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HIGHLIGHTS   44 

 45 

✓ Since 2009, overall burden of SA infections has risen, driven by CO MSSA, Argentina 46 

✓ SA infections rate in 2015: 49.1/100,000 monthly visits, showing a rising evolution 47 

✓ Higher (>3 fold) HA/(HACO and HAHO) SA infections rates than CA/(CACO) 48 

infections 49 

✓ CA-MRSA ST30-IV clone added to rather than replace ST5-IV in HA invasive 50 

infections 51 

✓ MSSA infections increased by 54.2%, with an ERY resistance rise linked to CC398 52 

 53 
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ABSTRACT  55 

Staphylococcus aureus-(SA) is widespread among healthcare-associated-(HA) and the 56 

community-associated-(CA) infections. However, the contributions of MRSA and MSSA to 57 

the SA overall burden remain unclear. 58 

In a nationally-representative-survey conducted in Argentina, 668 SA clinical isolates from 61 59 

hospitals were examined in a prospective, cross-sectional, multicenter study in April 2015. 60 

The study aimed to analyze MRSA molecular epidemiology, estimate overall SA infection 61 

incidence (MSSA, MRSA, and genotypes) in community-onset (CO: HACO, Healthcare-62 

Associated-CO and CACO, Community-Associated-CO) and healthcare-onset (HO: HAHO, 63 

Healthcare-associated-HO) infections, stratified by age groups. Additionally temporal 64 

evolution was estimated by comparing this study's (2015) incidence values with a previous 65 

study (2009) in the same region. Erythromycin-resistant-MSSA and all MRSA strains were 66 

genetically typed. 67 

The SA total-infections (TI) overall-incidence was 49.1/100,000 monthly-visits, 25.1 and 24.0 68 

for MRSA and MSSA respectively (P=0.5889), in April 2015. In adults with invasive-69 

infections (INVI), MSSA was 15.7 and MRSA was 11.8 (P=0.0288), 1.3-fold higher. HA SA 70 

infections, both MSSA and MRSA, surpassed CA infections by over threefold.  71 

During 2009-2015, there was a significant 23.4% increase in the SA infections overall-72 

incidence, mainly driven by MSSA, notably a 54.2% increase in INVI among adults, while 73 

MRSA infection rates remained stable. The MSSA rise was accompanied by increased 74 

antimicrobial resistance, particularly to erythromycin, linked to MSSA-CC398-t1451-ermT+-75 

IEC+-pvl- emergence. The SA-infections rise was primarily attributed to community-onset-76 

infections (37.3% and 62.4% increase for TI and INVI, respectively), particularly HACO-77 

MSSA and HACO-MRSA in adults, as well as CACO-MSSA. The main CA-MRSA-PFGE-78 

typeN-ST30-SCCmecIVc-PVL+/- clone along with other clones (USA300-ST8-IV-LV-PVL+/-, 79 
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PFGE-typeDD-ST97-IV- PVL-) added to rather than replaced CA-MRSA-PFGE-typeI-ST5-80 

SCCmecIVa-PVL+/- clone in HA invasive-infections. They also displaced clone HA-MRSA-81 

PFGE-typeA-ST5-SCCmecI, mainly in HAHO infections 82 

The overall-burden of SA infections is rising in Argentina, driven primarily by community-83 

onset MSSA, particularly in adults, linked to increased erythromycin-resistance and MSSA-84 

CC398-t1451-ermT+-IEC+-pvl- emergence. Novel knowledge and transmission-control 85 

strategies are required for MSSA 86 

 87 

 88 
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INTRODUCTION  95 

Staphylococcus aureus (SA) infections, particularly methicillin-resistant SA (MRSA) pose a 96 

significant challenge to global healthcare, affecting hospitals (healthcare-associated 97 

infections/HAIs), communities (community-associated infections/CAIs), and livestock 98 

(livestock-associated infections/LAIs) 1,2. SA causes a spectrum of human diseases, from 99 

superficial skin and soft tissue infections (SSTI) to invasive infections (INVI), sepsis, and 100 

death. This versatility arises from multiple virulence factors and differential expression 101 

abilities, primarily associated with the genotype 2,3. The escalating concern lies in managing 102 

SA infections due to their gradual acquisition of antimicrobial resistance 4. Notably, the 103 

associated mortality with MRSA-HAIs, in both INVI and non-INVI cases, exceeds that of 104 

most emerging multidrug-resistant gram-negative pathogens5. Remarkably, in 2019, SA, 105 

including both MSSA and MRSA, was globally the top bacterial cause of death6. 106 

Although SA is a global endemic pathogen, new strains can rapidly spread worldwide, driven 107 

by high-risk clones (HRCs) that blend increased virulence or transmission potential with 108 

multidrug resistance (MDR)7,8. Traditional multidrug-resistant HA-MRSA HRCs, identified 109 

in hospitals since 1959, mainly affect adult patients, with healthcare-associated risk factors 110 

(HRFs). Conversely, emerging MRSA clones (CA-MRSA) in the community since the 1980s 111 

were unrelated to healthcare. These genotypes, with diverse clonal lineages and specific 112 

geographical patterns, carry smaller SCCmec variants and fewer resistance determinants than 113 

HA-MRSA, primarily causing SSTI in healthy younger individuals 9. Furthermore, CA-114 

MRSA genotypes, primarily community-resident 10,11 now also cause healthcare-associated 115 

hospital-onset (HAHO) infections 9,12,13. Therefore, genetic characterization of HRCs is 116 

essential for comprehending the evolving molecular epidemiology of SA infections in both 117 

hospital and community settings 9. 118 
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Despite MRSA HAIs decreasing in some European countries 14-16 and the United States 17-19 119 

over the last decade, the HAHO MRSA infection rate in the US increased by 13% in 2020 120 

compared to 2019, attributed to the impact of COVID-19 pandemic 1.Furthermore, in high-121 

MRSA-prevalent regions of southern and eastern Europe, MRSA bloodstream infections 122 

(BSI) persistently rose during 2005-2018 15 , indicating ongoing challenges in effective 123 

MRSA control in highly endemic areas. Additionally, MSSA BSIs have stabilized or 124 

increased in the US 18,20 and some European countries 14,15,21,22. Limited information exists on 125 

the global burden of SA infections from both MRSA and MSSA 15,20,21. Despite high case 126 

fatality rates in MSSA-BSI, optimal treatment approaches remain debated 15,21. Importantly, 127 

changes in MRSA and MSSA infection trends become evident when analyzing incidence 128 

rates, as they may be overlooked when focusing solely on the MRSA percentage among total 129 

SA infections 15. 130 

SA is a worrying problem in hospitals of Latin America4,9,23. In Argentina, MRSA accounts 131 

for 40-50% of SA isolates in both community-onset (CO) and hospital-onset (HO) infections, 132 

12,13 showing a decreasing trend 24.  Between 2002 and 2007, the HA-MRSA 133 

Cordobes/Chilean ST5-SCCmecI HRC caused over 60% of HO-MRSA infections 25,26 while 134 

over 80% of CA-MRSA infections were associated with the CA-MRSA pulsotypeI-ST5-135 

SSCmecIV-PVL+ HRC 26,27. Since 2009, CA-MRSA ST5-IV-PVL+ HRC has spread in 136 

hospitals, coinciding with declining HA-MRSA Cordobes/Chilean ST5-I HRC. 137 

Simultaneously, there has been a growing MRSA reservoir in the community linked to two 138 

main CA-MRSA HRCs: ST5-IV and ST30-IV, and minor CA-MRSA HRCs, like USA300-139 

ST8-IV-LV (USA300 Latin American variant) 12. Furthermore, other more recent 140 

longitudinal-multicenter study in Córdoba city (Argentina), revealed that, most imported and 141 

all hospital-acquired MRSA belonged to CA-MRSA ST30-IV and ST5-IV HRCs, with the 142 

community as the primary reservoir 13.   143 
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Importantly, there is limited awareness of the incidence evolution over time of invasive and 144 

non-invasive infections caused by MSSA and MRSA, in Latin America, and largely unknown 145 

in Argentina. The aims of this investigation were: 1) to assess the molecular epidemiology of 146 

MRSA infections and estimate overall SA infection incidence (MSSA, MRSA, and 147 

genotypes) in community-onset (CO: HACO, Healthcare-associated-CO and CACO, 148 

Community-associated-CO) and healthcare-onset (HO: HAHO, Healthcare-associated-HO) 149 

infections, stratified by age groups, 2) to evaluate the temporal evolution by comparing this 150 

study's (2015) incidence values with a previous study (2009 12) in the same region. 151 

 152 

MATERIALS AND METHODS  153 

Surveillance Methodology and definitions 154 

To assess the molecular epidemiology of MRSA infections and to estimate overall SA 155 

infection incidence (MSSA, MRSA, and genotypes: CA-MRSAG , HA-MRSAG and principal 156 

MRSA clones) in community-onset (HACO and CACO) and healthcare-onset (HAHO) 157 

infections, we conducted a prospective-observational cross-sectional multicenter study in 158 

Argentina in April 2015. Sixty-one hospitals, including 46 from the WHONET Argentina 159 

Network, participated in this study across 20 provinces and Buenos Aires City (CABA). The 160 

hospitals characteristics are shown in the Supplementary Table S1. Additionally, a 161 

longitudinal-retrospective study was conducted to estimate the overall temporal evolution of 162 

SA infection incidence and prevalence (including MSSA, MRSA and genotypes) by 163 

comparing this study's (2015) values with a previous study (200912). In the prior study, 591 164 

clinical isolates were recovered from 66 hospitals serving a population of 1,484,505 visits, 165 

including 961,424 adults and 523,081 pediatric cases, in November 2009. Briefly, in both 166 

studies the patients were prospectively and consecutively identified according to the results of 167 

SA clinical cultures, as reported by the microbiology laboratories. Only the first isolate from 168 
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each patient was evaluated. A standardized questionnaire was completed for each patient and 169 

for this study the following features were analyzed: i) demographic characteristics (age and 170 

sex, Supplementary Table S2), ii) HRFs, CDC criteria 12,28 iii) onset of infection (hospital vs. 171 

community), iv) characteristics and severity of infections (Supplementary Table S2). Invasive 172 

infections (INVI) were defined as previously described 12. Surgical site infections (SSI) were 173 

not considered as skin diseases.  174 

We genetically characterized each MRSA clone and, to facilitate comparison between the two 175 

studies, we additionally defined traditional CA-MRSA and HA-MRSA strain types 176 

genotypically (detailed below), referred to as CA-MRSAG and HA-MRSAG (Table 1). 177 

Regardless of the strain types involved, cases were classified by infection onset [healthcare-178 

onset (HO) and community-onset (CO)] and healthcare risk factors (HRFs) presence/absence 179 

[following epidemiological definitions: Community-associated CO-infections (CACO) and 180 

Healthcare-associated (HA) infections, including both HO-infections (HAHO) and CO-181 

infections (HACO) 28], as described previously 12. 182 

From administrative data provided by each hospital, we determined the total number of 183 

patients served in each hospital (stratified by age groups) in both studies (2009 and 2015) 184 

across the northern, central, and southern regions of Argentina. We calculated the incidence 185 

of SA, MSSA, MRSA, and genotypes (CA-MRSAG, HA-MRSAG, and major clones) 186 

infections per 100,000 visits in each period (cases/100,000 monthly visits, including 187 

admissions, outpatient facilities, and emergency services). Aggregated data from all hospitals 188 

were used to calculate overall incidence rates and compare both periods. The analysis 189 

considered all infection cases, stratified by age groups (<19 and ≥19 years, representing 190 

pediatric and adult patients, respectively), infection categories (HO [HOHA] and CO [CACO, 191 

HACO]), and regions of Argentina (North, Center, and South)12, Tables 2-5 and 192 

Supplementary Tables S3 and S4.  193 
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Ethics statement  194 

This study was reviewed and approved by the Ethics Review Board of Health Research for 195 

adults and children (CIEIS), Government of the Province of Córdoba, Health Ministry 196 

(approval No. 2531, 2551 and 2552 /2015) as well as by the institutional Ethical Review 197 

Board of each Hospital listed in acknowledgments. All participants/patients (or their 198 

proxies/legal guardians) provided informed consent to participate in the study. 199 

Bacterial isolates and antimicrobial susceptibility 200 

SA clinical isolates (n: 668) were identified by standard microbiologic procedures and 201 

antimicrobial susceptibility testing was performed by disk diffusion method and/or Vitek2 202 

29.Vancomycin minimum inhibitory concentrations (MICs), were determined by agar dilution 203 

method 29.  Mupirocin susceptibility was determined by E-test method (bioMerieux) with the 204 

following definitions: high-level resistance, MIC ≥512 μg/mL; low-level resistance, MIC = 8–205 

64 μg/mL; susceptible, MIC ≤4 μg/mL 30. High-level resistance to mupirocin was confirmed 206 

by detection of the mupA gene by PCR as described 31. To genetically investigate the rising 207 

incidence of erythromycin-resistant MSSA detected in the longitudinal study, all such isolates 208 

from both periods underwent molecular typing and PCR analysis for erythromycin resistance 209 

determinants (ermA, ermB, ermC, ermT, and msrA1 genes)32.  210 

Molecular typing  211 

In all MRSA isolates and in erythromycin-resistant MSSA isolates from this study (n: 46) and 212 

the pervious one (n:20), PFGE of SmaI digests of chromosomal DNA and spa typing were 213 

performed and interpreted as previously described12.The spa-types were assigned using the 214 

RIDOM web server (http://spaserver.ridom.de/). Additionally, the spa server was employed to 215 

predict sequence types (STs), as previously described 13. Briefly, when the STs could not be 216 

determined using the spa server, Multi-locus-sequence-typing (MLST) was performed. Thus, 217 

MLST was carried out in at least one strain of each spa-type detected. Allele numbers, 218 

Jo
urn

al 
Pre-

pro
of



11 

 

sequence types (STs), and clonal complexes (CCs) were assigned using the 219 

https://pubmlst.org/organisms/staphylococcus-aureus database. 220 

All MRSA isolates were screened by PCR for accessory gene regulator (agr) type, for 24 221 

specific staphylococcal virulence genes (detailed in Table 1), including Panton-Valentine 222 

leukocidin genes (lukS-PV-lukF-PV), sasX and for arcA gene (indicator of the arginine 223 

catabolic mobile element, ACME), as described elsewhere 12.  All CC398-MSSA isolates (n: 224 

10) were screened by PCR 32 for  immune evasion cluster (IEC) genes (scn, chp, sak, sea, and 225 

sep) to determine the potential animal or human origin of our isolates, as well as for lukS-PV-226 

lukF-PV genes 12. 227 

The SCCmec types (including the new variant of SCCmec IV/IVNv associated to ST100 in 228 

