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Financial price dynamics and pedestrian counterflows: A comparison of statistical stylized facts
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We propose and document the evidence for an analogy between the dynamics of granular counterflows in the
presence of bottlenecks or restrictions and financial price formation processes. Using extensive simulations, we
find that the counterflows of simulated pedestrians through a door display eight stylized facts observed in financial
markets when the density around the door is compared with the logarithm of the price. Finding so many stylized
facts is very rare indeed among all agent-based models of financial markets. The stylized properties are present
when the agents in the pedestrian model are assumed to display a zero-intelligent behavior. If agents are given
decision-making capacity and adapt to partially follow the majority, periods of herding behavior may additionally
occur. This generates the very slow decay of the autocorrelation of absolute return due to an intermittent dynamics.
Our findings suggest that the stylized facts in the fluctuations of the financial prices result from a competition of
two groups with opposite interests in the presence of a constraint funneling the flow of transactions to a narrow
band of prices with limited liquidity.
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I. INTRODUCTION

Analogies between complex flows and financial markets
are not new. In 1996, Ghashghaie et al. have shown that
the distribution of velocity increments of fully developed
turbulence and that of exchange rate fluctuations exhibit
striking similarities [1]. This led these authors to suggest a
common connection via the existence of cascades in both
systems, a Kolmogorov energy cascade in turbulence [2], and
an information cascade in finance. However, Arneodo et al. [3]
remarked that the two problems differ on the fundamental
property of correlations and higher-order statistics. Indeed,
spatial correlations in turbulence lead to the famous − 5

3 power
law for the spectrum of the velocity fluctuations [2], while
no temporal correlations of this sort are visible in the power
spectrum of financial time series. If such correlations existed in
finance, it would be easy to use them to earn money, while the
core of the problem in turbulence is the existence of very strong
correlations. The analogy between turbulence and finance just
based on a one-point statistics turned out to be a dead end.
Let us also mention the formalism of Vamoş et al. [4] that
counts the flux of price changes in a universe of assets, which
is similar to a hydrodynamic conservation equation.

Perhaps less fancy than hydrodynamic turbulence but more
appropriate, Bouchaud et al. [5] have suggested an analogy
with molasses, the rock conglomerates that form as a result
of geological sedimentary processes. They proposed a model
of financial fluctuations based on the competition between
liquidity providers and liquidity takers, in which the existence
of an excess flow of limit orders opposing the market order
flow together with a systematic anticorrelation of the bid-ask
motion between trades lead to create a “liquidity molasse”
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which dampens market volatility. Another physics-inspired
approach was to model the price formation process via the
order book dynamics as diffusing annihilating particles in one
dimension [6,7].

In the present work, we identify an additional complex flow
that amazingly displays most of the statistical properties of
financial time series. This flow consists of a simulated system
representing a pedestrian counterflow throughout a door (i.e., a
bottleneck). The suggestion of a similarity between pedestrian
counterflows throughout constrictions and financial markets
was first proposed by Helbing [8,9]. The first supportive
evidence of this idea was reported by Parisi [10], considering
the mean velocity near the door as the observable of the
pedestrian system. The fact that pedestrian flows can exhibit
rich behaviors similar those found in other complex systems,
such as a kind of turbulent behavior, has also been documented
[11,12].

We find that the dynamics of the density fluctuations at
the location of the bottleneck reproduces eight stylized facts
already documented for financial price fluctuations [13–18].
This degree of quantitative likeness is remarkable and has very
rarely been achieved by agent-based models or econometric
models designed to represent financial markets. The repro-
duction of the eight stylized facts is especially noteworthy,
considering that the pedestrian system simulated here was not
created to reproduce the financial market characteristics.

In our study, we consider the cases of zero-intelligent
pedestrians or particles that follow mechanical rules and the
extension where pedestrians can change their strategy by
imitating the majority. The later ingredient turns out to be
necessary to generate the equivalent of bubbles and crashes,
while the other stylized facts remain the same.

The paper is organized as follows. In Sec. II, we describe
the simulated pedestrian system and the price time series
used for comparison. Section III presents the analysis of the
eight statistical properties mentioned above, obtained from
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simulations of the constrained pedestrian system and from
empirical financial data. In Sec. IV, the implications of our
findings are discussed. Section V presents the conclusions.

