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ABSTRACT 

In arid environments, stochastic rainfall and high evapotranspiration force plants to optimize 

water resources. North Patagonia is characterized by a deep rainfall gradient that gives rise to 

environments with very contrasting water availability. Festuca pallescens is a key native forage 

species, growing widely in those environments. To explore morphological and physiological 

traits involved in the response to drought, we exposed plants from populations sampled along 

the rainfall gradient to different water availability conditions (Well-watered, Water-pulse, 

Water-drought). We evaluated morphological traits in all populations to assess inter-population 

variability and physiological traits between selected populations from sub-humid and arid 

environments to explore possible macro-environmental responses. Populations showed variation 

in survival after 45 days of drought conditions and differences in the expression of 

morphological traits. Also, populations from arid environments were less affected than those 

from humid environments, showing a longer recovery when they received water pulses. 

Although a population survival pattern related to the rainfall gradient was not evident, 

populations from arid environments exhibited local adaptation to their home environments, 

taking better advantage of water pulses. These results provide information about the response of 

a non-model species to environments with contrasting water availability and possibly, to 

changing rain patterns in arid environments under climate change. 
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perennial grasses; arid environments; abiotic stress; tillering; Water use efficiency 

 

1. INTRODUCTION 

Drylands are highly vulnerable to altered climatic conditions such as changing rain 

events and increasing temperature, like those predicted by climate change (IPCC 2019). Scarcity 

of water and a great temporal variability in water availability are main constraints in arid 

environments (Synder & Tartowski, 2005). In addition, rainfall is stochastic and scarce while 

evapotranspiration is high (Heinrich, 1979). To cope with these constraints, plants display 

morphological and physiological responses at whole-organism level (Farooq et al. 2009; Kørup 

et al. 2018; Hanslin et al. 2019; Kosová et al. 2022) and economize resources to minimize losses 

by reducing growth rate or resource absorption (Chapin, 1991; Couso, 2011; Grime, 1979; 

Lambers & Oliveira, 2019). This creates a trade-off between the ability to quickly use resources 

when they are available (rapid resource absorption to growth) and tolerate shortage (lower 

growth rates) (Couso et al. 2010). Accordingly, dryland rangeland species usually show 

adaptations to water loss (Munns, 2011; Oyiga et al. 2020; Wang et al. 2007), as well as 

phenotypic (Jump & Peñuelas, 2005; Moreno, 2012; Pigliucci, 2001) and adaptive plasticity 

(Nicotra et al. 2010). Either of the mentioned, solely or in combination, might provide the 

capacity of the species to overcome the predicted climatic alterations.  

In arid environments, plant survival is closely related to soil water availability (Bertiller 

et al., 1995, Snyder & Tartowski, 2006). Unlike other environmental stresses, drought stress 

occurs gradually due to progressive soil drying and a high rate of evapotranspiration. Therefore, 

it is considered one of the main causes of death in plants (Luna Flores et al. 2012). First, plants 

close stomata reducing the exchange of carbon dioxide (CO2); these has a negative impact on 

plant growth (Engelbrecht & Schulz, 2001; Garreaud et al. 2009; Larcher, 2003) and 

instantaneous water use efficiency (WUE) could either show a decline or an increase in C3 

species (Taylor et al. 2011). On the other hand, the water deficit also can produce morphological 

changes on plants, such as a decrease in leaves and stems growth, smaller leaf area and a 

reduction of the specific leaf area (SLA, cm2 gr-1) (Engelbrecht & Schulz, 2001). These changes 

are related to a decrease in transpiration rate, water potential (Ψ) and relative water content. In 

general, there is also a reduction of the aboveground biomass (Khurana & Singh, 2004; Luna 

Flores et al. 2012; Singh & Singh, 2006) and an increment of below ground biomass (Oyiga et 

al. 2020; Wang et al. 2007). 

Grasses constitute one of the most prominent functional groups in North Patagonian 

meadows and steppes (Fernández et al. 1991). Many of these species share functional traits 

relevant to arid and semiarid environments, for example, phenology is coupled with rainfall 

regimes and the root system is deeper than shrubs (Golluscio et al. 2009). Likewise, many 
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morphological and physiological aspects of some grasses are closely related to the Patagonian 

environment´s heterogeneity, such as root anatomy (Leva et al. 2013), the ability to recover 

after a drought event (Yahdjian & Sala, 2006) and adjustments in the above-ground and 

underground biomass ratio (R S-1; Austin & Sala 2002). Many Patagonian grass steppes located 

in the Subandino District of Patagonia phytogeography province (Golluscio et al., 1982; 

Soriano, 1956) are dominated by Festuca pallescens (Gaitan et al. 2019; León et al. 1998).  This 

species is a dominant native species with intense forage use and wide distribution. It inhabits 

different environments in Patagonia where hydric balance is favorable for their establishment 

(i.e. low evapotranspiration rate and deep soils) (León et al. 1998), from forests (with more than 

1000 mm of rain) to steppes (with less than 240 mm of rain) (Bertiller et al. 1990; López et al. 

