. To illustrate
the method, let us consider Burgers equation, which contains all
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the ingredients (spatial and temporal derivatives, quadratic non-
linearity and dissipation) of the more complex HD and MHD
problems in two and three dimensions. Burgers equation describes
the evolution of a 1D velocity field u = u(x, t),

�tu + u�xu = ��xxu. (4)

This equation is supplemented with the initial condition u(x, 0) =
u0(x) and periodic boundary conditions forx in the interval [0, 2�).
This allows for a Fourier expansion ofu(x, t), which is numerically
approximated by the truncation

uN (x, t) =
N/2∑

k=−N/2

uk(t)eikx. (5)

Spectral methods demand that the error introduced by this
truncation, has zero projection on the subspace generated by
{eikx, k = −N/2 + 1, . . . , N/2}. As a result, a PDE like Eqn. (4)
is replaced by a set of coupled ODEs for the Fourier coefficients
uk(t) (for k = −N/2 + 1, . . . , N/2)

�tuk = −(u�xu)k − �k2uk, (u�xu)k =
∑

l+m=k

i mulum. (6)

For continuous, infinitely differentiable and periodic functions,
the numerical convergence is exponentially fast [3]. Before Eqs.
(6) can be used as an approximation to Eqn. (4), we must note
that the nonlinear term involves O(N2) floating point operations.
By comparison, the evaluation of u�xu in physical space (by
finite differences) would require O(N) floating point operations.
To overcome this practical difficulty, a “fast Fourier transform”
(FFT) [7] is used, which reduces the computational load to
only O(N log N) operations. This strategy of computing spatial
derivatives in physical space and non-linear terms in physical
space is known as “pseudospectral”, and combines the advantages
of computational efficiency and high precision.

There is a spurious effect known as “aliasing”, which
stems from the fact that the functions eikx and ei(k+Nm)x are
indistinguishable when evaluated on the set {xj = 2�j/N, j =
0, . . . , N − 1}. If we restrict our numerical evaluation to
the discrete set of wavenumbers k = −N/2 + 1, . . . , N/2, the
harmonic modes with wavenumbers equal to k + Nm do not
take part in the computation of any linear term. However,
the nonlinear terms cause the coupling of Fourier modes, and
therefore harmonic modes will produce aliasing. To overcome this
difficulty, the standard “two-thirds rule” will be applied (see [3] for
details). This rule consists in forcing all modes with |k| > N/3
(i.e. 2/3 of all Fourier modes) to have zero amplitude, which
guarantees that the spurious coupling with harmonic modes is
exactly zero.

For the time integration of Eqs. (6), we use a second order
Runge-Kutta scheme. Let us write down this set of equations with
the following compact notation.

dU

dt
= F (U, t) (7)

where U is a vector containing the Fourier coefficients. To
numerically integrate this equation (see details in [3]) in discrete
time steps of size �t we first advance half a step

Ut+ 1
2 = Ut + �t

2
F (Ut , t) (8)

and then use Ut+ 1
2 to evaluate the right hand side of Eqn. (7) and

advance a full step

Ut+1 = Ut + �tF
(
Ut+ 1

2 , t + 1
2

)
. (9)

Higher order Runge-Kutta schemes can provide more accurate
results in exchange of a larger consumption of CPU time and
larger use of RAM memory. The second order scheme proves
to be sufficiently accurate for our purposes. Predictor-corrector
schemes are also regularly used for hydrodynamic simulations.
In “second order predictor-corrector”, both Ut and Ut−1 are used
to extrapolate the solution one step advanced, and then correct this
extrapolation using information of the derivative at the new point.
We also used this scheme in some of our simulations, treating
the linear (dissipative) terms implicitly and the nonlinear terms
explicitly (see also [3], [8]). Both methods are accurate to second
order in �t.

For nonlinear partial differential equations as the ones being
considered, there are no clear rules to guarantee the numerical sta-
bility of a simulation, and therefore there are no recipes indicating
how small �t ought to be. Nonetheless, an estimate originated in
the CFL (Courant-Friedrichs-Lewy) condition for advection [3]
provides a reasonable upper bound. For an advection equation
such as �tu ∼ u�xu, integrated with a spatial grid size �x, the
required time step is �t ≤ �x/u0, where u0 is a typical velocity.