II. FINANCIAL AND PEDESTRIAN TIME SERIES

A. Financial data

Data from foreign exchange rates and stock indexes
were analyzed in order to compare their stylized properties
with those produced by a pedestrian simulation model.
Specifically, we evaluated the following data: EURUSD-
1min, EURUSD-10min, EURUSD-1hour, CHFUSD-1hour,
Nasdaq100-1hour, DJI-1day, NYSE100-10min, NYSE100-
1hour, and NYSE100-1day. The financial time series contained
between 10 000 and 30 000 data points and were taken from
public Internet sources [19,20].

B. Pedestrian model and setup

1. Description of the model

Our pedestrian simulations were based on the social force
model [21]. In this model, pedestrians are treated like circular
disks with different radii representing the space occupied by
them. The dynamics of each pedestrian (i) is governed by three
forces: the “driving force” (FDi), the “contact force” (FCi), and
the “social force” (FSi). The driving force is responsible for the
self-propulsion of each simulated pedestrian (“agent”), and it
provides a constant input of energy into the system. The contact
force is a dissipative and repulsive interaction force between
particles that appears only when at least two particles overlap.
The specifications of these two forces and the parameter values
were chosen as in Ref. [21]. However, in the present case, the
social force is assumed to be repulsive locally and attractive at
a larger distance, as defined by Eqs. (1) and (2),

FSi =
Np∑

j=1,j �=i

A(dij ) exp

(−dij

B

)
en
ij . (1)

Here, Np is the total number of pedestrians in the system,
en
ij is the unit vector pointing from pedestrian j to i (the

“normal” direction), dij is the edge-to-edge distance between
both pedestrians (defined as the distance between their centers
minus the sum of their radii, as in Ref. [21]), B = 0.08 m is
a constant determining the range of the social interaction, and
A is

A(dij ) =
{

+2000 N if dij < 0.15 m (repulsive)

−2000 N if dij > 0.15 m (attractive)
, (2)

where N stands for the unit of force in newtons. For the
interaction of a pedestrian i with a wall (w), the value of
A is assumed to be greater than zero for all diw (i.e., the wall
has only a repulsive effect).

The pedestrians parameters, namely mass (m), diameter
(2r), and desired velocity (vd ), were uniformly distributed
within the following ranges: m ε [70 kg, 90 kg], 2r ε [0.44 m,
0.56 m], and vd ε [1.05 m/s, 1.35 m/s],
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FIG. 1. (Color online) Setup of our simulation of pedestrian
counterflows. The two kinds of particle filling indicate the state of the
pedestrians. The arrows display their current velocities.

2. The simulated pedestrian system

Our simulation of pedestrian counterflows is based on two
open corridors of 20-m width, connected by a door of width
L, as shown in Fig. 1. Initially, there are Np/2 agents on each
side of the door. These agents attempt to reach, first, the door
and then the end of the corridor on the other side. In order
to achieve this goal, the pedestrians must cross the door in
opposite directions, and, thus, a counterflow is created.

More specifically, the driving force is dynamically adjusted
in order to aim agents at the nearest point laying on a segment
of length (L − 2l) parallel to the line of the door, whose center
coincides with the center of the door. After reaching this line,
pedestrians move toward a second target located 10 m away
from the door (x = 10; y = ±10, in the coordinate system of
Fig. 1). Once a particle reaches a target placed 10 m away from
the door, it is instantaneously reinserted at a random position
in the corridor where it started (not more than 10 m from
the door). In this way, a continuous counterflow is established
with a fixed number of particles. This mechanism describes an
automaton-like behavior of agents in the sense that they have
a unique objective: to reach their assigned target, no matter
where they are. We call this version of the counterflow system
“automata pedestrians” or “automata agents.”

3. Agents with decision-making capacity

There is rich literature in psychology, behavioral finance,
and agent-based models which includes some herding in the
behavior of agents and investors. Let us mention the work of
Lillo et al. [22], which considers the mechanism of inventory
variations and its correlation with the stock return. We mention
it as it is the closest in spirit to the mechanics of decision
making that we implement in our model.

In the pedestrian system described above, there are two
groups of “automata agents” with opposite, but fixed, flow
directions; let us call them a and b. Because the number of
agents belonging to each class is fixed (Na = Nb), the system is
forced to be in a statistical equilibrium from a population point
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of view. The model can be generalized by allowing agents to
change their state via a decision mechanism. The system then
is able to exhibit collective or herding behavior of the agents.
For example, all agents could choose to be in the same state,
i.e., to have the same desired walking direction. This situation
is analogous to a financial crash, when all agents want to sell
their assets. Thus, when considering pedestrians or agents with
decision-making capacity, two different situations may occur:
equilibrium (Na ∼ Nb) or herding (Na � Nb or Na � Nb).