2019; 2020). Therefore, it can be a dominant species in both wet-meadows (humid 

environments) and highland steppes (semiarid environments) (Bran et al. 2000). In addition, this 

species opportunistically takes advantage of water and nutrient pulses (Coronato & Bertiller, 

1996; Moreno, 2012), presents phenological differences associated with air temperature 

variation (Bertiller et al. 1990) and shows local adaptations to its original environments (López 

et al. 2020).  

North Patagonia is characterized by climatic gradients (rainfall, temperature and 

altitude), a highly complex geomorphology (Gaitan et al. 2019), with low organic matter (OM) 

and poorly developed soils that favors soil compaction and reduces water retention (Godagnone 

& Bran 2009). The rain-shadow effect of the Andes Mountains creates different environmental 

settings from very humid to arid. This west-east decreasing rainfall gradient defines the floristic 

physiognomic types, aridity index and seasonal variations of three ecological regions (Leon et 

al. 1998; Paruelo et al. 1998; Godagnone & Bran 2009). Towards the west, more humid 

environments dominate the Patagonian region: the Cordillera and Pre-cordillera ecological 

regions. These environments are dominated by temperate forest and higher rainfall regimes with 

sandy loam soils (Bianchi et al., 2016; Oesterheld et al., 1998). However, towards the east 

predominates the Hills and Plateaus ecological region, dominated by shrubs and grass steppes 

(Oliva et al. 2016) with less developed soils (very low OM), sporadic rains and abrupt daily 

changing temperatures (Bran et al. 2000). Therefore, populations of the same species that grow 

along the rainfall gradient between the Cordillera and the Hills and Plateaus ecological regions, 

could present large interspecific variation in morphological and physiological traits.  

Global precipitation patterns are expected to change in the next decades, altering the 

rainfall regime of North Patagonia, further deepening the region's water deficit (Crego et al. 

2014; Nuñez et al., 2009). Recent studies have shown a denoted decline of F. pallescens in 

Patagonian rangelands due to increasing aridity and overgrazing (Gaitan et al. 2019). Drought 

affects the expression of morphological and physiological traits in plants (Zhen et al. 2017; 

Luong & Loik 2022) and drought avoidance is common in perennials species, relying on high 

Jo
ur

na
l P

re
-p

ro
of

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
"and# instead of "&"

Aldana
Nota adhesiva
"and" instead of "&"

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
"," instead of";"

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
"," instead of";"

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
"," instead of";"

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
"and" instead of "&"

Aldana
Nota adhesiva
"," instead of";"

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
"and instead of "&"

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
"," instead of";"

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
"and instead of "&"

Aldana
Nota adhesiva
"," instead of";"

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
"," instead of";"

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
"," instead of";"

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
"and" instaed of "&"

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
"," instead of";"

Aldana
Resaltado
Se puede redactar de otra forma? No estoy segura si en esta instancia lo puedo cambiar, pero hubiese sido mejor esta frase?:
This dominant species with intense forage use and wide distribution, inhabits environments with possitive hydric balance (i.e. low evapotranspirations rate and deeps soils) in Patagonia.

Aldana
Resaltado
Re-frase:
Therefore, it can dominate both wet-meadows (humid
environments) and highland steppes (semiarid environments) (Bran et al., 2000).  

Aldana
Nota adhesiva
"," instead of ";"

Aldana
Nota adhesiva
add comma

Aldana
Resaltado

Aldana
Resaltado
prevails



4 
 

water use efficiency (WUE), limited vegetative growth, and high biomass allocation to roots 

(Kooyers, 2015; Chandregowda et al. 2022). However, perennial grasses have the ability to 

overcome long periods of moderate and severe drought by different strategies that involve both 

morphological and physiological traits (Volaire &Thomas 1995; Poirier et al. 2012; Cenzano et 

al. 2013; Balachowski & Volaire 2018; Norton et al. 2016). Plants are increasingly exposed to 

changing environmental conditions on their physiological limits (Shaw and Etterson 2012). 

Thus, ecophysiological traits could play an important role in adaptation to changing climate 

(Kosova et al. 2022). In previous works, we found that the populations inhabiting the 

easternmost environments of Hills and Plateaus ecological region experienced stronger thermal 

and hydric restrictions for germination while populations from the central area of the gradient 

(Pre-cordillera ecological region) have fewer germination restrictions (López et al. 2019; 2021). 

Under this scenario, we wonder whether populations of this keystone species show differences 

in the capacity to cope with long periods of water deficit. We hypothesized that, macro-

environmental conditions imposed strong selection pressure on populations that inhabit the 

different environments located along the rainfall regime in North Patagonia. Therefore, the 

populations growing in more restrictive environments (eastern environments) will be less 

affected by drought at morphological and physiological levels than populations from more 

humid environments (western environments), denoting local adaptation to their home 

environments. We tested this hypothesis by subjecting plants from populations from the whole 

rainfall gradient to different irrigation regimens, searching for a) differences in the expression of 

morphological traits in all populations and b) differences in physiological traits between two 

groups of populations from sub-humid environments (Pre-cordillera) and arid environments 

(Hills and Plateaus). This information will increase the scarce knowledge about how non-model 

species are likely to cope with current and predicted increase of droughts, providing information 

to propose natural resource management strategies that reinforce the resilience of ecosystems to 

climate change. 