4. Parallel simulations

The parallelization of the pseudo-spectral codes described
above, has been performed using the MPI (Message Passing
Interface) library. MPI is currently a standard implementation
to parallelize high performance numerical codes on both shared
and distributed memory platforms. The exchange of information
between processors in a cluster is performed through MPI.

In sections 5 and 6 we show two applications of our codes,
which also correspond to very different examples for paralleliz-
ation. Reduced MHD (in section 5) is more amenable for parallel-
ization, since it only involves first order derivatives along the
z-direction, which is the direction of the main magnetic field.
To compute first order derivatives by finite differences to second
order accuracy, say at the grid point z = i�z, we only need to have
the state of the system at the neighboring points z = (i ± 1) �z. If
for simplicity we assume that the simulation at any gridpoint z =
i�z (i = 1, . . . , Nz) is being carried out at a different processor,
we only need to exchange information between “neighboring”
nodes to compute these derivatives. The communication load is by
comparison much smaller than the numerical load being handled
by each processor, and therefore the parallel version runing in a
cluster of Nz nodes runs almost Nz times faster.

On the other hand, in three dimensional simulations with
periodic boundary conditions in the three components (see section
6), we basically need a parallel version of the FFT routine. Based
on the FFTW open source routine [7], we implemented a parallel
version that works as follows. The spatial distribution of each
scalar field and component of vector field can be visualized as
a cubic array of N3 real numbers. Let us assume that each node
handles a slice of N × N × M numbers, where M is the linear
number of grid points (N) divided by the number of processors.
The Fourier transforms in the directions indicated by arrows
in Fig. 1 (left) are performed locally in each node, and stored
in a cube of size (N/2 + 1) × N × M. To compute the Fourier
transform in the remaining direction, requires an all-to-all node
communication step, to transpose the full matrix and split it in
slices of P × N × N. The number P is now equal to N/2 + 1
divided by the number of processors. The Fourier transform in
the remaining direction (indicated by the arrow on the right frame
of Fig. 1), can now be performed locally in each node [10].
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Fig. 1. Left: box of any of the unknowns in real space for an N3 simulation.
Each node handles a slice of N × N × M. Fourier transforms in the directions
indicated by arrows are performed locally in each node, and stored in a cube of
size (N/2 + 1) × N × M. Right: An all-to-all node communication step is used
to transpose the full matrix and split it in slices of P × N × N, so that the Fourier
transform in the remaining direction (see arrow) can be performed locally in
each node.

This numerical strategy is quite efficient (see also [9]), although
the exchange of information between nodes is much bigger than
for the RMHD case. The efficiency in exchanging communication
between nodes is measured by the speed-up factor, which is simply
the ratio between the time it takes a code to run on a single
processor and the run time in an multi-processor cluster. In the
next two sections we quantitatively show the speed-up for the two
applications considered.

5. Turbulence in reduced MHD

In this section, we focus on the dynamics of a relatively
homogeneous bundle of magnetic field lines, which are described
by the reduced MHD approximation [11]. A typical example of
such a system is a magnetic loop in the solar corona, whose
footpoints are deeply rooted into the solar photosphere, thus
generating magnetic stresses in the coronal portion of the loop. Let
us consider a loop with length L and cross section 2�lp × 2�lp,
where lp is the lengthscale of typical photospheric motions. The
main magnetic field B0 is assumed to be uniform and parallel to
the axis of the loop (the z axis). The planes at z = 0 and z = L

correspond to the loop footpoints at the photosphere.
The very high electric conductivity allows photospheric mo-

tions to easily drive magnetic stresses in the corona [12]. The field
lines twist and bend due to these motions and this generates trans-
verse components of velocity (u) and magnetic field (b), giving
b = ∇ × (az) and u = ∇ × (�z). The reduced MHD equations
for the stream function � and the vector potential a are [11]:

�ta = B0�z� + [�, a] + �∇2a, (10)

�t� = B0�zj + [�, w] − [a, j] + �∇2w, (11)

where w = −∇2� is the z-component of the fluid vorticity
and j = −∇2a is the z-component of the current density. The
brackets [A, B] are the standard Poisson brackets.

We numerically integrated Eqs. (10)–(11). To this end, � and a

are expanded in Fourier modes in each (x, y) plane (0 ≤ x, y ≤ 2�
and 0 ≤ z ≤ 1), as mentioned in Section 3. The corresponding
Fourier coefficients �k(z, t) and ak(z, t) are evolved in time using
a semi-implicit scheme: linear terms are treated in a fully implicit
fashion, while nonlinear terms are evolved using a second order
Runge-Kutta scheme (see Section 3).