In our system, the decision mechanism works as follows.
Each particle reaching the line of the door must choose
between keeping and changing its state (from a to b or vice
versa). In each cycle of reinsertion, this decision is made only
once when a pedestrian enters a rectangular area A of size
L × 1 m, extending 50 cm to both sides of the door. For the
deciding pedestrian i, the following fraction is calculated,

ξi = ns

(ns + nd )
, (3)

where ns is the number of agents in the same state as agent
i and nd is the number of agents in the other state (with an
opposite desired walking direction). Note that ns + nd is the
total number of agents in the area A. Then, the decision is made
by choosing a random number (χ ) from a uniform distribution
in the interval [0, 1] and comparing it with a sigmoid function,

F (ξ ) = 1

1 + exp
[−(ξ−0.5)

T

] . (4)

If F (ξi) < χ , then agent i changes its state. Because of the
shape of this function, it is more probable to change state if the
particles are in a minority. In other words, if pedestrian i is in
the minority, it is more likely to join the state of the majority.

The parameter T is treated as a behavioral parameter.
When this parameter is low, the agents tend to show herding
behavior, which means that they have a greater tendency to
imitate the behavior of neighbors. On the contrary, when T

tends to infinity, the agents ignore the state of their neighbors.
Therefore, we call T the “individualistic” parameter.

As T goes to 0, F (ξ ) approaches to the step function, which
describes a deterministic rather than probabilistic decision
behavior (agents in the minority side will change their state
and agents in the majority side will never change their state).
In this extreme case, the number of particles of one type will
saturate and this state will not be reverted.

An equilibrium between both populations is achieved if T

tends to ∞. Then F(ξ ) become 0.5, which makes the decision
totally random for each agent. No matter what the fraction
of particles of one kind (ξ ) is, the decision to change the
state is made with probability 1/2. In this case, the number of
particles of each type fluctuates around the equilibrium value
Na ∼ Nb ∼ Np/2 (=50% of the population).

III. RESULTS

After having experimented with different observables, we
find that the dynamics of the pedestrian density exhibits
the closest correspondence with that of prices in financial
systems. In the following, we will explore the analogy between
(a) the financial time series introduced in Sec. II A and (b) the
density of pedestrians around the door according to the models

described in Sec. II B. We will study both agents without and
with decision-making capacity (see Secs. II B2 and II B3). This
will be done by analyzing the statistical properties of the return
and related quantities defined in the next subsection.

A. Density versus logarithm of the price

Let Y be any general time series. Then, we defined the
return as

RY = dY

dt
. (5)

For a discrete time series, the discretely sampled return is

Rk
Y = Y (ti + k) − Y (ti), (6)

where ti indicates the discrete time steps and k the number
of time steps over which the return is computed. In the
particular case of an asset price (S), we take Y = ln(S),
where S is the asset price and k = 1. Then Eq. (6) becomes
the well-known logarithmic return for financial time series
R = {ln[S(ti + 1)] − ln[S(ti)]}.

Now, for a general time series Y , we define the absolute
value of the return by∣∣Rk

Y

∣∣ = |Y (ti + k) − Y (ti)| (7)

and the standardized absolute return (inspired by the standard-
ized return [23,24]) by

∣∣R̂k
Y

∣∣ =
∣∣Rk

Y

∣∣(∑NT −k
ti=1

∣∣Rk
Y

∣∣)/(NT − k)
, (8)

where NT is the total number of data points in the time series
Y . Therefore, the denominator is the arithmetic mean of the
absolute return.

As stated above, for a price time series S, it is common
to consider the logarithmic return by taking Y = ln(S). In the
case of the pedestrian system, the time series to be analyzed
is the density, i.e., Y = ρ. We calculate the density as the
average density over three equidistant points on the door line
by using the κ nearest-neighbor algorithm (κ-NN) with κ = 8.
This algorithm consists in measuring the distance (dκ ) to the
κ th nearest neighbor from any point (x0,y0), and so the density
in that point can be approximated as ρ(x0,y0) = (κ−1)

π(dk )2 .
All the stylized facts, for the time series from both systems,

are observed for the return and related quantities defined above.