Argentina) were evaluated for all MRSA isolates by multiplex PCR and by allotyping (to 229 

identify mec, ccr, and the J1 region of I-XIV SCCmec types) by conventional PCR as 230 

described 12,33. 231 

The genotypic definition for the identification of CA-MRSAG and HA-MRSAG was used as 232 

previously described 12. Briefly, CA-MRSAG were defined as belonging to the following 233 

genotypes: ST5-IV-t311 and related, PVL+/-, ST30-IV-t019 and related, PVL+/-, ST72-IV-t148 234 

and related, PVL¯, ST8-IV-t008, PVL+/-, ST97-IV-t267 and related, PVL¯,  ST207-IV-t525, 235 

PVL¯, ST1649 (SLV of ST6)-IV-t701, PVL¯12. All remaining genotypes were considered 236 

HA-MRSAG 9,12.  237 

Statistical analysis 238 

Comparisons between groups were performed with χ2 test or Fisher`s exact test, as 239 

appropriate and P<0.05 was considered statistically significant. Data were analyzed using 240 

SPSS (version 15.0) and InfoStat (www.infostat.com.ar). 241 

 242 

RESULTS  243 
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Prospective Observational Cross-Sectional Multicenter Study (2015) 244 

a) Characteristics of SA infections cases 245 

The population served by all hospitals (Supplementary Table S1) consisted of 1,360,252 246 

visits, with 880,279 (64.5%) visits from adults and 479,973 (35.3%) visits from pediatric 247 

patients with 45,809 admissions during one-month (April 2015). A total of 668 SA clinical 248 

isolates were collected, resulting in an overall incidence rate of SA total-infections (TI, 249 

including invasive and non-invasive) of 49.1/100,000 monthly visits, with a range of 32.6 to 250 

90.1 (Supplementary Table SS1). The median age of patients was 27 years (range: 1 month to 251 

96 years), with 251 (37.5%) being children (<19 years) and 274 (41%) females (Table 2 and 252 

Supplementary Table SS2). Most cases were community-onset (CO) infections (471/668, 253 

70.5%), both in pediatrics (170/251, 67.7%) and adults (301/417, 72.2%, Tables 3 and 4). Of 254 

all SA infections, 341 cases (51.0%, 95% CI: 47.2% to 54.8%) were caused by MRSA. 255 

Most SA infections were HA (HACO and HAHO), totaling 415 cases (62.1%) with an 256 

incidence rate of 30.5/100,000 (P<0.0001, Supplementary Table SS3). 257 

Among 668 patients, there were 817 SA infections: 41.4% SSTI (34.5% uncomplicated, 6.9% 258 

complicated), 22.5% bacteremia, 9.2% lower respiratory tract infections, and 8.2% 259 

musculoskeletal infections, Supplementary Table SS2 provides additional details. 260 

Among all patients, 55.1% experienced invasive infections, with INVI cases more prevalent 261 

among MSSA infections (61.4%, 201 out of 327) compared to MRSA infections (47.5%, 162 262 

out of 341), primarily attributed to musculoskeletal infections (Supplementary Table SS2). 263 

b) Genotyping of MRSA strains and infections  264 

The majority of MRSA isolates (88.6%, 302/341) were classified as CA-MRSAG, with 11.4% 265 

as HA-MRSAG (Table 1). Molecular characteristics, such as CC, ST, MLST, PFGE type and 266 

subtype, spaA and SCCmec types, presence of pvl genes, agr allotype, virulence gene 267 

profiles, and drug resistance patterns for both CA-MRSAG and HA-MRSAG, are detailed in 268 

Jo
urn

al 
Pre-

pro
of



13 

 

Table 1. Prevalence and overall incidence data for TI and INVI caused by SA, MSSA, 269 

MRSA, HA-MRSAG, CA-MRSAG, and major MRSA clones from this study are compared 270 

with data from the previous one12, covering the entire population and stratified by age groups, 271 

onset type (community or hospital), and epidemiological classifications of infections [CACO 272 

or CA, HACO, HAHO, HA (HACO + HAHO)] are shown in in Tables 2-4, Fig.1-2, and 273 

Supplementary Table S3 and Fig. S1-S2. 274 

Among CA-MRSAG isolates (86%, 259/302), two major clones predominated. The PFGE-275 

type N-ST30-SCCmecIV accounted for 70.2% (212/302), and the PFGE-type I-ST5-IV-276 

SCCmecIV comprised 15.6% (47/302) (Table 1). The remaining CA-MRSAG isolates 277 

belonged to the following genotypes: PFGE-USA300-ST8-IV-LV (6%, n: 18/302), PFGE-D-278 

ST97-IV (4%, n: 12/302), PFGE-R-ST72-IV (3.3%, n: 10/302), PFGE-Y-ST509-IVa (0.7%, 279 

n: 2/302), and PFGE-QQ-ST1649-IV (SLV of ST6, one isolate) (Table 1). For HA-MRSAG 280 

isolates (n: 39), the Cordobes/Chilean clone, PFGE-A-ST5-SCCmecI, predominated (61.5%, 281 

n: 24/39). The second most identified HA-MRSAG was the Pediatric clone Argentinean 282 

variant (PFGE-C-ST100-SCCmecINv) (38.5%, n: 15/39) (Table 1). 283 

Furthermore, CA-MRSAG showed significantly higher rates of TI [22.2 vs. 2.9, P<0.0001, OR 284 

(95% CI): 13.3 (9.32-18.99)] and INVI [9.6 vs. 2.4, P<0.0001, OR (95% CI): 4.06 (2.77-285 

5.97)] infections per 100,000 monthly visits compared to HA-MRSAG, primarily due to the 286 

increased rate of CA-MRSA ST30-IV clone (15.6), surpassing rates of other major MRSA 287 

clones (Table 2). 288 

c) SA infections cases: MSSA, MRSA and MRSA Genotypes 289 

In reference to SA, MRSA and MSSA infection incidence rates stratified by age groups 290 

(Table 2), we found similar overall TI rates for MSSA and MRSA in the entire population 291 

(24.0 vs. 25.1, P=0.5889) and in adults (25.4 vs. 21.9, P=0.1289). However, MRSA showed a 292 

higher TI rate in children (30.8 vs. 21.4, P=0.0045, OR: 1.44), especially in non-INVI cases 293 
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where INVI rates were comparable (P=0.6494). This difference was evident in CO and 294 

CACO infections (Table 4). Conversely, there was a higher incidence of INVI caused by 295 

MSSA than by MRSA in the entire population (14.8 vs. 11.9, OR:1.24), especially in adults 296 

(15.7 vs. 11.8, OR:1.33), particularly in those older than 30 years (Table 2 and Supplementary 297 

Table S2), and among CO infections [entire population (8.7 vs. 6.3, OR:1.38, Table 3) and 298 

adults (9.8 vs. 6.2, OR:1.60, Table 4)].  299 

Comparing infection rates across age groups, we observed similar TI and INVI rates caused 300 

by SA and MSSA in pediatrics and adults. However, a higher incidence of MRSA-TI was 301 

identified in pediatrics (particularly in patients aged 1-18 years) than in adults (30.8 vs. 21.9, 302 

OR: 1.44), especially non-INVI cases, in the community setting and linked to CA-MRSA 303 

ST30-IV clone (Table 2, Supplementary Fig. S1 and Table S2)  304 

d) SA infections: CO vs. HO infections:  305 

For CO- and HO- SA infections, the community displayed higher overall incidences of SA, 306 

MRSA, and MSSA than the hospital (Table 3). The elevated TI and INVI incidences caused 307 

by SA and MSSA were observed in adults, especially in HACO invasive infections (SA-308 

HACO: 10.7 vs. SA-CACO: 5.3, MSSA-HACO: 6.4 vs. MSSA-CACO: 3.4, Table 4). 309 

Conversely, a higher MRSA-TI incidence in the community than in the hospital (17.3 vs. 7.5) 310 

[with comparable MRSA proportions between CO-TI (50.8%) and HO-TI (51.8%) (P=0.86), 311 

Table 3] was linked to non-invasive MRSA infections, as MRSA-INVI rates were similar 312 

(P=0.43, Table 3). This finding was observed in both pediatric and adult patients (Table 4), 313 

primarily related to a higher CA-MRSA-ST30-IVc (non-INVI)-TI rate in the community 314 

(CO: 12.6 vs. HO: 2.9, P<0.0001), especially in CACO (non-INVI)-TI (Table 3). 315 

In reference to INVI, while overall MRSA and CA-MRSAG INVI rates were comparable 316 

between community and hospital settings, significant clonal-level differences were identified 317 

(Table 3). In the community, ST30-IV clone caused a higher INVI rate than CA-MRSA-ST5-318 
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IV (4.1 vs. 0.73, OR 5.6), with comparable rates in CACO (1.9) and HACO (2.2) infections, 319 

P= 0.59 across both age groups. Conversely, in the hospital, INVI rates caused by HA-MRSA 320 

ST5-I (1.1) and CA-MRSA clones (ST30-IV/1.5, ST5-IV/1.1) were comparable, especially in 321 

adults (Table 3 and 4) 322 

e) SA infections: HA vs. CA infections 323 

Regarding HA (HAHO and HACO) and CACO SA infections (Supplementary Table S3), 324 

higher SA (MSSA and MRSA) infection rates (TI and INVI) were found in HA compared to 325 

CA infections (SA, TI: 1.64 fold, INVI: 3.6 fold; MSSA, TI: 1.80 fold, INVI: 3.3 fold; 326 

MRSA, TI: 1.50-fold, INVI: 4.1-fold) with comparable rates between HACO and HAHO 327 

infections (Table 3). 328 

The higher MRSA TI and INVI rates in HA infections compared to CACO (Supplementary 329 

Table S3) were attributed to i) a higher CA-MRSAG INVI incidence, mainly associated with 330 

both CA-MRSA clones (with similar INVI rates between HACO and HAHO infections): 331 

ST30-IV and ST5-IV clones, alongside other CA-MRSA clones (USA300-LV and ST97-IV) 332 

(Table 3), and ii) a greater HA-MRSAG TI and INVI incidence, linked to ST5-I and ST100-333 

IVNv clones and HAHO infections, particularly in adults (Table 3 and Supplementary Table 334 

S3). Notably, in HA MRSA infections (HACO and HAHO), CA-MRSAG showed higher rates 335 

than HA-MRSAG, (Supplementary Table S3). 336 

Evolution of SA infections (longitudinal retrospective study): 2009 vs. 2015 337 

1) All Epidemiologic classes and age group 338 

In Argentina, total and invasive SA infection rates increased by 23.4% (from 39.8 to 49.1, 339 

OR: 1.2) and 31.2% (from 19.9 to 26.1, OR: 1.3), respectively, from 2009 to 2015 in the 340 

entire population. These increases were driven by a 32.5% rise in MSSA TI (from 18.1 to 341 

24.0, OR: 1.3) and a 54.2% growth in MSSA INVI (from 9.6 to 14.8, OR: 1.5), mostly in 342 

adults, while MRSA infection rates remained stable [Fig. 1 (A, B), Table 2, Supplementary 343 
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Table S4]. This stability in adults was linked to a CA-MRSA-ST30-IV rates increase and a 344 

HA-MRSA-ST5-I rates decrease. Notably, CA-MRSA-ST5-IV rates unchanged [Table 2, Fig. 345 

1 (A, B)], Supplementary Table S4). 346 

In pediatrics, there was a 26.7% increase in MRSA-TI incidence (24.3 to 30.8, OR:1.4), 347 

particularly non-INVI, while MSSA infection rates remained unchanged [Fig. 1 (A, B), Table 348 

2, Supplementary Table S4]. This rise was linked to a CA-MRSA-ST30-IV clone rates 349 

increase and a CA-MRSA ST5-IV rates decline, [Table 2, Fig. 1 (A, B), Supplementary Table 350 

S4].  351 

2) Community-onset cases, (CACO and HACO) 352 

Community-onset SA TI and INVI rates rose by 37.3% (25.2 to 34.6, OR: 1.4) and 62.4% 353 

(9.3 to 15.1, OR: 1.6) in this period. This increase was related to i) a rise in CO-MSSA TI and 354 

INVI incidence [59.8% (10.7 to 17.1, OR: 1.6) and 97.7%, (4.4 to 8.7, OR: 1.9) respectively, 355 

Table 3, Fig. 2 (A, B)], detected in both HACO and CACO MSSA infections, especially in 356 

adults (for children, only a significant increase in CACO MSSA INVI incidence was noted, 357 

Table 4), and ii) a rise in CO MRSA TI overall rate [20.5%, 14.6 to 17.6, OR: 1.2, Table 3, 358 

Fig. 2 (A, B)], particularly INVI in adults (82.3%, 3.4 to 6.2, OR: 1.8, Table 4), and among 359 

HACO infections. The increase in CO-MRSA infection incidence was primarily driven by the 360 

CA-MRSA-ST30-IV clone, while CA-MRSA-ST5-IV community-onset TI and INVI rates 361 

remained unchanged (mainly in adults in HACO and CACO infections) or decreased (mainly 362 

in children among CACO TI and INVI and HACO non-INVI TI), [Table 3 and 4, Fig. 2 (A, 363 

B) Supplementary Table S4]. 364 

3) Hospital-onset cases, (HAHO) 365 

Between 2009 and 2015, overall rates of HAHO SA TI and INVI remained stable in the entire 366 

population and among adults for both MRSA and MSSA infections (Table 3 and 4, Fig. 2). 367 

Notably, there was a 70.4% increase in pediatric HAHO MRSA TI, (5.4 to 9.2, OR: 1.7), 368 
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especially in non-invasive MRSA infections like uncomplicated skin and soft tissue infections 369 

(Table 4, Supplementary Table S4). 370 

The HAHO CA-MRSAG TI and INVI rates significantly increased in the entire population, 371 

with pediatrics predominantly experiencing non-invasive infections. This rise was mainly 372 

attributed to the hospital introduction and spread of the CA-MRSA-ST30-IV clone. The 373 

persistence of the CA-MRSA-ST5-IV clone and, to a lesser extent, other CA-MRSA clones 374 

such as USA300-LV and ST97-IV, also contributed to this evolution [Fig. 2 (A, B) Table 3 375 

and 4, Supplementary Table S4, and Fig. S2]. Furthermore, a displacement of the traditional 376 