 

2.METHODOLOGY 

 

2.1 Sampling sites  

The sampling sites covered three ecological regions in North Patagonia that include 

diverse communities of vegetation: Cordillera, Pre-cordillera and the Hills and Plateaus (Bran et 

al. 2000; Gaitan et al. 2019). A total of eight source populations of F. pallescens were selected 

at four sampling sites: towards the west, Peninsula Huemul (PH) in Cordillera ecological region 

(humid: 1000 mm) and San Ramon (SR) in Pre-Cordillera ecological region (semi-humid: 600 

mm), and towards the east, Pilcaniyeu (P) and Ing. Jacobacci (J) in Hills and Plateaus ecological 

region (arid: 250-150 mm). At each site, we sampled one source population at a highland steppe 
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(A) and another at a meadow (B) (Fig. 1). Our sampling sites were located in relatively similar 

latitudes, so photoperiodic characteristics were similar. Therefore, to reach possible differences 

in temperature, we sampled at two altitudes in each sampling site. Nonetheless, longitude 

changes notoriously between sampling sites and followed the sharp rainfall gradient, decreasing 

from 3000 mm in the west (near the Andes Mountains), to less than 150 mm towards the east 

(the Patagonian steppe) in only 235 km. In consequence, there are many differences in 

evapotranspiration rate, aridity index, and seasonal precipitation variation between sampling 

sites, but these variables do not change abruptly between the two sampled altitudes at each 

sampling point (Bianchi et al. 2016). We gathered seeds from 30–50 plants separated 25 m from 

each other in each population for greenhouse experiments. All sites were distributed along the 

west-east decreasing rainfall gradient of about 500 km in North Patagonia (Argentina) (rainfall 

gradient: 1000 to less than 150 mm) (Table 1).  

 

2.2 Plant material  

Plants were obtained from seeds germinated at 15.5°C and saturated moisture, in 200 ml 

cavity plugs with inert substrate. In order to favor the initial development, the seedlings were 

fertilized once with Hakaphos NARANJA (1 gr l-1; 15% N, 5%-P2O5, 30%-K2O and 2% MgO, 

4% S, 0.01% B,0.02%Cu, 0.005 Fe, 0.05 Mn, 0.001 Mo, 0.02 Zc). When the seedlings 

developed three leaves, they were transplanted into 3 L plastic pots with a substrate containing a 

1:1:2 ratio of volcanic ash to black earth soil to turf (0.15 mS electrical conductance (EC) and 

pH = 6.97). Before starting the experiments, plants of F. pallescens were grown for three 

months in a common environment (greenhouse). The plants were maintained at pot capacity 

(volumetric water content in the pot close to 15%) measuring the pot volumetric water content 

(% v v-1) with a TDR (“Time domain reflectometer”, Trime FM, Eijelkamp) every four days 

along the entire essay.  

 

2.3 Drought stress experiment 

Five plants from each of the eight populations were randomly assigned to one of the 

four experimental blocks and one of the three watering regimes in a greenhouse (n=480). The 

experiment followed a split-plot experimental design. The main plot was the effect of water 

availability with three levels and the sub-plot was population factor with eight levels. Levels for 

the “water availability” factor were: i) water content in the pot capacity of 15% (WW, “well-

watered”), ii) water pulses of 350 cm3 simulating an erratic steppe precipitation event of 5 mm 

in two moments along the experiment (WP, “water pulse”) and iii) a single irrigation at the 

beginning up to pot capacity, and no additional water till the end of the experiment (WD, “water 

deficit”) (Fig. 2). The levels for population factor were the eight source populations (Table 1)  
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The experiment was done from January to March (summer season) and water pulses 

were held on February 4th and 27th when pot moisture was below 3% in more than 50% of the 

plants in WP treatment. Each pulse consisted of 5 mm of water based on the daily inter-annual 

average of rainfall in the southeast and northeast Patagonian steppes (Coronato & Bertiller, 

1996; López, 2011).  

In order to monitor the progress of the drought stress, water pot volumetric content was 

measured with a TDR buried 10 cm deep in each pot every four days. The stomatal conductance 

(mmol H2O m-2 s-1) was monitored three times a week with a SC-1 porometer (Decagon Devices 

Inc.) in four fully expanded leaves in each plant of all populations per treatment. The pre-dawn 

leaf water potential (ᴪH, MPa) was measured in a fully expanded leaf every 15 days in all 

treatment levels using a pressure chamber (PMS Instruments Co., Corvallis, USA). For this, the 

leaves of three plants for each population were obtained by cutting a tiller at ground level that 

was then placed in a paper envelope and the measurement was carried out in a period of no 

more than 5 min. The sampled plants were different on each measurement date, chosen at 

random within each treatment. Plant survival was evaluated 45 days after the initial date of the 

trial, when more than 50% of the plants in the water deficit (WD) treatment presented a pre-

dawn leaf water potential lower than -2 MPa, indicating a moderate to severe water stress 

(Caballé et al. 2011). 