To compute z-derivatives we use a standard method of finite
differences in a staggered regular grid of Nz + 1 points. The
stream function is computed on points zi = i/Nz (i = 0, . . . , Nz),
while the magnetic flux function is computed on zi+1/2 = (i +
1/2)/Nz (i = 0, . . . , Nz − 1). Boundary conditions for the stream
function � are given at the plates z = 0 and z = 1. Therefore
Eqn. (11) is not integrated on these planes, but it is evolved in
time in all the internal gridpoints zi = i/Nz (i = 1, . . . , Nz − 1).

A Linux cluster is used to run the parallel RMHD code.
Since finite-differences are used in the z-direction, while a
pseudospectral method is employed for the transverse directions,
an efficient parallelization is achieved by performing the
transverse gradients locally in each machine. Communication
between nodes is only required to perform the z-derivatives.
Figure 2 shows the speed-up of a parallel RMHD simulation,
measured as the time ratio of the simulation in a single node by
the simulation in a cluster of nodes, as a function of the number
of nodes. We see that the speed up remains very close to the ideal
situation, which is equal to the number of processors. RMHD is
therefore an ideal plasma configuration for parallel simulations in
commodity type of clusters (Beowulf).

In Figure 3 we show the magnetic and kinetic energy vs. time
(left) for a simulation involving 1024 × 1024 × 128 gridpoints,
with a stationary velocity field imposed at z = 1 to induce a
turbulent regime. We observe that both the energy and the energy
dissipation rate (right) reach a statistically stationary regime. In
Fig. 4 (left) we see the corresponding power spectra for the
magnetic and kinetic energy, both of which display a broadband,
power-law behavior. In Fig. 4 (right) we observe the power

Fig. 2. Speed-up (time of a sequential run/time of a parallel run) of the RMHD
code in a cluster of 32 PCs. Square correspond to a resolution 128 × 128 × 128,
asteriscs correspond to a resolution 512 × 512 × 128. The dotted line is the ideal
speed-up (equal to the number of processors).

Fig. 3. Left: magnetic energy (full) and kinetic energy (dashed) as a function of
time for an RMHD run with R = S = 800 and resolution 1024 × 1024 × 128.
Right: dissipation rate vs. time.
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Fig. 4. Left: perpendicular magnetic energy (full) and kinetic energy (dashed)
spectra for an RMHD run with R = S = 800 and resolution 1024 × 1024 × 128.
Right: total energy spectra compensated by k5/3.

Fig. 5. Electric current density j(x, y, z) in different cross sections of the RMHD
simulation box, corresponding to a stationary turbulent regime.

spectrum of the total energy, compensated by a factor k5/3, to
show that it corresponds to a Kolmogorov slope in the inertial
range of the energy cascade [13]. In Figure 5 we show the spatial
distribution of the electric current density, corresponding to a
stationary turbulent regime. We observe that the electric current
flows both upward (white) and downward (black) along very
elongated structures (see vertical slices). There is a very complex
distribution of these structures, as can be seen in the horizontal
slices. We speculate that the Joule dissipation originating in these
fine scale structures, provides a promising mechanism to heat
coronal loops (see [14] and references therein).

6. Three dimensional MHD turbulence

Pseudospectral methods can also be used to perform 3D
simulations of incompressible flows for a large number of
applications. As an illustrative example, in this section we focus
on helical MHD flows displaying dynamo activity.

Externally driven MHD flows are expected to relax to a
stationary regime characterized by an energy dissipation rate ε

and a Kolmogorov energy power spectrum Ek = CKε2/3k−5/3,
where CK is the Kolmogorov constant. This expression arises
from the ideal invariance of the total energy (i.e. kinetic plus
magnetic) of the system. The content of kinetic helicity H =
1
2

∫
d3rU · ∇ × U in flow motions is particularly relevant for

dynamo mechanisms, i.e. for the generation of magnetic fields in
plasma flows. According to mean field theories, from where the
so called �-effect is derived [15], the growth rate of macroscopic