HA-MRSAG, particularly the HA-MRSA-ST5-I clone, by the CA-MRSA clones was 377 

evidenced, primarily in adults, resulting in the stability of HAHO MRSA infections in this age 378 

group [Table 3 and 4, Fig. 2 (A, B), Supplementary Table S4, and Fig. S2]. 379 

4) Healthcare associated Cases (HA: HAHO + HACO)  380 

The overall rates of healthcare-associated SA TI increased by 22.5% (24.9 to 30.5, OR: 1.2), 381 

and INVI increased by 30.6% (16.0 to 20.9, OR: 1.3) during this period [Fig. 2 (A, B), 382 

Supplementary Table S3]. These increases were primarily driven by MSSA, showing a 26.0% 383 

rise in TI (12.3 to 15.5, OR: 1.3) and a 41.3% increase in INVI (8.0 to 11.3, OR: 1.4), mainly 384 

among adults with HACO infections. In the entire population and adults, healthcare-385 

associated MRSA TI and INVI incidence remained unchanged. However, pediatric patients 386 

saw a significant 57% increase (11.3 to 17.7, OR: 1.6, Supplementary Table S3) in MRSA TI 387 

(non-INVI) related to HAHO infections (Table 4 and Supplementary Table S4).  388 

This evolution appears linked to decreased adult HAHO HA-MRSAG infections, especially 389 

HA-MRSA-ST5-I. Concurrently, there's a notable rise in both HACO and HAHO TI and 390 

INVI infections by CA-MRSAG strains in both age groups. This is driven by the increasing 391 

ST30-IV clone incidence in both TI and INVI cases, along with rising INVI rates of other 392 

Jo
urn

al 
Pre-

pro
of



18 

 

minor clones (USA300-LV and ST97-IV), alongside sustained ST5-IV clone rates in INVI 393 

cases (Supplementary Tables S3 and S4).  394 

SA infections by Argentina regions 395 

In 2015, the prospective study revealed similar SA TI rates between the northern and southern 396 

regions (81.1 vs. 81.4, P=0.98), both surpassing the central region (41.0, P<0.0001). The 397 

disparity was due to higher MRSA (59.1) than MSSA (21.9) incidence in the North and 398 

higher MSSA (60.5) than MRSA (20.8) rates in the South (P<0.0001, Table 5). MRSA 399 

infection rates were 3.0-fold higher in the North (59.1) than the Center (19.9) and 2.8-fold 400 

higher than the South (20.8) of Argentina (P<0.0001), driven by major CA-MRSA clones, 401 

ST30-IV and ST5-IV, with the former showing a 4-5-fold higher rate than the latter clone in 402 

both regions. Other CA-MRSA clones (USA300-LV and ST97-IV) also contributed to this 403 

difference. In contrast, comparable HA-MRSAG infection rates were found between the North 404 

(5.6) and South (5.2) of the country, particularly related to the ST5-I clone (3.9 vs. 5.2, Table 405 

5). 406 

From 2009 to 2015, in longitudinal analysis, the northern region exhibited stable TI incidence 407 

for SA, MSSA, and MRSA (including genotypes and major clones) (Supplementary Fig. S3). 408 

In the central region, overall SA infections increased by 18.2% (34.7 to 41.0) and MSSA by 409 

30.9% (16.2 to 21.2), while MRSA rates remained steady (Table 5 and Supplementary Fig. 410 

S3). CA-MRSAG infections rose by 41.6%, linked to increased ST30-IV clone rates and 411 

decreased ST5-IV clone rates, primarily in the community (Supplementary Fig. S4). HA-412 

MRSAG infections declined by 63.3%, driven by decreased ST5-I clone rates, replaced by the 413 

ST30-IV clone and other CA-MRSA clones (ST97-IV and USA300-LV) (Table 5 and 414 

Supplementary Fig. S4). In the southern region, SA infections increased by 40.3% (58.0 to 415 

81.4), mainly due to a 47.2% rise in MSSA (41.1 to 60.5), with stable MRSA (genotypes and 416 
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major clones) rates, except for increased ST30-IV clone rates (Table 5 and Supplementary 417 

Fig. S3). 418 

Antimicrobial resistance to non--Lactam agents  419 

In 2015, CA-MRSAG had lower resistance than HA-MRSAG, consistent with 200912 420 

(P<0.0001, Supplementary Table S5). Multi-resistance was exclusive to HA-MRSAG as seen 421 

in our previous studies 12,13,25-27. All MRSA isolates were susceptible to teicoplanin, linezolid, 422 

and vancomycin (MIC90: 1 µg/mL, range: 0.5-2 µg/mL). Except for one CA-MRSA ST30-IV 423 

isolate with high-level mupirocin resistance (MuH, MIC: >1024 µg/mL, mupA+), MRSA 424 

isolates were mupirocin-sensitive (MIC90: 0.38 µg/mL, range: 0.094-0.5 µg/mL) (Table 1), 425 

and mupirocin resistance was only 0.3% (95%CI: 6.2-9) (1/341 MRSA). The ST30-IV clone 426 

showed lower CLI and ERY resistance than ST5-IV, decreasing from 2009 to 2015 427 

(Supplementary Table S5). With increased community-onset MSSA infections (2009-2015), 428 

resistance rose significantly to GEN (4.4% to 12.5%), ERY (8.2% to 15.9%), and CLI (3.8% 429 

to 11.6%, especially CLIi: 1.3% to 8.2%) (Supplementary Table S5). Among 66 ERY-430 

resistant MSSA isolates, CC8 (28.8%), CC398 (15.1%), CC30 (15.1%), CC45 (10.6%), and 431 

CC5 (9.1%) were most frequent lineages. CC398-t1451-ermT+ was exclusive to 2015, 432 

constituting 21.7% of ERY-resistant MSSA. All CC398-MSSA isolates (n: 10) were pvl-433 

negative and harbored scn gene, indicative of IEC system, with IEC types C (n: 6) and B (n: 434 

4) (Supplementary Table S6). 435 

 436 

DISCUSSION  437 

Notably, few studies provide information on MSSA and MRSA infection 438 

epidemiology, prevalence, and incidence evolution15,18-20, including shifts in major MRSA 439 

clones and their correlation with antimicrobial resistance, both in the general population and 440 

across age groups34-37. This study is the first nationwide report on the evolving incidence of 441 
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MSSA and MRSA infections in Argentina, highlighting on major MRSA clones causing 442 

community and hospital-onset infections across age groups. In the national prospective study 443 

in 2015, MRSA constituted 51.0% of SA isolates, with an overall TI rate of 24.0/100,000 444 

monthly visits, remaining stable since 2009. In contrast, CO MSSA INVI incidence rose, with 445 

increased erythromycin resistance linked to the emergence of MSSA CC398-t1451-ermT+ 446 

Concerning MRSA genotypes, our results align with previous studies 12,13, showing 447 

higher infections rates (over 10-fold) for typical CA-MRSAG compared to classic HA-448 

MRSAG, especially in non-invasive infections. The molecular characteristics and non-β-449 

lactam drug resistance shared by isolates from each HRC (CA-MRSA clones: ST30-IV, ST5-450 

IV, USA300-LV, and ST97-IV; HA-MRSA clones: ST5-I and ST100-IVNv) correspond to 451 

prior reports 12,13. Recent genomic epidemiology data from Latin America in 2019 38align 452 

with our results. Moreover, the association of different clonal backgrounds with distinct 453 

antibiotic resistance and virulence gene profiles is consistent with other studies 12,13,39,40. 454 

Genetic characteristics of CA-MRSA ST30-IV-t019 isolates suggest affiliation with the 455 

ARG4 phylogenetic clade, identified in a recent study of CC30 MRSA strains in Argentina 41. 456 

Considerably, this clone had the highest incidence, surpassing the other major clones CA-457 

MRSA/ST5-IV and HA-MRSA/ST5-I. However, incidence rates varied across infection 458 

epidemiological classes, patient age groups, and regions, which is crucial insights for guiding 459 

MRSA control strategies.  460 

The overall incidence rates of MSSA and MRSA TI were comparable across the entire 461 

population and adults. However, MRSA TI rates, particularly non-INVI, were 1.4 times 462 

higher in children (1-18 years) compared to MSSA TI rates. This discrepancy was more 463 

pronounced in the community setting (1.6 times higher) and CACO infections (1.7 times 464 

higher). These results, consistent with previous studies 12,14,15,42, underscore the heightened 465 

risk of CA-MRSA non-invasive infections, especially SSTIs, in children, associated with the 466 
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CA-MRSA-ST30-IV clone. Conversely, in adults over 30, MSSA invasive infections 467 

surpassed MRSA (1.3-fold), notably in musculoskeletal cases and the community (1.6-fold). 468 

In line with previous studies from the US and European countries 14,15,18-20,35,37, these findings 469 

highlight higher MSSA invasive infection rates than MRSA and variations based on infection 470 

site and population characteristics such as patient age.  471 

Additionally, although MRSA proportions were comparable between the community 472 

(50.7%) and the hospital setting (51.8%), higher SA TI and INVI incidence rates were 473 

detected in the community. This was linked to increased CO-MSSA TI and INVI, especially 474 

HACO-MSSA TI and INVI in adults, and higher CO-MRSA infection rates, particularly non-475 

INVI, in both age groups. These findings underscore the importance of targeting not only 476 

hospitals but also the community in strategies to control SA transmission 15,18. The CA-477 

MRSA-ST30-IV clone drove higher incidence of MRSA TI, especially non-INVI, in the 478 

community versus the hospital, notably in CACO infections in both age groups. However, 479 

MRSA INVI rates were similar between community and hospital settings. In the community, 480 

the CA-MRSA-ST30-IV clone caused the highest INVI incidence, with comparable rates 481 

between HACO and CACO infections in adults and pediatrics. In the hospital, this clone 482 

exhibited similar INVI rates to other major CC5 MRSA clones (CA-MRSA-ST5-IV and HA-483 

MRSA-ST5-I). These findings underscore different behaviors of two key CA-MRSA clones 484 

in community and hospital settings, indicating that unique capacities or characteristics may 485 

contribute to their success in these settings, consistent with previous reports 11,13,43-45. Beyond 486 

genetic traits 11, 38,41, these clones might have distinct environmental  reservoirs and 487 

colonization patterns 11,13, impacting their transmission capacity differentially. However, 488 

additional studies are needed to confirm this hypothesis. 489 

In Argentina, HA SA infections, particularly invasive cases, caused by both MSSA 490 

and MRSA, were over 3 times higher than CA infections. MRSA's higher incidence in HA 491 
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infections was mainly driven by CA-MRSA clones (with similar INVI rates between HACO 492 

and HAHO infections), particularly the ST30-IV and ST5-IV, alongside other CA-MRSA 493 

clones (USA300-LV and ST97-IV). Traditional HA-MRSAG, like ST5-I and ST100-IVNv 494 

clones in adults, contributed but to a lesser extent than CA-MRSA clones. These results 495 

confirm the infiltration and transmission of CA-MRSA clones in Argentine hospitals, 496 

consistent with the previous study 13. The dissemination of these MRSA clones, along with 497 

MSSA, is likely influenced by their virulence and fitness, as well as varying healthcare 498 

interventions, differing between high-income countries and low- and middle-income countries 499 

like Argentina, with limited resources and a higher burden of HA infections 4,23,46,47. 500 

Importantly, as reported previously12,13, multidrug resistance patterns were exclusive 501 

to HA-MRSAG. The CA-MRSA ST30-IV clone consistently showed lower resistance rates to 502 

erythromycin and clindamycin compared to ST5-IV counterparts throughout the analyzed 503 

period. However, a longitudinal analysis via the WHONET Argentina Network in 2018-2022 504 

24 revealed a slight increasing trend in resistance to ERY and CLI among MRSA isolates, 505 

highlighting the need for continuous surveillance for MRSA treatment alternatives in 506 

community and hospital settings. Additionally, one CA-MRSA ST30-IV clone isolate with 507 

mupirocin resistance (MuH, encoding by mupA) was identified, constituting 0.3% (95% CI 508 

0.054-1.654) of clinical MRSA isolates nationwide. Notably, the mupirocin resistance 509 

prevalence in Argentina (0.3%) falls within the lower range compared to European (0.3%-510 

98.0%), North American (0.5%-30.0% or more), and Asian (0%-75.0%) countries 48-52. A 511 

genomic study of CC30 MRSA strains from Argentine provinces also detected mupirocin 512 

resistance associated with the ST30-IV clone 41. These findings support the potential for 513 

transmission of these resistance determinants (mupA or mupB genes) through plasmids, which 514 

can also carry resistance genes to other antimicrobials across major SA lineages (CC5, CC8, 515 
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CC22, and CC30) in both human and animal populations 48,49,51,52. Therefore, ongoing 516 

surveillance and a strict mupirocin use policy are recommended in Argentina.  517 

On the other hand, the highly successful CC5 lineage, other prominent MRSA lineage 518 

in Argentina12,13,26, has shown potential for complex competitive interactions, including the 519 

acquisition of multidrug resistance, vancomycin resistance, and diverse SCCmec types 9,53.  520 

This lineage has undergone dynamic regional evolution, leading to specific sublineages with 521 

genomic changes associated with increased antibiotic resistance and decreased virulence 40,54-522 

56. Notable examples in this region include the spread of the CC5/ST105-II-t002 multidrug-523 

resistant MRSA clone in Rio de Janeiro, Brazil, 57  a neighboring country to Argentina. In 524 

Argentina, two HA-MRSA clones (CC5/ST5-I-t149, CC5/ST100-IVNv-t002) and one CA-525 

MRSA clone (CC5/ST5-IV-t311 and related) have been circulating since the 2000s12,26,58. 526 

Previous reports in this country have also indicated that the CA-MRSA ST5-IV clone 527 

expresses h-VISA or VISA phenotypes27,59,60, or exhibits reduced-susceptibility to tigecycline 528 

61. These findings underscore the need for global molecular surveillance of CC5 MRSA 529 

HRCs. 530 

Regarding the evolution in the incidence of SA infections in Argentina, SA total and 531 

invasive infection rates increased by 23.4% and 31.2%, respectively, from 2009 to 2015. This 532 

rise was driven by a 32.5% increase in MSSA TI and a 54.2% increase in MSSA INVI, 533 

mainly in adults. The majority of the MSSA increase was in community-onset MSSA TI 534 

(59.8%) and INVI (97.7%), including both HACO-MSSA and CACO-MSSA infections, 535 

especially in adults, although in children an increase in CACO MSSA INVI incidence was 536 

also noted. Our findings suggest that the overall burden of community-onset MSSA infections 537 

is rising in Argentina, contributing to the SA disease burden, with no significant MRSA 538 

changes. This pattern aligns with recent data from North America and Europe, including 539 

bloodstream and SSTI infections 15,18-,20,22,35. Importantly, our study has revealed a 540 
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simultaneous increase in CO-MSSA infections and resistance to non-β-lactam antibiotics, 541 

specifically erythromycin, linked to the emergence and spread of the MSSA-CC398-t1451-542 

ermT+-IEC+-pvl- lineage in Argentina. Another WHONET Argentina Network analysis24 has 543 

identified a significant rise in the MSSA relative proportion of total SA infections from 50.5% 544 