 

2.4 Measured variables and statistical analysis 

 

We evaluated the following morpho-physiological variables: 

2.4.1 Morphological variables: 

a. Tillering: Four tillers per plant were marked with metal hoops at the beginning of the 

experiment in ten plants per population per treatment to calculate the average 

difference in number of tillers produced by a marked tiller per plant at the end of the 

experiment (n=240). 

b. Biomass production: the difference between the total biomass at the beginning and at 

the end of the trial was estimated by destroying three random selected plants per 

population and treatment sample. These samples were used to determine the dry 

weight (total biomass) (n=72). 

c. Biomass distribution: the difference between the root/shoot ratio at the beginning 

and at the end of the trial in the same plants selected at random and used to calculate 

biomass production (n=72). 

We analyzed tiller production, biomass production and distribution with a two-way 

ANOVA with two fixed factors (WT, water treatment and P, population) and their interaction in 

GraphPad Prism demo version 5.00 for Windows, GraphPad Software, San Diego California 
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USA (www.graphpad.com). Heterogeneous groups were separated by Tukey’s Honestly 

Significant Difference (HSD) test (p<0.05) to discriminate differences between the two factors 

and their interaction. 

 

2.4.2 Physiological variables: 

All physiological variables were measured using a Li-Cor 6400 infrared gas analyzer 

(Lincoln, NE, USA). The measurements were made at the beginning of the experiment, one day 

before and two consecutive days after the application of the water pulses, between 10 a.m. and 4 

p.m., on days coinciding with the pre-dawn water potential and volumetric potted water content 

measurements. Physiological measurements had to be carried out in a narrow window of time 

(8.30 am to 11.30 am) and we could not measure more than 40 plants per day, each Amax 

(maximum net photosynthesis rate) took at least 4 minutes. Therefore, due to time-limitations 

we measured five plants per population per treatment of two western (SRA and SRB) and two 

eastern (JA and JB) populations (n=40). These populations were selected because they are 

located in the most characteristic environments for the species (by the abundance of populations 

in these ecoregions): meadows and grass steppes of the Subandino District in the 

phytogeography province of Patagonia (Golluscio et al., 1982; Soriano, 1956). Besides, they 

represent two eco-regions: Pre-cordillera (SRA and SRB) and Hills and Plateaus (JA and JB). A 

LED lamp (6400-02 LED Light Source, Lincoln, NE, USA) was used to control the light 

intensity within the measurement chamber.  

a. Maximum net photosynthesis rate (Amax, µmol CO2 m-2 s-1). The measurements 

before and after the application of the water pulses were carried out only with 

saturating photosynthetically active radiation (PAR, 1800 µmol m-2 s-1), considering a 

minimum pulse of 180 s and 3% coefficient of variation. The chamber temperature 

was the ambient air temperature and the partial pressure of CO2 was set at 400 µmol 

mol-1. The air flow varied between 50 and 500 µmol s-1 to keep the ΔCO2 above 5 

µmol mol-1, the minimum sensitivity value of Li-Cor 6400. 

b. Leaf-level water-use efficiency (WUE, µmol CO2 mol H2O
-1) calculated as the 

relationship between CO2 assimilation rate and stomatal conductance (Amax gs-1).  

 

In order to analyzed the effect of the water pulse, we tested differences in both Amax 

and WUE between treatments (WW vs WP) in the different stages of the water pulse (Initial 

irrigation (0); Pre-pulse (1); 24 h after the water pulse application (2) and 48 h after the water 

pulse application (3)) for each water pulse (4th and 27th February) in populations from the west 

(SRA and SRB) and the east (JA and JB) sampling sites (see table 1). Populations situated in 

San Ramon and Ing. Jacobacci are typical rangelands from Pre-Cordillera ecological region and 

Hills and Plateaus ecological region respectively. Populations from each ecological region were 
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jointly evaluated because we search for differences in the physiological responses based on 

possible adaptations at a macro-environmental scale.  Differences were tested using a general 

linear model with two fixed factors and two levels for each factor: water treatment (WW and 

WP) and sample site (San Ramon and Ing. Jacobacci) in InfoStat 2020 (Di Rienzo et al. 2020) 

applying a posteriori LSD Fisher test if differences were significant at α=0.05.  

 

3. RESULTS: 

 

Water availability was effectively reduced under water pulse (WP) and water deficit 

(WD) treatments (Fig.2). At the end of the experiment, the mean pre-dawn leaf water potential 

in plants from WW treatment was -0.75 ± 0.14 MPa, while plants from WP and WD treatments 

showed values close to -1.5 MPa (moderate stress) and -2.28 MPa (severe stress) respectively. 

The mean volumetric water content was above pot capacity (19.73 ± 5.32%) in plants from WW 

treatment through the entire trial. The mean volumetric water content did not increase after 

receiving the water pulses in WP treatment, dropping to less than 5% volumetric water content 

at the end of the trial. Finally, the volumetric water content dropped continuously in WD 

treatment, reaching 1% at the end of the experiment.  

 

3.1 Responses to drought stress 

Different survival percentages were observed between the treatments WP and WD, with 

a positive effect of the water pulse. Overall, the application of water pulses improved survival 

between 45 and 60%. Under the lowest water level (WD) populations from the east (e.g. JB) 

showed a higher percentage of survival than populations from the west (e.g. PHA), however the 

highest survival percentage was registered in populations from the west (SRB) while the lowest 

was found in a population from the east (PB) (Fig. 3). 