B. Automata agents

In this subsection, we study the stylized facts of the
pedestrian system of automata agents as described in Sec. II B.
These are compared with those emerging from financial
markets. The parameters characterizing the pedestrian system
are L = 7 m, l = 0.2 m, and Np = 60 (30 pedestrians in state
a and 30 in state b all the time). The total number Np = 60
of particles used in our simulations should be compared
with the number (approximately 600) that would correspond
to a random close packing. Hence, the density of particles
is comparable to a dense gas for which the effect of the
constriction is essential for the properties described below to
emerge.
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FIG. 2. (Color online) Probability density functions (PDF) of
the standardized absolute returns of the time series ρ for simulated
automata pedestrians (a) and of the time series ln(S) for the EURUSD-
1hour currency exchange data (b). The dashed lines indicate the
closest Gaussian distribution as a guide to the eye to reveal the fat
tails of both PDF.

1. Heavy tails

An important characteristic of distribution functions of
return of financial time series is that they exhibit fatter tails than
a Gaussian distribution [25]. In order to make both time series
comparable, we take the standardized absolute return. Figure 2
shows both distributions, where the dotted line indicates the
closest Gaussian distribution as reference. It can be seen that
both distributions exhibit fat tails and look very similar.

2. Aggregational Gaussianity

As seen in Eqs. (6)–(8), for discrete time series, the return
can be calculated over different periods of time, parameterized
by the number of time steps (k = 1,2, . . .). It is known for
financial data that, as the number of time steps k increases,
the distribution of the return converges against a Gaussian
distribution [14,26]. Figure 3 shows this tendency for |R̂k

ρ | for
the pedestrian system.

3. Autocorrelation of return and volatility

Asset returns show no linear autocorrelation, except for very
small time scales. However, the volatility displays a positive
autocorrelation. This indicates that big price fluctuations
are often followed by big price fluctuations, a fact which
is known as “volatility clustering” [14,27–29]. Taking the
absolute return as a measure of the volatility, we compare the
autocorrelation function of the return and the absolute return
for the pedestrian time series (Fig. 4).

The plot reveals that the system of automata agents presents
an autocorrelation of absolute returns that is greater than the
autocorrelation of returns. Although this phenomenon is visi-
ble in the pedestrian system, the decay of the autocorrelation
function of absolute returns is much slower in financial time
series. This stylized property will become more similar in the
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FIG. 3. (Color online) Probability density function of the stan-
dardized absolute return of ρ with k = 1 (a) and k = 100 (b). The
dashed line indicates the closest Gaussian distribution.

two time series when decision-making capacity is added to
agents (see Sec. III C2).

4. Scaling of the peaks of the distribution of returns

As in Sec. III B2, we calculate here the return [Rk
ρ and

Rk
ln(S)] for different time intervals k. For the pedestrian system

and FX markets, the probability distribution of returns is
symmetrical (zero skewness) and has a peak at zero return.
It was shown in Ref. [30] that the S&P500 index exhibits a
power-law scaling behavior when the probability of zero return
[P(R=0)] is plotted against the time interval k. In our case, we
approximate the probability of return Rk = 0 by computing
the kernel density estimator [31]. The values of k considered
were k = 1,6,11, . . . ,101. Figure 5 displays a log-log plot
of the probability [P(R=0)] versus k. The figure shows that
the scaling property exists also in the pedestrian system.
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FIG. 4. (Color online) Autocorrelation functions of the return
and absolute return of the density time series for automata pedestrian
system.
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FIG. 5. (Color online) Maxima of the distributions of returns Rk
ρ

versus the number k of time steps.

Furthermore, the value of the power-law exponent is α =
−0.70, very similar to the one observed for financial data:
EURUSD-1min (α = −0.71), EURUSD-10min (α = −0.77),
and CHFUSD-1hour (α = −0.67). Moreover, Ref. [30] re-
ports α = −0.71 for S&P500.

5. Multifractality

Multifractality can be tested by examining the ratio
〈|Rk|q〉/〈|Rk|〉q for returns calculated with different time steps
k. This ratio is constant for a simple fractal but not for a
multifractal [28]. Figure 6 shows this plot for the pedestrian
system considering q = 1.5, 2, 2.5, and 3.