(5720 culture-confirmed SA infections) in 2009 to 66.9% (6278 culture-confirmed SA 545 

infections) in 2021, along with increased resistance to non-β-lactam antibiotics (clindamycin, 546 

erythromycin, and gentamicin). These findings support our longitudinal study data, 547 

suggesting a continuous increase in MSSA infections accompanied by the resistance to ERY, 548 

CLI and GEN since 2009, including the impact of the COVID-19 pandemic. Furthermore, in 549 

a recent study 38, the MSSA-CC398-t1451-ermT+ was detected as the predominant MSSA 550 

lineage in bloodstream isolates across Latin America's southern cone countries, including 551 

Argentina, during 2019. CC398 is a highly transmissible lineage, associated with both 552 

livestock (LA-MRSA) and humans (HA-MSSA). These two phylogenetic clades, LA and HA, 553 

exhibit genomic differences, particularly in mobile genetic elements acquisition or loss, 554 

influencing host adaptation, antimicrobial resistance and virulence. The HA-ST398-MSSA 555 

lineage, globally disseminated, is characterized by macrolide resistance, spa types t571 or 556 

t1451, and the IEC cluster presence, linking it to a human origin, in the majority of isolates 557 

62,63. Our study suggests that, in Argentina, this highly transmissible MSSA-CC398-t1451-558 

ermT+-IEC+-pvl- lineage likely initiated its spread during 2009-2015, driving the increase in 559 

macrolide resistance among MSSA infections.  560 

Notably, due to limited evidence on MSSA horizontal transmission, most studies have 561 

focused on the importance of transmission control measures with vertical or MRSA-targeted 562 

approaches, such as active surveillance or MRSA decolonization64.  Nevertheless, considering 563 

MSSA potential growing role as a healthcare-associated invasive pathogen, especially in 564 

community-onset infections, as indicated by our study in Argentina and other research 565 
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globally 15,18,19,22,63,65,66, reassessing and thoroughly studying MSSA epidemiology (general 566 

and molecular) is advisable for formulating effective control strategies. 567 

On the other hand, the sustained rates of MRSA TI and INVI during this period, 568 

particularly in adults, are associated with the stability of HAHO MRSA infections, reflecting 569 

an evolution already identified in other countries 18,22. In Argentina, this stability is linked to 570 

the replacement of HA-MRSA-ST5-I (previously linked to HAHO MRSA infections in adults 571 

25,58) by CA-MRSA ST30-IV and other clones like USA300-LV and ST97-IV. In adults, CA-572 

MRSA-ST30-IV supplements rather than replaces CA-MRSA ST5-IV, particularly in HA 573 

(HAHO and HACO) infections. Consequently, while HAHO MRSA infections remained 574 

stable in adults, CO MRSA total infections increased (20.5%), driven by a rise in INVI cases 575 

(82.3%), primarily due to increased HACO MRSA INVI. Contrastingly, MRSA TI rates in 576 

children increased by 26.7%, primarily due to a 1.7-fold rise in HAHO-MRSA TI, driven by 577 

CA-MRSAG (non-INVI)-TI associated with the spread of the CA-MRSA ST30-IV clone in 578 

hospitals. This, along with the ST5-IV clone, contributed to the surge in HAHO MRSA 579 

infections in children, confirming our previous study 13 emphasizing the high risk of CA-580 

MRSAG colonization and acquisition in children aged 1 to 18 years in hospitals.  581 

The need for reinforced strategies to control HAHO MRSA infections, particularly in 582 

children, is underscored once again 12,42,65,67. On the other hand, the CO MRSA infections 583 

rates in children remained consistently higher than MSSA infections and stable from 2009 to 584 

2015. This stability was linked to the ST30-IV clone spread, displacing the CA-MRSA ST5-585 

IV clone in CACO infections (TI and INVI) and HACO non-invasive infections. These 586 

findings suggest that the distinct behavior of MRSA clones is influenced by both the infection 587 

setting (hospital or community), reflecting differences in transmission capacity, and 588 

associations between SA genotypes and patient age, as observed in certain SA lineages 12,57,68. 589 
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All these results demonstrate that the increase in SA infections during this period was 590 

primarily driven by a rising evolution over time in community-onset SA infections, 591 

particularly in adults, related to increased rates of HACO-MSSA and HACO-MRSA 592 

infections and a rise in CACO-MSSA infections in both age groups. Conversely, the stability 593 

in HAHO SA infections, mainly in adults, and the decreasing MRSA proportion during 2018-594 

2021, as shown by the WHONET database 24, could be attributed to diverse hospital infection 595 

control strategies implemented in Argentina (http://www.vihda.gov.ar/). This suggests more 596 

effective infection control practices in hospitals compared to the community, aligning with 597 

trends reported in some European Union countries 14,15 and the US 18. Alongside current 598 

hospital strategies like contact precautions, it's crucial to consider non-specific approaches for 599 

MRSA and focus infection control on SA (MRSA and MSSA) to disrupt the transmission 600 

chain between hospitals and communities 18,65,69, considering it as a One Health issue 601 

encompassing humans, the environment, animals, and plants 1,10,70. 602 

The countrywide coverage of this study allowed for detecting similar rates of SA infections 603 

in the northern and southern regions, both higher than in the central region of Argentina. The 604 

North had a higher MRSA incidence (59.1) than MSSA (21.9), while the South exhibited a 605 

higher MSSA incidence (60.5) than MRSA. The MRSA infections rates were comparable 606 

between the central and southern regions, but the northern region had a consistently higher 607 

MRSA incidence (2-3 fold), mainly due to elevated CA-MRSAG rates, particularly ST30-IV, 608 

although ST5-IV, USA300-LV, and ST97-IV also contributed. These findings suggest that in 609 

the North, specific weather conditions (warmer and/or more humid) and socio-demographic 610 

factors (overcrowding, low income, among others) would contribute to the spread of CA-611 

MRSA clones, aligning with other studies 71-73. Conversely, the sparsely populated South, 612 

with different weather conditions (cooler and/or drier), has higher MSSA incidence than other 613 

regions of Argentina. Furthermore, while MSSA and MRSA infections rates remained stable 614 

Jo
urn

al 
Pre-

pro
of



27 

 

in the North between 2009 and 2015, the Centre and the South experienced SA infection rate 615 

increases (18.2% and 40.3%, respectively), driven by rising MSSA rates (30.8% and 47.2%, 616 

respectively). In line with other studies 15,20,66, these results support the hypothesis  that 617 

MRSA and MSSA don't compete for the same ecological niche. Then, different factors, 618 

including weather conditions, socio-demographics, antibiotic use rates, and the unique genetic 619 

background of each clone, may favor the transmission of MSSA or MRSA. Consequently, 620 

MRSA and MSSA do not inevitably replace each other.  621 

Significantly, most changes in MRSA clone infections rates occurred in the central region, 622 

where the hospital entry of the ST97-IV clone, causing HAHO infections, was identified. This 623 

clone, also identified as a minor colonizer during hospital admissions in Córdoba in a prior 624 

study 13, is likely genetic related to livestock-associated MRSA (LA-MRSA), CC97 9,74. The 625 

central region, Argentina's primary agricultural and livestock area 75,would require further 626 

studies to investigate livestock as a possible reservoir of this lineage in Argentina. 627 

In conclusion, our study has identified an increasing burden of SA infections in Argentina 628 

from 2009 to 2015, predominantly in the central and southern regions, driven by a rise in 629 

community-onset infections. This surge was primarily attributed to growing rates of MSSA 630 

infections, accompanied by increased resistance to macrolides and gentamicin, while the 631 

proportion of MRSA remained stable. The emergence and spread of the erythromycin-632 

resistant MSSA CC398-t1451 lineage contributed to this evolution, adding to the overall 633 

burden of invasive SA disease. The rise in SA infections was associated with increased rates 634 

of HACO MRSA and HACO MSSA total and invasive infections in adults, as well as a rise in 635 

CACO MSSA infections across age groups. Conversely, CACO MRSA infections remained 636 

stable. While overall rates of HAHO MRSA infections showed no significant changes in the 637 

entire population and adults, there was a notable 1.7-fold increase in children, contributing to 638 

the overall rise in healthcare-associated (HA) SA infections. Our study also identified the 639 
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entry and spread of the ST30-IV clone in hospitals, along with other CA-MRSA clones 640 

(USA300 LV and ST97-IV). Importantly, these clones complemented rather than replaced the 641 

ST5-IV clone in HA (HACO and HAHO) invasive infections in both age groups, with the 642 

ST30-IV clone displacing the HA-MRSA ST5-I clone, particularly in adult HAHO infections. 643 

The strengths of this study include: i) the first-time assessment of overall SA disease 644 

incidence throughout the country. ii) a prospective 2015 study with a retrospective 645 

longitudinal investigation comparing SA infection incidence between 2015 and the previous 646 

2009 study 12, iii) molecular characterization of isolates with sociodemographic and clinical 647 

patient data. Both studies (2009 and 2015) covered hospitals distributed nationwide (most 648 

from WHONET Argentina Network), serving 3.5% of the Argentine population76. 649 

Importantly, the analysis has also been stratified by age groups, epidemiological classes, and 650 

country regions. 651 

The main limitation of the comparative study is the relatively short inclusion period 652 

for infection cases in each study (one month). Monthly values of the pooled estimated 653 

incidence rates were compared across all surveillance sites. The limited number of monthly 654 

cases may have led to underpowered statistical analysis, potentially missing changes in 655 

incidence rates, especially for minor clones. However, the identified changes were sufficient 656 

to demonstrate increases or decreases in the burden of MRSA, MSSA, and principal MRSA 657 

clones. Furthermore, the analysis involved only two points separated by 6 years, lacking 658 

consecutive intermediate points to demonstrate a continuous trend throughout the period. 659 

Nevertheless, the annual results of the national surveillance on antimicrobial resistance 660 

evolution 24 provided by the WHONET Argentina Network (to which most of the hospitals 661 

that participated in both studies belong) align with the evolutionary results on MRSA and 662 

MSSA infections from our longitudinal analysis, supporting the continuity of this evolution 663 

until at least the year 2021. Additionally, for comparability between the results of both 664 
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studies, 85% of the hospitals participated in both studies, with only an 8.3% difference in the 665 

populations served. 666 

The analysis of MRSA and MSSA incidence in Argentina adds to existing literature, 667 

underscoring the community's role as a growing reservoir for successful MSSA and CA-668 

MRSA clones, resulting in healthcare-associated community-onset infections. These findings 669 

provide valuable insights for improving S. aureus infection prevention and control programs, 670 

guiding transmission control priorities in Argentina and globally, and addressing 671 

antimicrobial resistance on a global scale. 672 
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 1013 

Figure Legends 1014 

Figure 1: Incidence of cases of (A) total and (B) invasive infections caused by S. aureus 1015 

(SA), MSSA, MRSA and MRSA genotypes (including CA-MRSAG and HA-MRSAG and 1016 

major MRSA clones) in the total population and by age group, 2009 and 2015, Argentina 1017 

 1018 

Abbreviation: n*: P < 0.05 by 2 test for the comparison between 2009 and 2015 of infections incidence. 1019 

Incidence: Number of cases /100,000 monthly visits. Number of visits (V): include outpatient facility, 1020 

emergency service and admissions during one month.  1021 
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Figure 2: Incidence of cases of (A) total and (B) invasive infections caused by S.aureus (SA), 1023 

MSSA, MRSA and MRSA genotypes (including CA-MRSAG and HA-MRSAG and major 1024 

MRSA clones) by onset type and epidemiological criteria (CDC) of infections, 2009 and 1025 

2015, Argentina. 1026 

 1027 

Abbreviation:  n*: P < 0.05 by 2 test for the comparison between 2009 and 2015 of infections incidence, by 1028 

onset type and epidemiological criteria (CDC) of infections. 1029 

Incidence: Number of cases /100,000 monthly visits. Number of visits (V): include outpatient facility, 1030 

emergency service and admissions during one month  1031 

 1032 

 1033 
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Table 1. Characteristics of 341 MRSA isolates belonging to HA-MRSA and CA-MRSA genotypes, Argentina, 2015. 

 

CC, Clonal Complex; ST, Sequence Type, PFGE type/subtype, Pulsed Field Gel Electrophoresis 
type and subtypes; RIDOM spa type: staphylococcal protein A (spa) type assigned through the 
RIDOM databases (http://spaserver.ridom.de); The spa type was used to predict sequence 
types (STs). MLST was carried out in at least one strain of each spa-type detected, 
https://pubmlst.org/organisms/staphylococcus-aureus database, SCCmec: Type of 
Staphylococcal Cassette Chromosome mec (SCCmec NT: it was not possible to ascertain a class 
of mec complex or a type of ccr); pvl, Panton Valentine leukocidin genes (lukS-PV-lukF-PV); agr 
type, type of accessory gene regulator allotype.  

a no. (%/%), number and % of total MRSA (n: 668)/% of each genotype [CA-MRSAG (n: 302) or 

HA-MRSAG (n: 39)] 

b no. (%), number and % of strains with this molecular characteristic [PFGE subtype (only those 
more frequent are indicated) or spa type or SCCmec type or pvl genes] belonging to each 
genetic background: CA-MRSAG (n: 302) or HA-MRSAG (n: 39) genotypes. % is not expressed 
when only one isolate with this characteristic was detected 

Genetic 
background 

ST 
PFGE 

type/no.  
(%/%)a 

PFGE 
Subtype/no. (%)b 

RIDOM 
spa type/ 
no.(%)b 

SCCmec 
 no. (%)b 

pvl 
no. (%)b 

agr 
type 

virulence genesc 

profile 

Drug 

resistanced 

non--Lactam 
(%) 

CA-MRSA 
n: 302 

         

CC30 30 
N/212 

(62.1/70.2) 

N4/101 (47.6), 
N6/23(10.8), 
N30/22(10.4) 

N13/20 (9.4), and 
26 minor subtypes. 