 

3.2 Responses to water availability expressed in morphological variables measured in all 

populations 

Tiller production was significantly different between water treatments and population 

source, as well as their interaction (F=25.10; p<0.001; F=7.39; p<0.001 and F=2.27; p<0.01 

respectively). Biomass production differed significantly between water treatments (F=44.89; 

p<0.001) and between population source (F=6.20; p=0.001). However, changes in biomass 

distribution (R S-1) were not significant between water treatments, population source or their 

interaction. 

Overall, populations from the east (PA, PB, JA and JB) produced more tillers than 

populations from the west (PHA, PHB, SRA, SRB) in WW treatment. However, a population 

from the west (SRA) and two populations from the east (PA and JB) showed the highest tiller 
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production in WP treatment. Hence, populations PA, and JA produced more tillers than PHA, 

PHB, SRA and SRB in WW treatment. In WD treatment all populations diminished their tiller 

production but populations from the east (with the exception of PB) showed more tiller 

production than populations from the west (Fig. 4a).  

Differences in biomass production among populations were significant in the WP and 

WD, but not WW treatments (F=9.73; p<0.001, F=9.55; p<0.001, F=1.06; p=0.43 respectively). 

Two populations from the east (PA, PB) and one from the west (PHA) produced less biomass 

than the rest under both WP and WD treatments. Biomass distribution (R S-1) did not show 

significant differences under either treatment. However, there is a trend of a higher proportion 

of root biomass in western populations under both WP and WD treatments than populations 

from the east (Fig. 4b).  

 

3.3 Responses to water pulse expressed in physiological variables measured in populations from 

Pre-cordillera and Hills and Plateaus Ecoregions. 

Overall, well-watered plants showed higher net photosynthesis rate values (Amax, 7.54 

µmol CO2 m
-2 s-1 vs 3.14 µmol CO2 m

-2 s-1; F=20.88; p<0.001) and slightly lower values of leaf-

level water-use efficiency values (WUE, 52.04 µmol CO2 mol H2O
-1 vs 60.46 µmol CO2 mol 

H2O
-1; F=0.16; p=0.69) than water-limited plants. At the beginning of the experiment (stage 0), 

well-watered plants and water-limited plants showed no significant differences in net 

photosynthesis rate (Amax) and leaf-level water-use efficiency (WUE) (F=3.32, p=0.07; 

F=1.05, p=0.31; respectively). Before the application of the first water pulse (stage 1), all 

populations showed lower values in Amax in WP than in WW treatment (F=23.05, p<0.001). 

However, populations did not show significant differences in WUE values at this stage (F=3.78, 

p =0.06).  At stage 2 (24 h after the water pulse application), there were not significant 

differences between treatments (F=3.21, p=0.08), populations (F=0.02, p=0.88) or their 

interaction (F=0.28, p=0.61) in Amax or WUE. Then, at stage 3 (48 h after the water pulse 

application) mean values of Amax were significantly different between treatments (F=8.27, 

p=0.01) and populations (F=11.11, p=0.003). Values of Amax decreased in all population in 

WP treatment and populations from sub-humid environments showed higher values of Amax 

than populations from arid environments. However, values of WUE did not differ between 

treatments (F=0.64, p=0.43), populations (F=1.93, p=0.18) or their interaction (F=0.84, 

p=0.37). Therefore, this physiological response only lasted 24 h in all populations. On the other 

hand, populations from both environments did not show significant differences in either 

physiological variable between treatments, populations or their interactions at any stage of the 

2nd water pulse (Fig. 5). 

 

4. DISCUSSION 
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Species from arid and semiarid environments face large periods of water shortage; 

therefore, leveraging stochastic rain events in summer constitute an advantageous strategy. Our 

results reinforce the opportunistic behavior of Festuca pallescens to profit by stochastic rain 

events (Defossé et al., 1997). Populations of F. pallescens showed differences in morphological 

traits and low variation in physiological traits related to drought stress. However, our hypothesis 

was only partially supported. Populations from arid and semiarid conditions (except for one) 

showed higher tiller production than those from humid environments in well-watered and water 

drought treatments, but biomass production and distribution and physiological responses were 

similar under greenhouse conditions. In addition, there was not a population survival pattern 

related to the rainfall regime established in North Patagonia, instead populations showed 

variation in survival percentages after 45 days of drought conditions, expressing the inter-

population variability. Noteworthy, the root/shoot ratio did not change substantially. 