Fig. 6. Left: Speed-up for a pseudo-spectral hydrodynamics simulations of size
643 (triangles) and 1283 (squares), performed in an IBM SP/3 cluster. The dotted
line indicates the ideal speed-up. Right: Time (in seconds) for a single timestep for
643 (triangles), 1283 (squares), 2563 (diamonds) and 5123 (stars) hydrodynamic
runs. Simulations have been performed in dual nodes with a 1 Gbps network (dotted
line) and in a Linux cluster with a 100 Mbps network (dash-dotted). The slope of
the dotted line corresponds to ideal speed-up.

magnetic fields is proportional to the content of kinetic helicity
in microscopic flows. We performed 3D MHD simulations to
quantitatively study turbulent dynamo mechanisms (see [16]
and references therein). These simulations start from a purely
hydrodynamic stage, applying an external mechanical force until
a turbulent stationary regime is reached. In Figure 6 (left) we
show the speed-up for hydrodynamic simulations (left), both for
a modest resolution of 643 gridpoints and for a slightly better
resolution of 1283. For a small number of nodes, the speed up in
both cases is close to ideal, since most of the numerical load is
taken by the processors, with comparatively negligible exchange
of information. As the number of processors increase, each
processor handles a smaller load and communication becomes
more important. We observe that the 643 case departs from the
ideal speed-up at about 32 processors, while the 1283 case remains
close to ideal up to 96 nodes. Fig. 6 (right) directly shows the
real time for a single time step, as a function of the number of
processors for clusters with different connectivity speeds (1 Gbps
and 100 Mbps), for comparison.

To generate magnetic fields in a turbulent flow, we proceed
as follows. Once a stationary turbulent regime is reached, small
magnetic field fluctuations are added at small scales (a magnetic
seed), and the subsequent evolution of the velocity and magnetic
fields is studied. After an initial stage during which the magnetic
field intensity grows exponentially fast, a saturation level is
reached, corresponding to the approximate equipartition between
kinetic and magnetic energy. The power spectrum for the kinetic
and magnetic energies are displayed in Fig. 7. The total energy
power spectrum (thick trace) is consistent with a Kolmogorov law,
with a value for the Kolmogorov constant CK ≈ 1.39.

Fig. 8 shows the spatial distribution of the perpendicular
component of the magnetic field on a slice, at two different
times. At the beginning of the simulation we observe the fine
scale structure of the magnetic seed (left). At much longer times,
when the stationary regime is reached, we observe a much longer
correlation length (right). In summary, these three dimensional
simulations show that helical flows are quite efficient in generating
large scale magnetic fields.

7. Conclusions

The large scale dynamics of astrophysical flows, can often be
described within the theoretical framework of magnetohydrody-
namics. Important astrophysical problems, such as the generation
of magnetic fields by dynamo mechanisms, the development of
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Fig. 7. Power spectra of total energy (thick), kinetic energy (thin), and magnetic
energy (dashed) for a helical 3D MHD simulation of 2563 grid points. The external
helical forcing is centered at k = 3. The straight line corresponds to a slope −5/3
and a Kolmogorov constant CK = 1.39.

Fig. 8. Slice of a 2563 simulation displaying the perpendicular component of the
magnetic field. Left: shortly after the run starts. Right: when the stationary regime
is reached.

turbulent regimes or the occurrence of magnetic reconnection,
fall within this category.

In the present paper we discuss numerical approximations
to the integration of the MHD equations. In particular, we
briefly describe the Fourier-Galerkin method for problems with
periodic boundary conditions. We use this method in a number of
codes that integrate the MHD equations in different geometric
configurations. For plasmas permeated by an approximately
uniform magnetic field, the corresponding evolution of the
velocity and magnetic field is described by the reduced MHD

approximation. Examples of this configuration are the coronal
holes or the magnetic loops in active regions of the solar corona.
We show the development of a stationary turbulent regime when
coronal loops are being externally driven by large-scale motions
applied at their footpoints.

In section 6 we show 3D simulations of helical MHD flows, to
study the role of kinetic helicity in generating magnetic fields. We
confirm that the content of kinetic helicity in small-scale flows is
essential to drive a turbulent dynamo, i.e. to generate large-scale
magnetic fields. In summary, we find that numerical simulations
are a powerful and promising tool for the study of large-scale
plasma flows.
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14. Dmitruk, P. and Gómez, D., Astrophys. J. Lett. 527, L63 (1999).
15. Moffat, H. K., “Magnetic field generation in electrically conducting fluids”,

(Cambridge Univ. Press, Cambridge, UK, 1978).
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