. 

t019: 208 (98), 
t021: 1, t3037: 1,  
t433: 1, t2529: 1 

IVc: 209 (98.5), 
IVh: 2(1), IVNT: 

1 
203 (96) 3 egc-lukDE-bbp-cna 

GEN 24 (11.4), 
ERY 6 (3)e, CLIi 3 

(1.4)e, CLIc 3 
(1.4), Cip 7(3.3), 

RIF 1, MUP 1 

CC5 5 
I/47 

(13.8/15.6) 

I1/28 (59.6), I29/4 
(8.5), I26/2 (4.3), 
I47/2 (4.3), I68/2 
(4.3), and 9 minor 

subtypes 

t311: 29 (61.7), 
t002: 15 (31.9), 
t1265: 1, t1215: 

1, t062: 1 

IVa: 43 (91.5), 
IVc: 3 (6.4), IVB: 

1 

32 
(68.1) 

2 
sea-egc-lukDE 32 (68.1), 

egc-lukDE 15 (31.9) 

GEN 5 (10.6), 
ERY 12 (25.5)e, 
CLIi 8 (17)e,CLIc 

3(6.4), Cip 1 

CC8 8 
USA300/18 

(5.3/6.0) 

USA300-5/4 (22), 
USA300-17/ 2(11), 
USA300-19/ 2(11) 

and 10 minor 
subtypes 

t008: 14 (77), 
t024: 2(11), 

t723: 1, t068: 1 

IVc: 9 (50), 
Vg: 3(16.5) 

IVNTh:3(16.5) 
IVa: 2(11) 

IVb: 1  

10 (56) 1 

pvl-lukDE-sek-seq-bsa: 5 (28), 
lukDE-bsa: 3 (17),  

lukDE-sea-bsa: 3 (17),  
pvl-lukDE-sea-sek-seq-bsa: 2(11), 

lukDE-sea-sek-seq-bsa: 1(5), 
pvl-lukDE-sec-sek-seq-bsa: 1(5), 

lukDE-sec- bsa: 1(5),  
pvl-lukDE-sed-sej-sek-seq-bsa:1(5) 

pvl-sed-sej-bsa: 1(5) 

GEN 5(28), ERY 
4(22.2), CLIi 

2(11), CLIc 1, CIP 
6(33.3) 

CC97 97 
DD/12 

(3.5/4.0) 

DD1/5 (42), DD21/2 
(17) and 4  minor 

subtypes 

t267: 3(25), 
t359: 2(17), 

t1190: 2(17), 
t521: 1, t8870: 1, 
t1247: 1, t2445: 

1, t2383: 1 

IVa: 10 (83), IVc: 
2(17) 

0(0) 1 lukDE 12(100)  
GEN 3(25), ERY 

1, CLIi 1 

CC8 72 
R/10 

(2.9/3.3) 
R1/6 (60) and  4 
minor subtypes 

t148: 10 (100) 
IVc: 9 (90), IVa: 

1 
0 (0) 1 egc-lukDE 10(100) 

GEN 4(40), ERY 
1(10), CLIi 1 (10), 
CIP 2(20), RIF 2 

(20) TMS 1 

CC509 207 
Y/2 

(0.6/0.7) 
Y1/ 1(50), Y4 1(50) t525 IVa: 2(100) 0 (0) 3 

egcf-etaa- 1(50),  
egcf-cna 1(50) 

 

CC6 1649 
QQ/1 

(0.1/0.3) 
QQ2 t701 IVNTh 0 (0) 1 lukDE-seb-sea-bsa-cna TMS 

HA-MRSA 
n: 39 

         

CC5 5 
A/24 

(7.0/61.5) 

A102/3 (12.5), 
A10/2 (8.3), A40/2 

(8.3), and 15  minor 
subtypes 

t149 22(92), 
t15913: 1, 
t17035: 1 

I: 24 (100) 0 (0) 2 egc-lukDE 

GEN 21 (88), 
ERY 24 (100), 
CLIc 24 (100), 

CIP 23 (96), TMS 
1, RIF 1  

CC5 100 
C/15 

(4.4/38.5) 
C30/6 (40), and 9  
minor subtypes 

t002: 9 (60), 
t045: 2(13) 

t1084, t1791, 
t548 

NT 11 (73) 
IVNv: 4 (27) 

0 (0) 2 egc-lukDE 

GEN 14 (93), 
ERY 8 (53), CLIc 

6 (40), CLIi 2 
(13), CIP 9 (60), 

RIF 13 (87) MIN 1 
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c Virulence genes profile: The enterotoxins: sea, seb, sec, sed, see, seg, seh, sei, sej, sen, seo, 
sem, seq and sek; toxic shock syndrome toxin 1(TSST-1): tst; exfoliative toxins: eta and etb; 
leukocidin: lukE-lukD and the class F leukocidin: lukM; bacteriocine (bsa), adhesins: for 
collagen (cna) and for bone sialoprotein-binding protein (bbp) and the arcA gene (indicator of 
the arginine catabolic mobile element, ACME) were analyzed and those detected are indicated 
(number and % of positive isolates is expressed when not all isolates harbor this virulence 
factor). 

d Drug resistance to non--Lactams (%), is indicated as follows: Gentamicin (GEN), 
Erythromycin (ERY), Clindamycin (CLIc and CLIi: constitutive and inducible resistance to 
macrolide, lincosamide and streptogramine B, respectively ), Ciprofloxacin (CIP), Rifampin 
(RIF), Trimethoprim/Sulfamethoxazole (SXT), Minocycline (MIN) and Mupirocin (MUP), (%) of 
strains resistant to these antibiotics within each genetic background is indicated when more 
than one isolate was detected.  

e P < 0.01 by 2 test, for comparison between MRSA isolates characterized as pulsotype N  and 
those with pulsotype I  for resistance to clindamycin and erythromycin antibiotics 

fThe egc locus appears to be present in a variant or truncated form with only genes sem, sei 
and seo being detectable. 

g SCCmec Vv: positive for ccrC locus and class C2 mec gene complex and negative for J1 region 
of SCCmec V and for other SCCmec regions analyzed. 

h IV NT: SCCmec type IV non typable. 

 

 

Jo
urn

al 
Pre-

pro
of



Table 2: Percentage and incidence of total (TI) and invasive (INVI) infections caused by S. aureus (SA), including 

MSSA, MRSA and MRSA-genotypes in Argentine hospitals by age group: 2009 vs. 2015, with comparisons in 2015 

between pediatric vs. adult patients and MRSA vs. MSSA for TI and INVI. 

 S. aureus infections  
% (n) / incidence of total cases and % (INV) / incidence of invasive cases 

 Total Adults (≥ 19) Pediatrics (<19)  

 

2009 
Na: 591 

INVb:296 
%(n)/ Inc/ 

%(INV)/InId 

2015 
Na: 668 

INVb:363 
%(n)/ Inc/ 

%(INV)/InId 

2015 vs. 
2009 

P value/OR 
(95%CI) 

2009 
Na: 366 

INVb:188 
%(n)/ Inc/ 

%(INV)/InId 

2015 
Na: 417 

INVb: 242 
%(n)/ Inc/ 

%(INV)/InId 

2015 vs. 
2009 

P value/OR 
(95%CI) 

2009 
Na: 225 

INVb: 108 
%(n)/ Inc/ 

%(INV)/InId 

2015 
Na: 251 

INVb: 121 
%(n)/ Inc/ 

%(INV)/InId 

2015 vs. 
2009 

P value/OR 
(95%CI) 

Pediatric vs. 
Adults 
2015 

P value/OR 
(95%CI) 

 

SA 
Total 

100(591) 100(668)  100(366) 100(417)  100(225) 100(251)   

39.8 49.1 
0.002/1.2 
(1.10-1.38) 

38.1 47.4 
0.0022/1.2 
(1.08-1.43) 

43.0 52.3 
0.033/1.2 
(1.02-1.46) 

0.2155 

SA 
INV 

100(296) 100(363)  100(188) 100(242)  100(108) 100(121)   

19.9 26.1 
0.0002/1.3 
(1.15-1.56) 

19.6 27.5 
0.0004/1.4 
(1.16-1.70) 

20.6 25.2 0.14 
0.44 

MSSA 
Total 

45.5(269)    49.0(327)      0.22 46.7(171)    53.7(224)     0.07 43.6(98)    41.0(103)     0.63 
0.0015/0.60 
(0.44-0.82) 

18.1 24.0 
0.0006/1.3 
(1.13-1.56) 

17.8 25.4 
0.0004/1.4 
(1.17-1.75) 

18.7 21.4 0.33 
0.15 

MSSA 
INV 

48.3(143)    55.4(201)    0.08 50.5(95)    57.0(138)     0.21 44.4(48)    52.1(63)     0.30 0.44 

9.6 14.8 
0.0001/1.5 
(1.24-1.90) 

9.9 15.7 
0.0005/1.6 
(1.22-2.06) 

9.2 13.1 0.06 
0.24 

MRSA 
Total 

54.5(322) 51.0(341) 0.23 53.3(195) 46.3(193) 0.07 56.4(127) 59.0(148) 0.56 
0.0015/1.7 
(1.22-2.29) 

21.7 25.1 0.06 20.3 21.9 0.44 24.3 30.8 
0.047/1.3 
(1.00-1.61) 

0.0017/1.4 
(1.14-1.74) 

MRSA 
INV 

51.7(153) 44.6(162) 0.42 49.5(93) 43.0(104) 0.21 55.5(60) 47.9(58) 0.30 0.44 

10.3 11.9 0.45 9.7 11.8 0.17 11.5 12.1 0.82 0.89 

In MSSA vs. MRSA 
P value/ OR (95%CI) 

0.0292/0.84 
(0.71-0.98)  

0.59  0.21 0.13  0.06 
0.0045/0.70 
(0.54-0.89)  

 
 

InI MSSA vs. MRSA 
P value/ OR(95%CI) 

0.5610 
0.041/1.2 
(1.01-1.53) 

 0.8840 
0.028/1.3 
(1.03-1.71) 

 0.2482 0.6494  
 

CA-MRSAG 

Total 

38.7(229) 45.2(302) 
<0.0001/1.7 
(1.32-2.06) 

31.1(114) 38.8(162) 
0.0210/1.4 
(1.04-1.89) 

51.1(115) 55.8(140) 0.33 
<0.0001/2.0 
(1.45-2.73) 

15.4 22.2 
<0.0001/1.4 
(1.21-1.71) 

11.9 18.4 
 0.0003/1.5 
(1.22-1.97) 

21.9 29.2 
0.024/1.3  
(1.04-1.70) 

0.0001/1.6  
(1.26-2.00) 

CA-MRSAG 

INV 

26.4(78) 35.8(130) 
0.009/1.6 (1.12-
2.18) 

16.0(30) 32.2(78) 
0.0001/2.5 
(1.56-4.01) 

44.4(48) 43.0(52) 0.93 
0.06 

5.2 9.6 
<0.0001/1.8 
(1.37-2.41) 

3.1 8.9 
<0.0001/2.8 
(1.87-4.31) 

9.2 10.8 0.42 
0.26 

HA-MRSAG 

Total 

15.7 (93) 5.8(39) 
<0.0001/0.3 
(0.22-0.49) 

22.1 (81) 7.4(31) 
<0.0001/0.3 
(0.18-0.44) 

5.3 (12) 3.2(8) 0.44 
0.0234/0.41  
(0.19-0.89) 

6.2 2.9 
<0.0001/0.5 
(0.32-0.66) 

8.4 3.5 
<0.0001/0.4 
(0.28-0.63) 

2.3 1.7 0.48 
0.06 

HA-MRSAG 

INV 

25.3 (75) 8.8 (32) 
0.0001/0.3 
(0.18-0.44) 

33.5 (63) 10.7(26) 
<0.0001/0.2 
(0.14-0.40) 

11.1 (12) 5.0(6) 0.14 
0.10 

5.1 2.4 
0.0002/0.5 
(0.31-0.70) 

6.6 3.0 
0.0001/0.4 
(0.26-0.65) 

2.3 1.3 0.21 
0.06 

N-ST30-IVe 

Total 

17.6(104) 31.7(212) 
<0.0001/2.2 
(1.67-2.84) 

17.5(64) 25.7(107) 
0.0057/1.6 
(1.15-2.30) 

17.8(40) 41.8(105) 
<0.0001/3.3 
(2.2-5.1) 

<0.0001/2.1 
 (1.49-2.91) 

7.0 15.6 
<0.0001/2.2 
(1.76-2.81) 

6.6 12.1 
<0.0001/1.8 
(1.34-2.49) 

7.6 21.9 
<0.0001/2.9 
(1.9-4.1) 

<0.0001/1.8 
 (1.38-2.35) 

N-ST30-IVe 

INV 

7.8(23) 21.2(77) 
<0.0001/3.2 
(2.25-5.48) 

5.3(10) 17.8(43) 
0.0001/3.9   
(1.9-7.77) 

12.0(13) 28.1(34) 
0.0027/2.8 
 (1.43-5.71) 

0.0232/1.8  
(1.08-3.02) 

1.5 5.7 
<0.0001/3.7 
(2.30-5.80) 

1.0 4.9 
<0.0001/4.7 
(2.39-9.21) 

2.5 7.1 
0.0008/2.9 
(1.52-5.35) 

0.10 

I-ST5-IVe 

Total 

17.2(102) 7.0(47) 
<0.0001/0.4 
(0.25-0.52) 

10.7(39) 5.8(24) 
0.0119/0.5 
(0.30-0.87) 

28.0(63) 9.2(23) 
<0.0001/0.3 
(0.2-0.4) 

0.13 

6.9 3.4 
 0.0001/0.5 
(0.36-0.71) 

4.1 2.7 0.12 12.0 4.8 
0.0001/0.4  
(0.3-0.6) 

0.06 

I-ST5-IVe 

INV 

14.2(42) 6.9(25) 
0.0020/0.4 
(0.27-0.75) 

7.4(14) 6.2(15) 0.76 25.9(28) 8.3(10) 
0.0003/0.3 
(0.12-0.55) 

0.46 

2.8 1.8  0.08 1.5 1.7 0.84 5.4 2.1 
0.0079/0.4 
(0.19-0.79) 

0.62 

A-ST5-Ie 

Total 

10.3(61) 3.6(24) 
<0.0001/0.3 
(0.20-0.52) 

15.8(58) 4.8(20) 
<0.0001/0.3 
(0.16-0.47) 

1.3(3) 1.6(4) 0.91 
0.06 

4.1 1.8 
 0.0003/0.4 
(0.27-0.69) 

6.0 2.3 
0.0001/0.4 
(0.23-0.62) 

0.6 0.83 0.62 
0.06 

A-ST5-Ie 

INV 

15.9(47) 5.2(19) 
<0.0001/0.3 
(0.17-0.51) 

23.4(44) 6.6(16) 
<0.0001/0.2 
(0.13-0.42) 