Overall, the application of water pulses in the WP treatment allowed a small increase in 

water content (ΨH; %v v-1; Fig. 2) in F. pallescens populations, although insufficient to reach 

the same moisture content levels of well-watered plants. Nonetheless, there were differences in 

plant survival percentages after 45 days of drought conditions between populations in WP and 

WD treatments, expressing the species sensibility to drought. Surprisingly, there was not a 

survival pattern related to the original environments of each population. Towards the west, 

populations PHA and PHB are situated in extreme humid environments with sandy-stony soils 

but different edaphic characteristics. For instance, PHA is a high-altitude rangeland, that might 

be exposed to freezing/desiccation due to cold winters. Then, populations SRA and SRB are 

located in meadows or steppes with fairly deep sandy loam soils. Therefore, soils from these 

humid environments, Cordillera and Pre-Cordillera ecoregions, accumulate more organic matter 

(OM) and volcanic sediments, which increases the capacity to retain water. On the other hand, 

towards the east of the decreasing rainfall gradient, in Hills and Plateaus ecological region, 

precipitation is sporadic and soils are shallower with less OM, therefore water retention capacity 

is lower for PA, PB, JA and JB populations (Godagnone & Bran, 2009). Therefore, populations 

have different strategies to overcome drought stress and it is not entirely related to macro-

environmental conditions (e.g. rains). 

Rainfall is asymmetrically distributed in North Patagonia, with strong winter 

precipitations (Paruelo et al. 2008) and discrete “pulses” during the summer growing season 

(Snyder & Tartowski, 2006). Rainfall pulses in conjunction with temperature, wind, infiltration, 

surface flow, and evapotranspiration, outcome the length of time that the soil is wet or dry 

(Snyder & Tartowski, 2006), leaving an ecological legacy that influences subsequent responses 

of plant species to rain and drought. In this sense, our results show two main outcomes. First, 

some populations of F. pallescens from Hills and Plateaus ecological region produced more 
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tillers than populations from western humid environments whether water was a limiting 

condition or not. Moreover, tiller morphology differed between populations; those from Hills 

and Plateaus ecological region presented smaller leaves than those from Cordillera and Pre-

Cordillera ecological regions. This tiller morphology might be related to a trade-off between 

reducing the exposure to drying agents without standing down foliage production and potential 

photosynthetic structure (i.e. without reducing the number of leaves). On the other hand, in 

Cordillera and Pre-Cordillera ecological regions trees and shrubs are dominant surrounding 

vegetation, so long leaves might be an advantage vegetative feature to intercept more radiation 

in environments with a higher incidence of shade (e.g. in undergrowth) (Fernández et al. 2004; 

López et al. 2020).  

Overall, plants from all populations diminished tiller production under drought. 

However, plants from the easternmost populations (Hills and Plateaus ecological region) 

produced more tillers than the rest of the populations in WP treatment. This suggests that these 

populations could better leverage the sporadic steppe rains in terms of biomass production. In 

other conspicuous perennial grasses from the Patagonian steppe (Bromus pictus, Poa ligularis, 

Pappostipa speciosa) tiller production also decreased under drought (Couso & Fernández 

2012). P. ligularis showed a water-saving strategy, similar to the results that we obtained for F. 

pallescens. On the contrary, B. setifolius was more affected by drought than P. ligularis and P. 

speciosa, but had the highest potential growth (i.e. the largest potential to capitalize on water 

pulses for improving performance traits), fitting into a water-spending, or Grime's competitive 

strategy. Drought stress also reduced the number of tillers and biomass in Hordeum vulgare 

(Farooq et al. 2009) and F. arundinacea (Kørup et al. 2018). On the other hand, ecotypes of 

Trichloris crinita growing in arid and semiarid Argentinian rangelands with salt and drought 

stress, showed local adaptations to their arid environments, displaying high shoot and root 

production and a low percentage of dead shoot biomass under drought conditions (Quiroga et al. 

2013; Marinoni et al. 2020) like F. pallescens (i.e. Ing. Jacobacci populations Hills and Plateaus 

Ecological region, the driest ecological region). As tiller production is directly related to 

aboveground net primary productivity (ANPP) which determines forage availability, and it is 

also closely linked to energy flow and nutrient and carbon cycles (Gaitan et al. 2014), these 

populations stand out in terms of forage and ecosystems attributes. 

Secondly, biomass allocation did not significantly change between treatments, showing 

that most of the F. pallescens populations did not modify their R S-1 ratio in the face of the 

hydric deficit (Fernández et al. 2006).  Biomass allocation is a trait with a low phenotypic 

divergence for this species (López et al. 2020). The lack of an increased allocation to root 

biomass was also found in other forage perennial grasses (i.e. Festuca ovina, Poa alpina), 

indicating that the capacity of seedlings to adjust root biomass under drought conditions might 

be influenced by their ontogeny, available resources and characteristics of the drought event 

Jo
ur

na
l P

re
-p

ro
of

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
"," instead of";"

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
"and" instead of "&"

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
addd comma

Aldana
Nota adhesiva
"," instead of";"

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
add comma

Aldana
Nota adhesiva
add comma



12 
 

(Haslin et al. 2019). Although we did not deepen on root architecture, we observed that most 

plants increased rooting depth, and produced a very low proportion of lateral roots. This is an 

important trait that should be further explored.  