If we take the slope of the higher curve (q = 3) as a measure
of multifractality (−0.16), it is very similar to the ones obtained
for financial time series (ranging from −0.13 to −0.18).
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FIG. 6. (Color online) Ratio 〈|Rk
(ρ)|q〉/〈|Rk

(ρ)|〉q versus number k

of steps over which the return is calculated for q = 1.5 (blue square),
2 (green star), 2.5 (red diamond), and 3 (black circle).
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FIG. 7. (Color online) Comparison of the fraction Na

Np
for three

realizations for different values of the individualistic parameter:
(a) T = 0.071 (saturated regime), (b) T = 0.078 (transition regime),
and (c) T = 0.150 (nonsaturated regime).

6. Hurst exponent

Self-similarity of the signal is an important feature and
has been largely studied for financial systems [32–34]. In this
subsection, we calculate the Hurst exponent (H ) of the absolute
return time series (|RY |). This study was also performed in
Ref. [33] by analyzing four major stocks from the London
Stock Exchange.

We calculate H using the detrended fluctuation analysis
(DFA) [34,35]. The value of H obtained for the pedestrian
system is H = 0.88, which is similar to the ones obtained
for DJI-1day (H = 0.86) and NYSE100-1day (H = 0.85).
Furthermore, the results reported in Ref. [33] are also similar,
ranging from H = 0.80 to H = 0.86. The other financial
time series analyzed in the present work display values of
H � 0.65. In all cases, the results show that self-similarity is
present, and the Hurst exponent lies in the region 0.5 < H < 1,
which corresponds to correlated noise, indicating long-term
memory of the absolute return.

C. Pedestrians with decision-making capacity

In previous sections, we analyzed the statistical properties
of the pedestrian system for automata agents; here we will
study the properties when we provide simulated pedestrians
with a decision-making capacity. As explained in Sec. II B3,
this allows us to consider herding effects, so the system may
develop a behavior similar to financial bubbles and crashes.

The parameters of the system for this behavior are the same
as before, L = 7 m, l = 0.2, m and Np = 60. At time t = 0,
we assume again Na = Nb = Np/2 = 30, but as the system
evolves, Na and Nb will change.

1. Variations in the decision parameter

Similarly to the “herding indicator” defined in Ref. [22],
we choose as a relevant observable the fraction of particles in
a certain state, for example, let us take the state a. Figure 7
shows the evolution of the fraction Na/Np for three different
values of T .
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FIG. 8. (Color online) Fraction of the population Na

Np
for T =

0.078 (top) and related pedestrian density time series (bottom).

The system can be found in three different regimes.
(i) Saturated regime: For low values of the individualistic

parameter (T � 0.07), the system saturates rapidly, indicating
that all simulated pedestrians have the same state and, thus, a
unidirectional flow is established.

(ii) Nonsaturated regime: For T � 0.09, the system oscil-
lates around Na/Np ∼ 1/2. In this regime, the system behaves
very similar to automata agents (Sec. III B).

(iii) Transition regime: For 0.07 � T � 0.09, the behaviors
of the saturated and nonsaturated regimes may be combined
in the same realization (see middle panel of Fig. 7).

When the system remains saturated, all pedestrians end up
acting in the same way. This situation might be analogous
to stock market panic generating a financial crash. In fact,
saturation periods are correlated with low values of the density
time series (0.2 p/m2 � ρ � 0.5 p/m2), as shown in Fig. 8. This
feature further justifies the analogy between the pedestrian
density (ρ) and the logarithm of the price (ln(S)).

We observe that if only periods of unidirectional flow occur,
all stylized facts disappear. Therefore, having two groups of
agents with opposite goals (counterflow) is of fundamental
importance for the emergence of the stylized facts studied in
this paper.

2. Autocorrelation of return and volatility

Consider the nonsaturated regime (T � 0.09) in which the
number of pedestrians belonging to each group (Na or Nb)
fluctuates around the equilibrium value Np/2. In this situation,
the autocorrelations are very similar to the one observed in
Fig. 4 for automata agents where the number of pedestrians
in each state is fixed (Na = Nb = Np/2). However, for values
of T in the transition zone (0.07 � T � 0.09), the time period
above which the autocorrelation of the absolute return becomes
negligible is much larger, in accordance with financial time
series. In Fig. 9, it can be seen that both systems have a similar
autocorrelation function of returns and absolute returns.