2.8(3) 2.5(3) 0.78 
0.10 

3.2 1.4 
 0.0020/0.4 
(0.26-0.75) 

4.6 1.8 
0.0113/0.4  
(0.23-0.70) 

0.6 0.6 0.92 
0.08 

C-ST100-IVNve, 
Total 

3.6(21) 2.2(15) 0.18 3.6(13) 2.6(11) 0.18 3.6(8) 1.6(4) 0.27 0.56 

1.4 1.1 0.46 1.3 1.2 0.84 1.5 0.8 0.39 0.48 

C-ST100-IVNve, 
INV 

5.7(17) 3.6(13) 0.09 4.8(9) 4.1(10) 0.90 7.4(8) 2.5(3) 0.15 0.63 

1.1 0.96 0.58 0.9 1.1 0.85 1.5 0.6 0.17 0.41 

USA300-ST8-IVe 

Total 

0.8(5) 2.7(18) 
0.0145/3.3 
(1.24-8.46) 

1.1(4) 2.9(12) 
0.08 

0.4(1) 2.4(6) 0.13 
0.71 

0.3 1.3 
0.0035/3.9 
(1.52-10.18) 

0.4 1.4 
0.0294/3.3 
(1.12-9.62) 

0.2 1.2 0.06 
0.86 

USA300-ST8-IVe 

INV 

1.0(3) 1.3(9)  0.12 1.6(3) 2.9(7) 0.38 0(0) 1.7(2) NA 0.47 

0.2 0.7  0.06 0.3 0.8 0.16 0 0.4 NA 0.41 

DD-ST97-IVe 

Total 

0.7(4) 1.8(12) 0.08 0.8(3) 1.7(7) 0.29 0.4(1) 2.0(5) 0.13 0.77 

0.3 0.9 
0.0295/3.3 
(1.11-9.62) 

0.3 0.8 
0.16 

0.2 1.0 0.11 
0.76 

DD-ST97-IVe 

INV 

1.0(3) 1.5(10)  0.08 1.1(2) 2.1(5) 0.42 0.9(1) 4.1(5) 0.21 0.31 

0.2 0.7 
 0.035/3.6 
(1.10-12.20) 

0.2 0.6 
0.21 

0.2 1.0 0.11 
0.51 

 

CA-MRSAG and HA-MRSAG community-associated and healthcare-associated methicillin-resistant S. 

aureus genotypes.  

% (n) of cases and % (n) of INV isolates, NA: Not applicable. 
aN: Total number of patients with S. aureus infections in each category (total, adults, pediatrics). 

Jo
urn

al 
Pre-

pro
of



bINV: Total number of patients with S. aureus invasive infections in each category (total, adults, 

pediatrics). 
cIn: Incidence: Number of cases /100.000 monthly visits. Number of visits (V): include outpatient facility, 

emergency service and admissions during that month. 
dInI: Invasive infections incidence: Number of cases of invasive infections/100.000 monthly visits. 

Number of visits (V): include outpatient facility, emergency service and admissions during that month. 
eGenotypes (major clones) are denoted as: type (by PFGE)-Sequence Type (ST by MLST)-SCCmec type 

P values ≤ 0.05 for all comparisons are shown in boldface font.  
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Table 3: Percentage and incidence of total (TI) and invasive (INVI) infections caused by S. aureus (SA), including 

MSSA, MRSA and MRSA-genotypes in Argentine hospitals, by onset type and epidemiological criteria: 2009 vs. 2015, 

with comparisons in 2015 between infection types and MRSA vs. MSSA for TI and INVI. 

 
 S. aureus infections  

% (n) / incidence of total cases and % (INV) / incidence of invasive cases 

 
Hospital onset (HO) 

 (HAHO) 
Community onset (CO) 

 (CACO + HACO) 
2015 

Community-associated-
community-onset (CACO) 

Healthcare-associated 
community-onset (HACO) 

2015 

 

2009 
Na: 216 

INVb:158 
%(n)/ Inc 

%(INV)/InId 

2015 
Na: 197 

INVb:158 
%(n)/Inc 

%(INV)/I
nId 

2015 vs. 
2009 

P value/ 
OR 

(95%CI) 

2009 
Na: 375 

INVb:138 
%(n)/ Inc/ 

%(INV)/InId 

2015 
Na: 471 

INVb: 205 
%(n)/Inc 

%(INV)/InId 

2015 vs. 
2009 

P value/ 
OR 

(95%CI) 

CO vs. 
HAHO 

P value/OR 
(95%CI) 

2009 
Na: 222 

INVb:58 
%(n)/ Inc/ 

%(INV)/InId 

2015 
Na: 253 
INVb: 79 
%(n)/Inc 

%(INV)/InId 

2015 vs. 
2009 

P value/ 
OR 

(95%CI) 

2009 
Na: 153 

INVb:80 
%(n)/ Inc/ 

%(INV)/InId 

2015 
Na: 218 

INVb: 126 
%(n)/Inc 

%(INV)/InId 

2015 vs. 
2009 

P value/ OR 
(95%CI) 

HACO vs. 
CACO 

P value/OR 
(95%CI) 

HACO vs. 
HAHO 

P value/OR 
(95%CI) 

SA 
Total 

100(216) 100(197)  100(375) 100(471)   100(222) 100(253)  100(153) 100(218)    

14.6 14.5 0.54 25.2 34.6 
<0.0001/1.4 
(1.21-1.63) 

 <0.0001/2.4 
(2.03-2.82) 

15.0 18.6 
 0.0175/1.2 
(1.04-1.49) 

10.3 16.0 
<0.0001/1.6 
(1.27-1.91) 

 0.10  0.30 

SA 
INV 

100(158) 100(158)  100(138) 100(205)   100(58) 100(79)  100(80) 100(126)    

10.6 11.6 0.77 9.3 15.1 
<0.0001/1.6 
(1.31-2.01) 

 0.0136/1.3     
(1.05-1.60) 

3.9 5.8 
 0.0210/1.5 
(1.06-2.08) 

5.4 9.2 
<0.0001/1.7 
(1.30-2.27) 

 0.0010/1.6 
(1.59-1.20) 

  0.06 

MSSA 
Total  

50.9(110) 48.2(95) 0.65 42.4(159) 49.3(232) 0.053  086 38.7(86) 45.8(116)  0.14 47.7(73) 53.2(116) 0.35  0.13   0.31 

7.5 7.0 0.41 10.7 17.1 
<0.0001/1.6 
(1.31-1.98) 

 <0.0001/2.4     
(1.92-3.10) 

5.8 8.5 
 0.0063/1.5 
(1.11-1.94) 

4.9 8.5 
0.0002/1.7 
(1.30-2.32) 

 0.99   0.15 

MSSA 
INV 

48.7(77) 51.2(82) 0.57 47.8(66) 58.0(119) 0.062  024 41.4(24) 59.5(47) 
 0.0360/2.1 
(1.05-4.12) 

52.5(42) 57.1(72) 0.57  0.73   0.46 

5.2 6.0 0.54 4.4 8.7 
<0.0001/1.9 
(1.46-2.66) 

 0.0091/1.5 
(1.10-1.92) 

1.6 3.5 
 0.0019/2.1 
(1.31-3.48) 

2.8 5.3 
<0.0010/1.9 
(1.28-2.73) 

 0.0201/1.53  
(1.06-2.21) 

  0.42 

MRSA 
Total 

49.1(106) 51.8(102) 0.65 57.6(216) 50.8(239) 0.053  0.8075 61.3(136) 54.2(137)  0.11 52.3(80) 46.8(102) 0.35  0.13  0.31 

7.1 7.5 0.96 14.6 17.6 
0.044/1.2  
(1.01-1.45) 

 <0.0001/2.3 
(1.86-2.95) 

9.2 10.1  0.43 5.4 7.5 
0.0263/1.4 
(1.04-1.86) 

 0.0236/0.7 
(0.58-0.96) 

 >0.99 

MRSA 
INV 

51.3(81) 48.1(76) 0.57 52.2(72) 42.0(86) 0.062  0.24 58.6(34) 40.5(32) 
 0.0360/0.5 
(0.24-0.95) 

47.5(38) 42.9(54) 0.57  0.73  0.46 

5.5 5.6 0.54 4.9 6.3 0.09  0.43 2.3 2.4 0.98 2.6 3.9 
0.0367/1.6 
(1.03-2.34) 

 0.0177/1.70 
(1.09-2.61) 

 0.06 

In:  MSSA  vs. 
MRSA 
P value/ OR 
(95%CI) 

0.79 0.62  
0.0032/0.74 
(0.60-0.90)  

0.75   
0.0008/0.6 
(0.48-0.83)  

0.19  057 0.34    

InI:  MSSA vs. 
MRSA 
P value/ OR 
(95%CI) 

0.75 0.63  0.61 
0.021/1.38 
(1.05-1.82) 

  019 0.09  0.65 0.11    

CA-MRSAG 

Total 

15.7(34) 38.6(76) 
<0.0001/3.4 
(2.1-5.3) 

52.0(195) 48.0(226) 0.27 
 0.026/1.5 
(1.05-2.06) 

60.8(135) 53.8(136)  0.14 39.2(60) 41.3(90) 0.77 
 0.007/0.6 
(0.42-0.87) 

 0.57 

2.3 5.6 
<0.0001/2.4 
(1.63-3.65) 

13.1 16.6 
0.0161/1.3 
(1.04-1.53) 

 <0.0001/3.0  
(2.3-3.9) 

9.1 10.0  0.43 4.0 6.6 
0.0028/1.6 
(1.18-2.27) 

 0.0022/0.7 
(0.51-0.86) 

 0.28 

CA-MRSAG 

INV 

14.5(23) 34.2(54) 
<0.0001/2.3 
(1.8-5.3) 

39.8(55) 37.1(76) 0.60  0.56 58.6(34) 39.2(31) 
 0.0248/0.5 
(0.23-0.90) 

26.3(21) 35.7(45) 0.15  0.61  0.79 

1.5 3.9 
0.0001/2.6 
(1.58-4.16) 

3.7 5.6 
0.0194/1.5 
(1.07-2.13) 

 0.054 2.3 2.3  0.98 1.4 3.3 
0.0009/2.3 
(1.40-3.91) 

 0.11  0.37 

HA-MRSAG 

Total 

33.3(72) 13.2(26) 
<0.0001/0.3 
(0.2-0.5) 

5.6 (21) 2.8(13) 0.06 
 <0.0001/0.19  
(0.09-0.37) 

0.5(1) 0.4(1)  0.59 13.1 (20) 5.5(12) 
0.0174/0.4 
(0.19-0.81) 

 0.0007/14.68 
(2.67-80.64) 

 0.0067/0.4 
/(0.19-0.77) 

4.9 1.9 
<0.0001/0.4 
(0.25-0.61) 

1.4 1.0 0.26 
0.037/0.50 
(0.26-0.96) 

0.1 0.07  0.95 1.3 0.9 0.25 
 0.0023/12.0 
(2.21-65.27) 

 0.0231/0.5 
/(0.24-0.90) 

HA-MRSAG 

INV 

36.7(58) 13.9(22) 
<0.0001/0.3 
(0.2-0.5) 

12.3 (17) 4.5(10) 
0.0121/0.4 (0.2-
0.8) 

 0.002/0.3  
(0.15-0.68) 

0 (0) 1.2(1)  NA 21.3 (17) 7.1(9) 
0.0030/0.3 
(0.12-0.66) 

0.06  0.07 

3.9 1.6 
0.0001/0.4 
(0.25-0.67) 

1.1 0.7 0.26 
 0.033/0.50 
(0.22-0.95) 

0 0.07  NA 1.1 0.7 0.17 
 0.0114/9.0 
(1.61-50.36) 

.0165/0.4  
(0.19-0.87) 

N-ST30-IVe 

Total 

1.9(4) 20.3(40) 
<0.0001/13.5 
(4.9-36.5) 

26.7(100) 33.5(172) 
0.0023/1.6  
(1.2-2.3) 

 <0.0001/2.3 
(1.52-3.34) 

36.5(81) 42.3(107)  0.23 11.8(18) 29.8(65) 
<0.0001/3.2 
(1.81-5.61) 

 0.0005/0.6 
(0.40-0.85) 

 0.0260/1.7 
(1.06-2.62) 

0.3 2.9 
<0.0001/10.9 
(4.12-28.90) 

6.7 12.6 
<0.0001/1.9 
(1.5-2.4) 

 <0.0001/4.3 
(3.1-6.1) 

5.5 7.9 
 0.0125/1.4 
(1.08-1.92) 

1.2 4.8 
<0.0001/3.9 
(2.35-6.60) 

 0.0014/0.61 
(0.45-0.83) 

 0.0147/1.6 
(1.10-2.40) 

N-ST30-IVe 

INV 

1.3(2) 13.3(21) 
<0.0001/12.0 
(3.2-45.2) 

15.2(21) 27.3(56) 
0.0084/2.1 (1.2-
3.6) 

 0.0012/2.5 
(1.42-4.24) 

27.6(16) 32.9(26)  0.50 6.3(5) 23.8(30) 
0.00811/4.7 
(1.80-12.20) 

 0.09 
 0.0218/2.0 
(1.11-3.75) 

0.1 1.5 
<0.0001/11.9 
(3.09-42.5) 

1.4 4.1 
<0.0001/2.9 
(1.77-4.78) 

0.0001/2.7 
(1.62-4.38) 

1.1 1.9  0.06 0.3 2.2 
<0.0001/6.6 
(2.64-16.24) 

 0.59  0.21 

I-ST5-IVe 

Total 

9.7(21) 8.6(17) 0.38 21.6(81) 6.4(30) 
<0.0001/0.25 
(0.2-0.4) 

 0.40 21.6(48) 6.3(16) 
 <0.0001/0.2 
(0.14-0.44) 

22.2(34) 6.4(14) 
<0.0001/0.24 
(0.12-0.46) 

 0.88  0.51 

1.4 1.2 0.58 5.5 2.2 
<0.0001/0.4 
(0.3-0.6) 

 0.06 3.2 1.2 
 0.0003/0.4 
(0.21-0.64) 

2.3 1.0 
0.0097/0.45 
(0.24-0.83) 

 0.71  0.59 

I-ST5-IVe 

INV 

9.5(15) 9.5(15) >0.99 19.6(27) 4.9(10) 
<0.0001/0.2 
(0.1-0.5) 

 0.085 25.9(15) 2.5(2) 
 <0.0001/0.07 
(0.02-0.30) 

15.0(12) 6.3(8) 
0.0410/0.38 
(0.15-0.96) 

 0.21  0.33 

1.0 1.1 0.92 1.8 0.7 
0.0114/0.4 
(0.20-0.82) 