Physiological responses to water pulses under greenhouse conditions were similar 

among populations in spite of coming from environments with contrasting macro-environmental 

conditions. Populations from semi-humid and arid environments (Pre-Cordillera and Hills and 

Plateaus, respectively) showed a photosynthesis rate recovery after the application of the 1st 

water pulse, but this response only lasted 24 h. A similar response was shown by adult plants of 

P. speciosa (Golluscio et al. 2009) from a shrub-grass steppe. This shallow-rooted plant 

exhibited an increase in leaf water potential (MPa) after two days of watering, which is a short-

term response (1 - 10 days) to the summer water pulse. Hence, when re-watered, P. speciosa 

also showed significant photosynthetic responses, increased leaf conductance and transpiration 

rate suggesting an opportunistic behavior which could translate in the ability to produce new 

leaves under favorable conditions (Golluscio et al. 2005). On the contrary, we worked with 

young plants grown in pots under the same greenhouse conditions, and we observed some 

results in days (24 – 48 h), at least in terms of water potential. So it is possible that in our 

experiment we only observed the beginning of the physiological processes occurring in young 

shallowed rooted plants after receiving a water pulse that demand low costs of carbon and 

energy, but not what might occur afterwards.   

After the application of the 2nd water pulse, populations could not recover. This pulse 

was given at the end of February, after a longer period of drought conditions than the 1st pulse, 

and both well-watered and water-limited plants showed lower values of photosynthesis rate and 

leaf-level water-use efficiency (Fig. 5). It is possible that, during this period (late summer) 

plants close their stomata in their natural environments to avoid water loss (Caballé et al. 2011). 

Stomata closure should last some hours but not days, at least in most plants (Flexas et al. 2008), 

then there are other specific changes (i.e. structural) related not only to stomatal but also 

mesophyll conductance that occur before stomatal closure. These authors suggest that 

mesophyll conductance differs between species, changes faster than stomatal conductance and is 

influenced by leaf structure and certain proteins (i.e aquaporins) (Flexas et al. 2008). 

Aquaporins are directly involved in plant response to arid environments in perennial grasses 

(Chen et al. 2018). So, it is possible that F. pallescens might decrease mesophyll conductance 

by chloroplast movements (Flexas et al. 2008) or by the regulation of aquaporin activity during 

the periods of water limitation. In agreement with this suggestion, variations in the proportion of 

girders of sclerenchyma, increasing in leaves of populations from most xeric environments (i.e. 

Ing. Jacobaccci) were observed (Guidalevich et al. in press). This leaf structure might enlarge 

mesophyll cell wall thickness and therefore limit CO2 diffusion through the mesophyll tissues, 

decreasing mesophyll diffusion conductance gm (gm; Xiong et al. 2018). In addition, water 
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transpiration in F. pallescens could be prevented by anatomical leaf features, such as thicker 

leaves due to large proportions of girders of schlerenchyma (as we mentioned before) or a 

greater degree of leaf rolling and folding (Greco & Cavagnaro, 2003), which might be a 

protective strategy against water deficit (Valladeres & Niinemets, 2007). In addition to these 

two structural features, stomata are located only on the adaxial leaf surface (Caballe et al. 2011), 

reducing gas exchange exposure.  

On the other hand, water deficit promotes the reduction of photosynthesis intensity, the 

loss of photosynthetic pigments, impairs the activity of enzymes and of the photosystem II 

(Hura et al. 2007; Johnson et al. 2018). After the application of the water pulse, all populations 

showed a photosynthesis rate recovery, therefore photosynthetic machinery was probably 

negatively affected, but damage was overcome allowing photosynthetic recovery. Nonetheless, 

dehydration and rehydration is very likely to cause mechanical damage to the photosynthetic 

mesophyll cells (Johnson et al. 2018). In addition, in the short term response, plants can regulate 

WUE by modifying stomatal conductance involving the regulation of stomatal opening and 

closing or stomata density (Meng, 2018). In arid environments, grasses (mostly C3) exhibit an 

adaptive strategy in water use consisting of a slow extraction of soil water under drought stress 

associated with a low transpiration rate (Quiroga et al. 2013). Our results showed that under 

water deficit (WP treatment), plants had slightly higher values of leaf-level water-use efficiency 

than well-watered plants, exhibiting higher values of WUE than those generally found for 

herbaceous species (43 μmol mol −1) (Webster et al. 2016). Also, tall fescue E+ plants under 

water stress (Swarthout et al. 2009) are more similar to values of WUE found for evergreen 

shrubs and deciduous trees (64 and 66 μmol mol−1, respectively) (Webster et al. 2016). So far, 

we observed that populations of F. pallescens could increase Amax and WUE after rewatering. 

However further studies focusing on both gs (stomatal conductance) and gm (mesophyll 

diffusion conductance) could give more information about mechanisms involved in these 

recoveries.    

.  

 

5. CONCLUSION 

 

As many perennial grasses, our results indicated that F. pallescens is a drought evasive 

species with large intraspecific variation to drought stress and potentially interesting traits to 

cope with this stress. It is important that species could continue growing and producing under 

limiting water availability, so searching only for tolerant genotypes is not appropriate if we look 

for genotypes that could reinforce the resilience of ecosystems. Some populations, particularly 

those from arid environments (Hills and Plateaus ecological regions), could produce more tillers 

regardless of the water deficit and maintain high levels of WUE, though mechanisms that are 
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still unknown. These populations are interesting genotypes for environments such as poor 

meadows or poor productive steppes, because with low water availability, plants could still 

manage to produce above ground biomass. As global precipitation patterns are expected to 

change in the next decades (Crego et al. 2014), species such as F. pallescens, constitute 

important ecological pieces to face possible alterations in the rainfall regimes that might deepen 

water deficit in arid and semi-arid environments. The results obtained in this research provide 

relevant knowledge to current programs of conservation and genetic improvement of grassland 

species.  
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Figure captions 

 

Figure 1: Map of the sampling sites distribution of populations of Festuca pallescens along 

the rainfall gradient. Above: pictures of the most representative rangelands of F. pallescens 

rangelands along the rainfall gradient. On the right: the map of the sampling sites with the 

whole distribution of the species, isopluvial lines and the sampling sites in North Patagonia. 