This result for the pedestrian system holds, in general,
for T in the transition regime. The length of the decay of
the autocorrelation depends on the coexistence of periods of
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FIG. 9. (Color online) Autocorrelation functions of the return and
absolute return for pedestrians with T = 0.078 (a) and for EURUSD-
1hour financial data (b).

saturation and nonsaturation of the population in the same
realization, which is more likely to occur near T ∼ 0.08.

It is important to stress that, in the saturated regime
(corresponding to the unidirectional flow), all stylized facts
(and in particular the autocorrelation of absolute return)
disappear. While in the nonsaturated regime with permanent
counterflow (T � 0.09), the autocorrelation of absolute return
is weak (see Fig. 4), independently of whether decision-
making capacity is considered. Thus, it is interesting to
discover that the significant autocorrelation of absolute returns
can be understood by the combination of the two different
regimes (the saturated and nonsaturated ones). In other words,
this stylized fact appears when the pedestrian system is in
the transition area between the saturated “herding” regime
and the nonsaturated “equilibrium” regime. Such behavior is
also found in other systems, such as generalized Ising models
for which the excess volatility that is typical of real financial
markets is obtained in the transition region of the underlying
Ising critical point [36].

IV. DISCUSSION

We have shown in previous sections that a simple multia-
gent model simulating the counterflow of pedestrians displays
eight stylized facts that are characteristic of a real complex
social system, namely the financial market. Because these
statistical properties taken together are very restrictive, one
is led to hypothesize that the pedestrian system must have
something in common with the financial one. In the following,
we outline the key ingredients present in both systems.

First, we present arguments supporting the hypothesis
that density and price are related. For conservative flows,
in particular pedestrian flows, the continuity equation can be
written as

∂ρ

∂t
= −	∇ · J, (9)

where ρ is the density (measured in number of pedestrians/m2)
and J(=ρv) is the pedestrian flow (number of pedestrians
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crossing a unit length per unit time). The negative divergence
of J [right-hand side of Eq. (9)] reflects the difference between
particles entering and exiting a given area around the door.

We may interpret −	∇ · J in analogy with the difference
between buy and sell orders (i.e., orders that want to enter
into the position and orders which tend to exit the position).
This difference will change the price, in a financial context,
in a way similar to how −	∇ · J will change the density in
the pedestrian system, i.e., via a linear impact function as
argued theoretically as a result of the optimal order execution
strategy [37] and the absence of arbitrage [38]. Here, we do
not enter the debate on the underlying mechanism of possible
nonlinear impact functions [39,40]. Because, for a price time
series (S), the logarithmic return is defined as R = d(ln(S))

dt
, it

is therefore reasonable to compare ρ with ln(S).
Second, consider systems endowed with the following

attributes:
(a) Competition in the form of opposite tendencies, such

as counterflows of particles moving in opposite directions,
buyer-seller opposite drives to acquire versus drop an asset, or
liquidity providers and takers with opposite needs with respect
cash and access to markets;

(b) Bottleneck, restriction, or constriction that provide a
convergent constraint in the free flow in the system; in granular
flows, this is in the form of a funnel or an opening separating
two different spatial domains; in finance, this is associated
with the fact that actual transactions occur in the limit of small
or vanishing liquidity [41]. In other words, whatever their
volume, all orders have to be funneled to a small price window
in order to be executed.

We conjecture that these systems operate in a “prejammed”
state with large intermittent fluctuations that exhibit the
following set of stylized facts:

(1) fat tail distribution of fluctuation amplitudes of some
order parameter such as density variations or log-price varia-
tions;

(2) tendency for the above distributions to converge slowly
to the Gaussian law at large space or time scales over which
the order parameter fluctuations are measures;

(3) weak and fast decaying auto-correlation of the signed
fluctuations of the order parameter;

(4) long-range auto-correlation of the amplitude (or
“volatility”) of the order parameter fluctuations;

(5) Hurst exponent and persistence in the dynamics of the
volatility;

(6) scaling of the peaks of the distribution of the order
parameter fluctuations;

(7) multifractality; and
(8) existence of transient coherent regimes (bubbles, soli-

tary waves, coherent structures) bursting in crashes or fast and
strong reorganization processes.