 0.31 1.0 0.15 
 <0.0029/0.15 
(0.04-0.55) 

0.8 0.6 0.48  0.06  0.14 

A-ST5-Ie 

Total 

23.6(51) 9.1(18) 
<0.0001/0.3 
(0.2-0.5) 

2.7(10) 1.3(6) 0.22 
 <0.0001/0.13 
(0.05-0.32) 

0(0) 0(0)  NA 6.5(10) 2.8(6) 0.14  ND 
 0.0054/0.3 
(0.11-0.70) 

3.4 1.3 
0.0003/0.4 
(0.23-0.66) 

0.67 0.44 0.44 
 0.0143/0.33 
(0.14-0.81) 

0 0  NA 0.7 0.4 0.41  ND 
 0.0143/0.3 
(0.14-0.81) 

A-ST5-Ie 

INV 

25.3(40) 9.5(15) 
0.0002/0.3  
(0.2-0.6) 

5.0(7) 1.9(4) 0.11 
 0.0014/0.19 
(0.06-0.55) 

0(0) 0(0)  NA 8.8(7) 3.2(4) 0.08  ND 
 0.0342/0.3 
(0.11-0.92) 

2.7 1.1 
0.0023/0.23 
(0.23-0.73) 

0.5 0.3 0.39 
 0.0116/0.3 
(0.09-0.76) 

0 0  NA 0.5 0.3 0.44  ND 
 0.0116/0.3 
(0.09-0.76) 

C-ST100-
IVNve 

Total 

6.0(13) 4.0(8) 0.48 2.1(8) 1.5(7) 0.15  0.08 0.5(1) 0.4(1)  0.59 4.6(7) 2.8(6) 0.52  0.08  0.69 

0.9 0.6 0.30 0.5 0.5 0.92  0.81 0.1 0.07  0.95 0.5 0.4 0.90  0.06  0.59 

C-ST100-
IVNve 

INV 
 

6.3(10) 4.4(7) 0.45 5.0(7) 2.9(6) 0.31  0.44 0(0) 1.2(1)  ND 8.8(7) 3.9(5) 015  0.26  0.69 

0.7 0.5 0.50 0.5 0.4 0.85  0.78 0 0.07  ND 0.5 0.4 0.67  0.1  0.56 

USA300-
ST8-IVe 

Total 

0.5(1) 3.6(7) 
0.0228/7.9  
(1.36-46.22) 

1.9(4) 4.6(11) 0.10  0.36 1.3(3) 2.8(7)  0.34 0.7(1) 1.8(4) 0.65  0.50  0.26 

0.07 0.5 
0.0246/7.6 
(1.32-44.10) 

0.3 0.8 
0.048/3.0  
(1.01-8.92) 

 0.36 0.2 0.5  0.16 0.07 0.3 0.15  0.37  0.37 

USA300-
ST8-IVe 

INV 

0.6(1) 3.8(6) 0.06 1.5(2) 1.5(3) 0.95  0.96 1.7(1) 1.3(1)  0.59 1.3(1) 1.6(2) 0.83  0.48  0.32 

0.07 0.4 
0.045/6.6  
(1.11-38.65) 

0.1 0.2 0.58  0.32 0.07 0.07  0.95 0.07 0.2 0.41  0.57  0.1573 

DD-ST97-IVe 

Total 

0.0(0) 4.1(8) NA 1.9(4) 1.7(4) 0.88 
 0.0044/0.2 
(0.06-0.64) 

0.9(2) 1.2(3)  0.78 1.3(2) 0.5(1) 0.80  0.39 
 0.0119/0.1 
(0.02-0.62) 

0.0 0.6 NA 0.3 0.3 0.98  0.25 0.1 0.2  0.58 0.13 0.07 0.61  0.32 
 0.0230/0.1 
(0.02-0.74) 

DD-ST97-IVe 

INV 

0.0(0) 5.1(8) NA 2.2(3) 1.0(2) 0.65 
 0.0183/0.2 
(0.04-0.77) 

3.4(2) 1.3(1)  0.81 1.3(1) 0.8(1) 0.68  0.91 
 0.0413/0.2  
(0.03-0.86) 

0.0 0.6 NA 0.2 0.1 0.53  0.06 0.1 0.07  0.42 0.07 0.07 0.98  0.99 
 0.0230/0.1 
(0.02-0.74) 
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CA-MRSAG and HA-MRSAG community-associated and healthcare-associated methicillin-resistant S. 

aureus genotypes.  

% (n) of cases and % (n) of INV isolates, NA: Not applicable. 
aN: Total number of patients with S. aureus infections in each category [healthcare onset (HO or HAHO), 

community onset (CO: including CACO + HACO), community-associated community-onset infections 

(CACO) and healthcare-associated community-onset (HACO)].   
bINV: Total number of patients with S. aureus invasive infections in each category. 
cIn: Incidence: Number of cases /100,000 monthly visits. Number of visits (V): include outpatient facility, 

emergency service and admissions during that month. 
dInI: Invasive infections Incidence: Number of cases of invasive infections/100.000 monthly visits. 

Number of visits (V): include outpatient facility, emergency service and admissions during that month. 
eGenotypes (major clones) are denoted as: type (by PFGE)-Sequence Type (ST by MLST)-SCCmec type. 

P values ≤ 0.05 for all comparisons are shown in boldface font.  

 

 

Jo
urn

al 
Pre-

pro
of



Table 4: Percentage and incidence of total (TI) and invasive (INVI) infections caused by S. aureus (SA), including 

MSSA, MRSA and MRSA-genotypes in Argentine hospitals, by age group, onset type and epidemiological criteria: 

2009 vs. 2015, with comparisons in 2015 between infection types, pediatric vs. adult patients and MRSA vs. MSSA for 

TI and INVI. 

 
 S. aureus infections in pediatric (<19)and adult (≥19) patients  

% (n) / incidence of general cases and % (INV) / incidence of invasive cases 
  

 Community onset (CO) (CACO + HACO)  Hospital onset (HO) (HAHO) 2015 

 Adults Pediatrics 2015 Adults Pediatrics 2015 Adults Pediatrics 

 

2009 
Na: 215/ 

INVb:75 
%(n)/ Inc/ 

%(INV)/InId 

2015 
Na: 301/ 

INVb:141 
%(n)/ Inc/ 

%(INV)/InId 

2015 vs. 2009 
P value/OR 

(95%CI) 

2009 
Na: 160/ 

INVb: 63 
%(n)/ Inc/ 

%(INV)/InId 

2015 
Na: 170/ 
INVb: 64 
%(n)/ Inc/ 

%(INV)/InId 

2015 vs. 
2009 
P 

value/OR 
(95%CI) 

Pediatric vs. 
Adults 

 P value/OR 
(95%CI) 

 

2009 
Na: 151/ 

INVb:113 
%(n)/ Inc/ 

%(INV)/InId 

2015 
Na: 116/ 
INVb:101 
%(n)/ Inc/ 

%(INV)/InId 

2015 vs. 2009 
P value/OR 

(95%CI) 

2009 
Na: 65/ 

INVb:45 
%(n)/ Inc/ 

%(INV)/InId 

2015 
Na: 81/ 

INVb:57 
%(n)/ Inc/ 

%(INV)/InId 

2015 vs. 2009 
P value/OR 

(95%CI) 

Pediatric vs. 
Adults 

 P value/OR 
(95%CI) 

 

CO vs. HO 
P value/OR 
(95%CI) 

CO vs. HO 
P value/OR 
(95%CI) 

SA 
Total 

100(215) 100(301)  100(160) 100(170)   100(151) 100(116)  100(65) 100(81)     

22.4 34.2 
<0.0001/1.5 
(1.28-1.82) 

30.6 35.4 0.18 0.72 15.7 13.2 0.15 12.4 16.9 0.07 
0.08 <0.0001/2.6 

(2.10-3.20) 
<0.0001/2.1 
(1.61-2.73) 

SA 
INV 

100(75) 100(141)  100(63) 100(64)   100(113) 100(101)  100(45) 100(57)     

7.8 16.0 
<0.0001/2.1 
(1.55-2.72) 

12.0 13.3 0.56 0.22 11.8 11.5 086 8.6 11.9 0.10 
0.83 0.0101/1.4 

(1.08-1.80) 
0.53 

MSSA 
Total 

45.6(98)    55.1(166)     
0.0321/1.5 
(1.03-2.09) 

38.1(61)    38.8(66)  0.97 
 0.0007/0.52 
(0.35-0.76) 

48.3(73)    50.0(58) 0.86 56.9(37)    45.7(37)     0.23 
0.65 0.4086 0.37 

10.2 18.8 
<0.0001/1.9 
(1.44-2.37) 

11.7 13.8 0.35 
 0.0293/0.73 
(0.55-0.97) 

7.6 6.6 0.18 7.1 7.7 0.73 
0.51 <0.0001/2.9 

(2.12-3.86) 
0.0043/1.9 
(1.20-2.66) 

MSSA 
INV 

56.0(42)    61.0(86)     0.57 38.1(24)    51.6(33) 0.17  0.27 46.9(53)    51.5(52)     0.59 53.3(24)    52.6(30)     0.89 0.89 0.1801 0.94 

4.4 9.8 
<0.0001/2.2 
(1.55-3.23) 

4.6 6.9 0.45  0.08 5.5 5.9 0.62 4.6 6.2 0.25 
 0.0038/1.7 

(1.17-2.33) 
0.71 

MRSA 
Total 

54.4(117) 44.9(135) 
0.0321/0.68 
(0.48-0.97) 

61.9(99) 61.2(104) 0.97 
 0.0007/1.9  
(1.32-2.84) 

51.7(78) 50.0(58) 0.86 43.1(28) 54.3(44) 0.23 
0.66 0.41 0.34 

12.2 15.3 0.07 18.9 21.7 0.33 
 0.0078/1.4 
(1.09-1.82) 

8.1 6.6 0.22 5.4 9.2 
0.0243/1.7 
(1.07-2.74) 

0.09 <0.0001/2.3 
(1.71-3.16) 

<0.0001/2.4 
(1.66-3.36) 

MRSA 
INV 

44.0(33) 39.0(55) 0.57 61.9(39) 48.4(31) 0.17  0.27 53.1(60) 48.5(49) 0.59 46.7(21) 47.4(27) 0.88 0.89 0.18 0.86 

3.4 6.2 
0.0058/1.8 
(1.19-2.80) 

7.4 6.5 0.45  0.88 6.2 5.6 0.56 6.2 5.2 0.24 
0.81 0.56 0.60 

In: MSSA vs. 
MRSA 
P value/ OR 
(95%CI) 

0.1950 0.07  
0.0027/0.62 
(0.45-0.85) ) 

0.0036/0.63 
(0.47-0.86)  

  0.68 0.99  0.26 0.44  

   

InI: MSSA 
vs.  MRSA 
P value/ OR 
(95%CI) 

0.2988 
0.009/1.60 
(1.12-2.19) 

 0.06 0.80   0.51 0.77  0.65 0.69  

   

CA-MRSAG 

Total 

47.0(101) 40.9(123) 0.19 58.8(94) 60.6(103) 0.79 
 <0.0001/2.2 
(1.52-3.26) 

8.6(13) 33.6(39) 
<0.0001/5.4 
(2.7-10.6) 

32.3(21) 45.7(37) 0.13 
0.09 0.21 0.0262/1.8 

(1.07-3.11) 

10.5 13.9 
 0.0312/1.3 
(1.02-1.73) 

17.9 21.5 0.21 
 0.0012/1.5 
(1.18-1.99) 

1.4 4.4 
 0.0001/3.3 
(1.77-6.08) 

4.0 7.7 
0.0151/1.9 
(1.13-3.26) 

0.0145/1.7 
(1.11-2.72) 

<0.0001/3.2 
(2.20-4.51) 

<0.0001/2.9 
(1.92-4.05) 

CA-MRSAG 

INV 

28.0(21) 31.9(45) 0.66 54.0(34) 48.4(31) 0.65 
 0.0232/2.0 
(1.10-3.65) 

8.0(9) 32.7(33) 
<0.0001/5.6 
(2.56-12.26) 

31.1(14) 36.8(21) 0.69 
0.56 0.94 0.27 

2.2 5.1 
0.0009/2.3 
(1.40-3.91) 

6.5 6.5 0.99  0.31 0.9 3.7 
<0.0001/4.0 
(1.95-8.23) 

2.7 4.4 0.15 
0.56 0.17 0.17 

HA-MRSAG 

Total 

7.4 (16) 4.0(12) 0.19 3.1(5) 0.6(1) 0.21 
 0.0306/0.14 
(0.03-0.78) 

43.0 (65) 16.4(19) 
<0.0001/0.3 
(0.14-0.46) 

10.8 (7) 8.6(7) 0.84 
0.11 <0.0001/0.2  

(0.10-0.45) 
0.0009/0.1  
(0.01-0.32 

1.7 1.4 0.66 1.0 0.2 0.26 
 0.0421/0.15 
(0.03-0.81) 

6.8 2.2 
<0.0001/0.3 
(0.19-0.53) 

1.3 1.5 0.88 
0.37 0.21 0.0339/0.1  

(0.02-0.82) 

HA-MRSAG 

INV 

16.0 (12) 7.1(10) 0.07 7.9(5) 0(0) NA  NA 45.1 (51) 15.8(16) 
<0.0001/0.2 
(0.12-0.44) 

15.6 (7) 10.5(6) 0.69 
0.35 0.06 NA 

1.2 1.1 0.85 1.0 0 NA  NA 5.3 1.8 
0.0001/0.3 
(0.20-0.60) 

1.3 1.3 0.99 
0.43 0.24 NA 

N-ST30-IVe 

Total 

27.9(60) 30.6(92)  0.51 25.0(40) 47.1(80) 
<0.0001/2.7 
(1.67-4.25) 

 0.0004/2.0 
(1.37-2.97) 

2.6(4) 12.9(15) 
0.0012/5.5 (1.9-
16.1) 

0(0) 30.9(25) NA 
0.0007/3.3 
(1.63-6.70) 

0.0002/3.0 
(1.65-5.34) 

0.0150/2.0 
(1.14-3.47) 

6.2 10.4 
<0.0017/1.7 
(1.21-2.32) 

7.6 16.7 
<0.0001/2.2 
(1.49-3.18) 

 0.0021/1.6 
(0.47-0.85) 

0.4 1.7 
0.0066/4.1  
(1.43-11.70) 

0(0) 5.2 NA 
0.0003/3.1 
(1.63-5.75) 

<0.0001/6.1 
(3.58-10.50) 