Population PHA and PHB belong to Cordillera ecological region, SRA and SRB belong to Pre-

cordillera ecological region and PA, PB, JA and JB belong to Hills and Plateaus ecological 

region. On the left: worldwide location of the sampling zone. Precipitation (mm), Aridity Index 

and Altitude (m a.s.l.) along the decreasing rainfall gradient. AI, defined as the ratio of potential 

evaporation to precipitation, was based on Gaitan et al. (2019).  
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Figure 2: Physiological conditions in the greenhouse trial. a) Pre-dawn water potential (ᴪH, 

MPa), b) Mean percentage volumetric water content (%v/v). Levels of water availability: high 

(WW: Well-watered), intermediate (WP: Water pulses) and low (WD: Water deficit). The 

experiment started on January 1st and ended on March 19th (“x” axis). Arrows show the 

application of the water-pulse. 

 

 

Figure 3: Survival percentage after 45 days. The colored bars indicate the treatments with 

different levels of water availability: WW (Well-watered), WP (Water pulses) and WD (Water 

deficit). Populations are shown in the “x” axis. 
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Figure 4: Differences in morphological variables between treatments and populations.  

Water availability levels for each treatment: WW (Well-watered), WP (Water pulses) and WD 

(Water deficit). Bars indicate the standard deviation. Populations are shown in the “x” axis.      
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Figure 5: Physiological variables (Amax and WUE) measured in San Ramón populations 

from Pre-Cordillera ecological region (a) and Ing. Jacobacci populations from Hills and 

Plateaus ecological region (b) before and after receiving the water pulse. The left panel 

shows the maximum net photosynthesis rate (Amax, µmol CO2 m
-2s-1) and right panel shows the 

leaf-level water-use efficiency (WUE, µmol CO2/mol H2O). Arrows indicate the water-pulse 

application. The “x” axis shows the different moments of the water pulse application: pre-pulse 

(1), 24 h post-pulse (2), and 48 h post-pulse (3). 

 

Table 1: Environmental and genetic characterization of sampled populations of Festuca 

pallescens. Floristic physiognomic type (FPT) was characterized following Bran et al. (2000). 

Pop: population; Pp: Precipitation (mm); Lat: Latitude; Long: Longitude; Alt: Altitude (m). The 

populations are listed from west to east. Acronyms: NQN: Neuquén, Argentina. RN: Río Negro, 

Argentina.  

 
Ecological 

region 

Sampling 

site 
Pp Pop Lat Long Alt FPT 

Soil type and main 

edaphic characteristics 

W
E

S

T
 

Cordillera 

Península 

Huemul 

(NQN) 

831 PHA 40°57´ 71°25´ 1220 

Shrub-

grass 

steppe 

Fairly deep volcanic soil. 

Cold, with snow in winter. 

Water deficit in summer.  
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PHB 41°1´ 71°20´ 845 

Shrub-

grass 

steppe 

Deep sandy soil. 

Water deficit in the 

summer. 

Pre-

cordillera 

San Ramon 

Ranch (RN) 
584 

SRA 41°7´ 71°4´ 1139 
Grass 

steppe 

Fairly deep sandy loam 

soil. Without water deficit 

in the summer. 

SRB 41°1´ 71°1´ 902 Meadow 

Deep sandy loam soil with 

high proportion of 

Organic Soil Matter 

(OSM). Cold. Moderate 

water deficit in summer. 

E
A

S
T

 

Hills and 

Plateaus 

Pilcaniyeu 

Experimental 

Field 

264 

PA 41°4´ 70°34´ 1260 

Shrub-

grass 

steppe 

Fairly deep, loamy texture 

and deep clayey Cold, 

with snow in winter, 

exposed to the West wind, 

water deficit in summer. 

(RN) PB 41°3´ 70°30´ 970 Meadow 

Deep loamy sand, 

alkalinic with high 

proportion of OSM. Cold 

in winter, water deficit in 

late summer 

Hills and 

Plateaus 

Ingeniero 

Jacobacci 

170 

JA 41°55´ 69°12´ 1400 
Grass 

steppe 

Fairly deep sandy loam 

soil. Cold, water deficit in 

summer. 

(RN) JB 41°46´ 69°21´ 970 
Salty 

Meadow 

Deep silty loam, saline-

alkaline soil with high 

proportion of OSM. Water 

deficit in late summer 
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Highlights 

 Populations of F. pallescens showed variation in survival after 45 days of 

drought. 

 A population survival pattern related to the rainfall gradient was not evident. 

 Morphological traits were less affected in populations from arid environments. 

 Populations from arid environments took better advantage of water pulses. 
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