This suggests a deep analogy between the dynamics
of granular counterflows in the presence of bottlenecks or
restrictions and financial price formation processes. The
former applies to pedestrians in confined geometries in the
presence of constrictions and constraints. The present work
extends these ideas to suggest the possible existence of
what could be referred to as a new “universality class”
for out-of-equilibrium complex extended dynamical systems
characterized by “balanced flows with bottlenecks” endowed

with the characteristics outlined above and which are described
by the set of properties (1)–(8).

Future work will be done to falsify further this suggestion.
In particular, the saturated-nonsaturated transition, considering
T as the control parameter, could be studied and compared with
the fact that financial markets operate close to a critical point
in a precise sense [5,41,42]. Also, different regimes of herding
behavior within the proposed analogy will be investigated. As
the density of particles is varied from dilute gas to liquid and
glass, the effect of the bottleneck can be studied systematically
with respect to its impact on the density fluctuations in its
neighborhood. Similarly to the physics of lubrication and/or of
wetting, novel critical behavior and transitions can be expected
to translate into an interesting classification of fluctuations in
systems characterized by balanced flows with bottlenecks.

The similarity between the granular counterflows and
financial prices can be exploited for the understanding
and characterization of certain abnormal market regimes,
in analogy with the corresponding pedestrian systems. For
instance, when the bottleneck is narrower (opening L < 4
m), permanent blockage occur due to the soft attraction,
which nucleate clusters around and within the constriction.
In finance, this corresponds to the no-trade situation occurring
when the liquidity vanishes. It would be interesting to study
the properties of the density fluctuation close to this jamming
transition in parallel to the corresponding situation in financial
markets. Moreover, the size of the price window (the equivalent
of the door size) could be measured in financial systems by
considering various markets with different depths and their
effects on the price dynamics could be characterized.

V. CONCLUSIONS

In this work, we have shown that a pedestrian counterflow
system with a bottleneck exhibits several stylized facts that are
characteristic for financial systems, if the pedestrian density
observed in the conflict zone (around the door) is compared to
the logarithm of the price of financial assets.

We find that having two groups of agents with opposite
interests (counterflow) is an important precondition to re-
produce the stylized facts. When these two groups have a
constant number of agents during the simulations (automata
agents), we find the following stylized facts: heavy tails of
the distribution of returns, aggregational Gaussianity, fast-
decaying autocorrelation of return, scaling of the peaks of
the distribution of returns, multifractality, and self-similarity.
Having agents with adaptive behavior (i.e., changing their
state by making decisions) is relevant to explain the slowness
of decay of the autocorrelation of absolute returns and the
existence of bubbles and crashes. This is due to the occurrence
of herding behavior, when agents can change their state,
making their decisions depending on the state of the neighbors.

The tendency of agents to mimic other agents is controlled
by the parameter T . Depending on its value, the system
can be in three regimes: (a) a saturated regime (T � 0.07),
where all the agents are in the same state; (b) a nonsaturated
regime (T � 0.09), where the population of both classes of
agents are in equilibrium (which is similar to the behavior
of automata agents with a fix number of agents in each
class); and (c) a transition regime (0.07 � T � 0.09), in which
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the saturated and the nonsaturated regimes alternate during
intermittent time periods. In the transition regime, the decay of
the autocorrelation of absolute return is much slower than the
decay of the autocorrelation of the return, matching very well
this interesting stylized fact observed in financial time series.

The properties reported here, obtained for a system with
60 particles, do not change appreciably with varying this
number within factors of 2. However, we should stress that the
characteristics of the density fluctuations that are so similar
to financial price fluctuations depend on the system not being
too large. In other words, the stylized facts disappear in the
thermodynamic limit and are, thus, intrinsically “finite-size
effects.” This should not be taken necessarily as a drawback,
since there is evidence that the price dynamics of any given
financial asset is typically driven by no more than about
100 investors (see, for example, Ref. [22]). We refer to
Refs. [43,44] for reviews of the finite-size effects in various
models of financial price dynamics.

Nishinari et al. [45] have established a connection between
traffic jams and bubble bursts by viewing the latter as a jam
in transaction volume. This correspondence is based both
on empirical data and a one-dimensional model of cash-in-
advance cash-house transaction flows. One can relate their
work to ours by noting that volume is strongly correlated with
volatility, which is a measure of the amplitude of log-price
variations.

In conclusion, the statistical analogies between the pedes-
trian counterflow problem and financial time series suggest
that studying pedestrian counterflow systems in the presence
of constraints may help to gain a better understanding of the
mechanisms underlying stylized facts of financial markets.
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