<0.0001/3.2 
(2.05-5.00) 

N-ST30-IVe 

INV 

10.7(8) 23.4(33) 
 0.023/2.6 
(1.14-5.76) 

20.6(13) 35.9(23) 0.086  0.09 1.8(2) 9.9(10) 
0.0145/6.1 
(1.49-24.90) 

0(0) 19.3(11) NA 
0.09 0.0067/2.8 

(1.32-5.87) 
0.0679 

0.83 3.7 
<0.0001/4.5 
(2.12-9.56) 

2.5 4.8 0.054  0.36 0.2 1.1 
0.0137/5.5  
(1.37-21.69) 

0(0) 2.3 NA 
0.10 0.0005/3.3 

(1.65-6.60) 
0.0396/2.1 
(1.03-4.23) 

I-ST5-IVe 

Total 

14.4(31) 5.0(15) 
0.0002/0.3 
(0.16-0.59) 

31.3(50) 8.8(15) 
<0.0001/0.2 
(0.11-0.40) 

 0.15 5.3(8) 7.8(9) 0.56 20.0(13) 9.9(8) 0.083 
0.79 0.39 0.98 

3.2 1.7 
0.0321/0.53 
(0.29-0.97) 

9.6 3.1 
0.0001/0.3 
(0.19-0.58) 

 0.09 0.8 1.0 0.85 2.5 1.7 0.36 
0.31 0.22 0.14 

I-ST5-IVe 

INV 

10.7(8) 4.3(6) 0.12 30.2(19) 6.3(4) 
0.0005/0.2 
(0.05-0.46) 

 0.79 5.3(6) 8.9(9) 044 20.0(9) 10.5(6) 0.28 
0.92 0.23 0.61 

0.83 0.7 0.71 3.6 0.8 
0.0035/0.23 
(0.08-0.64) 

 0.85 0.6 1.0 0.34 1.7 1.3 0.35 
0.70 0.45 0.52 

A-ST5-Ie 

Total 

4.7(10) 2.0(6) 
0.12 

0(0) 0(0)   NA 31.8(48) 12.1(14) 
<0.0001/0.09 
(0.04-0.17) 

2.8(3) 2(4) 0.95 
0.14 <0.0001/0.2  

(0.06-0.38 
NA 

1.0 0.7 
0.42 

0 0   NA 5.0 1.6 
<0.0001/0.3 
(0.18-0.57) 

0.6 0.8 0.62 
0.32 0.08 NA 

A-ST5-Ie 

INV 

9.3(7) 2.8(4) 
0.08 

0(0) 0(0)   NA 32.7(37) 11.9(12) 
0.0004/0.29 
(0.14-0.58) 

6.7(3) 5.3(3) 0.89 
0.26 0.0177/0.3  

(0.09-0.81) 
NA 

0.7 0.5 
0.44 

0 0   NA 3.8 1.4 
0.0011/0.3 
(0.19-0.67) 

0.6 0.6 099 
0.21 0.0455/0.3 

(0.11-0.98) 
NA 

C-ST100-
IVNve 

Total 

2.8(6) 2.0(6) 0.23 2.5(4) 0.6(1) 0.20  0.45 6.0 (9) 4.3(5) 0.54 6.2(4) 3.7(3) 0.49 0.87 0.33 0.19 

0.6 0.5 
0.62 

0.7 0.2 0.37  0.21 0.9 0.6 
0.35 

0.7 0.6 0.78 
0.71 0.74 0.31 

C-ST100-
IVNve 

INV 

4.0(3) 4.3(6) 0.88 6.3(4) 0(0) NA  NA 5.3 (6) 4.0(4) 0.89 8.9(4) 5.3(3) 0.74 0.89 0.89 NA 

0.3 
 

0.7 
0.25 

0.8 0 NA  NA 0.6 0.5 
0.85 

0.8 0.6 0.79 
0.86 0.53 NA 

 Healthcare -associated-community-onset (HACO) Community-associated-community-onset (CACO) 2015 

 
Adult  Pediatric  2015 Adult  Pediatric  2015 Adult Pediatric 

 

2009 
Na: 93/ 

INVb:46 
%(n)/ Inc/ 

%(INV)/InId 

2015 
Na: 147/ 
INVb:94 
%(n)/ Inc/ 

%(INV)/InId 

2015 vs. 
2009 

P value/ OR 
(95%CI) 

2009 
Na: 60/ 

INVb:34 
%(n)/ Inc/ 

%(INV)/InId 

2015 
Na: 71/ 

INVb:32 
%(n)/ Inc/ 

%(INV)/InId 

2015 vs. 
2009 

P value/ 
OR 

(95%CI) 

Pediatric vs. 
Adults 

 P value/ OR 
(95%CI) 

 

2009 
Na: 122/ 
INVb:29 

%(n)/ Inc/ 
%(INV)/InId 

2015 
Na: 154 

INVb: 47 
%(n)/Inc 

%(INV)/InId 

2015 vs. 2009 
P value/ OR 

(95%CI) 

2009 
Na: 100/ 

INVb:29 
%(n)/ Inc/ 

%(INV)/InId 

2015 
Na: 99 

INVb: 32 
%(n)/Inc 

%(INV)/InId f 

2015 vs. 2009 
P value/ OR 

(95%CI) 

Pediatric vs. 
Adults 

 P value/ OR 
(95%CI) 

 

HACO vs.  
CACO 

P value/OR 
(95%CI) 

HACO vs. 
 CACO 

P value/OR 
(95%CI) 

SA 
Total 

100(93) 100(147)  100(60) 100(71)   100(122) 100(154)  100(100) 100(99)     

9.7 16.7 
<0.0001/1.7 
(1.33-2.24) 

11.5 14.8 0.15 0.40 12.7 17.5 
0.0078/1.4 
(1.09-1.75) 

19.2 20.6 0.5920 0.20 0.69 
0.0317/0.7/ 
(0.53-0.97) 

SA 
INV 

100(46) 100(94)  100(34) 100(32)   100(29) 100(47)  100(29) 100(32)     

4.8 10.7 
<0.0001/2.2 
(1.57-3.17) 

6.5 6.7 0.92 
 0.0011/0.6 
(0.42-0.93) 

3.0 5.3 
0.0142/1.8 
(1.12-2.80) 

5.5 6.7 0.4712 00.33 
0.0001/2.0 
(1.41-2.83) 

>0.99 

MSSA 47.3(44)    58.5(86)     0.12 48.3(29) 42.3(30)     0.49 
 0.0242/0.5 
(0.29-0.92) 

44.3(54)    51.9(80)     0.26 32.0(32)    36.4(36)     0.6137 
0.0152/0.53 
(0.32-0.88) 

0.30 0.43 
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Total 4.6 9.8 
<0.0001/1.5 
(1.49-3.06) 

5.5 6.3 0.65 
0.0337/0.6 
(0.42-0.97) 

5.6 9.1 
0.0058/1.6 
(1.15-2.28) 

6.1 7.5 00.5561 0.39 0.64 0.46 

MSSA 
INV 

50.0(23)    59.6(56)     0.37 55.9(19)    50.0(16)     0.63 0.34 65.5(19)    63.8(30)     0.92 17.3(5)    53.1(17)     
0.0036/5.44 
(1.72-17.18) 

0.34 0.77 0.80 

2.4 6.4 
<0.0001/2.7 
(1.64-4.30) 

3.6 3.3 0.56 
 0.0204/0.5 
(0.30-0.91) 
 

2.0 3.4 0.06 1.0 3.5 
0.0057/3.7 
(1.42-9.66) 

0.89 
0.0051/1.9 
(1.20-2.90) 

0.86 

MRSA 
Total 

52.7(49) 41.5(61) 0.12 51.7(31) 57.7(41) 0.49 
 0.0242/1.9 
(1.09-3.41) 

55.7(68) 48.1(74) 0.26 68.0(68) 63.6(63) 0.6137 
0.0152/1.9 
(1.13-3.17) 

0.30 0.43 

5.1 6.9 0.11 5.9 8.5 0.12 0.29 7.1 8.4 0.30 13.0 13.1 0.9561 
0.0088/1.6 
(1.12-2.18) 

0.26 
0.0310/0.7 
(0.44-0.96) 

MRSA 
INV 

50.0(23) 40.4(38) 0.37 44.1(15) 50.0(16) 0.63 0.34 34.5(10) 36.2(17) 0.956 82.7(24) 46.9(15) 
0.036/0.18 
(0.06-0.58) 

0.34 0.7650 0.80 

2.4 4.3 
0.0234/1.8 
(1.08-3.01) 

2.9 3.3 0.66 0.38 1.0 1.9 0.11 4.6 3.1  0.2404 0.17 
0.0046/2.2 
(1.27-3.93) 

0.86 

In: MSSA vs 
MRSA 
P value/ OR 
(95%CI) 

0.6041 
0.039/1.40 
(1.02-1.96) 

 0.79 0.19   0.21 0.63  
0.0003/0.47 
(0.31-0.71)  

0.0067/0.57 
(0.38-0.86)  

    

InI: MSSA vs 
MRSA 
P value/ OR 
(95%CI) 

0.9999 0.063  0.49 0.99   0.09 0.06  
0.0004/0.21(
0.08-0.53)  

0.72     

CA-MRSAG 

Total 

36.6(34) 34.0(50) 0.79 43.3(26) 56.3(40) 0.14 
 0.0017/2.5 
(1.41-4.45) 

54.9(67) 47.4(73) 0.63 68.0(68) 63.6(63) 0.6137 
0.0115/1.9 
(1.16-3.25) 

0.0182/0.6 
(0.36-0.91) 

0.34 

3.5 5.7 
0.0314/1.6 
(1.04-2.48) 

4.0 8.3 
0.0380/1.7 
(1.03-2.74) 

0.07 7.0 8.3 0.31 13.0 13.1 5.0 
0.0082/1.6 
(1.13-2.21) 

0.0381/0.7 
(0.48-0.98) 

0.0234/0.6  
(0.43-0.94) 

CA-MRSAG 

INV 

23.9(11) 30.9(29) 0.51 29.4(10) 50.0(16) 0.09 0.06 34.5(10) 34.0(16) 0.97 82.7(24) 46.9(15) 
0.036/0.18 
(0.06-0.58) 

0.25 0.86 0.80 

1.1 3.3 
0.0018/2.9 
(1.46-5.69) 

1.9 3.3 0.16 0.96 1.0 1.8 0.16 4.6 3.1  0.2404 
0.0011/2.8 
(1.47-5.14) 

0.05 0.86 

HA-MRSAG 

Total 

16.1(15) 7.5(11) 0.06 8.3 (5) 1.4(1) 0.09 0.12 0.9(1) 0.6(1) 0.67 0(0) 0(0)  NA 
0.0025/12.4 
(2.22-68.91) 

NA 

1.6 1.2 0.57 1.0 0.2 0.13 0.24 0.1 0.1 0.99 0.0 0.0  NA 
0.0039/11.0 
(2.01-60.30) 

NA 

HA-MRSAG 

INV 

26.1 (12) 9.6(9) 
0.0206/0.3 
(1.12-0.76) 

14.7 (5) 0(0) NA NA 0(0) 2.1(1) NA 0(0) 0(0)  NA 0.20 NA 

1.3 1.0 0.66 1.0 0.0 NA NA 0.0 0.1 NA 0.0 0.0  NA 
0.0114/9.0 
(1.61-50.36) 

NA 

N-ST30-IVe 

Total 

12.9(12) 23.1(34) 0.07 10(6) 43.7(31) 
<0.0001/6.9 
(2.73-17.81) 

 0.0019/2.6 
(1.41-4.70) 

39.3(48) 37.7(58) 0.88 34.0(34) 49.5(49) 
0.0267/1.9 
(1.08-3.36) 

0.09 
0.0062/0.5 
(0.30-0.82) 

0.45 

1.2 3.8 
0.0004/3.1 
(1.62-5.91) 

1.1 6.5 
0.0004/5.6 
(2.42-13.10) 

 0.0363/1.7 
(1.03-2.71) 

5.0 6.6 0.15 6.5 10.2 
0.0410/1.6 
(1.02-2.4) 

0.0022/1.6 
(1.06-2.26) 

0.0123/0.6 
(0.38-0.89) 

0.0442/0.6 
(0.40-0.99) 

N-ST30-IVe 

INV 

6.5(3) 20.2(19) 
0.0366/3.6 
(1.10-12.02) 

5.9(7) 34.4(11) 
0.0036/8.4 
(1.92-35.53) 

 0.10 17.2(5) 29.8(14) 0.33 37.9(11) 37.5(12) 0.9897 0.45 0.29 0.79 

0.3 2.2 
0.0003/6.9 
(2.22-21.58) 

0.4 2.3 
0.0080/5.9 
(1.53-23.54) 

 0.88 0.5 1.6 
0.02342/3.06 
(1.15-8.16) 

2.1 2.5 0.9561 0.25 0.38 0.83 

I-ST5-IVe 

Total 

16.1(15) 4.8(7) 
0.0029/0.26 
(0.10-0.65) 

30.0(18) 9.9(7) 
0.0035/0.26 
(0.10-0.65) 

 0.26 13.1(16) 5.2(8) 
0.0204/0.36 
(0.15-0.86) 

32.0(32) 8.1(8) 
<0.0001/0.19 
(0.08-0.42) 

0.57 0.91 0.69 

1.7 0.8 0.13 3.4 1.5 
 0.0469/0.4 
(0.18-0.99) 

 0.25 1.7 0.9 015 6.1 1.7 
 0.0004/0.27 
(0.13-0.58) 

0.23 0.79 0.79 

I-ST5-IVe INV 
10.9(5) 5.3(5) 0.39 20.6(7) 9.4(3) 0.20  0.41 10.3(3) 2.1(1) 0.30 41.4(12) 3.1(1) 

0.0003/0.05 
(0.01-0.27) 

0.78 0.66 0.81 

0.5 0.6 0.85 1.4 0.6 0.26  0.87 0.3 0.1 0.36 2.3 0.2 
 0.0037/0.09 
(0.02-0.49) 

086 0.10 0.31 

A-ST5-Ie 

Total 

10.7(10) 4.1(6) 0.08 0(0) 0(0)   0(0) 0(0)  0(0) 0(0)   NA  

1.0 0.7 0.41 0.0 0.0   0.0 0.0  0.0 0.0   NA  

A-ST5-Ie 

INV 

15.2(7) 4.2(4) 0.05 0(0) 0(0)   0(0) 0(0)  0(0) 0(0)   NA  

0.7 0.5 059 0.0 0.0   0.0 0.0  0.0 0.0   NA  

C-ST100-
IVNve 

Total 

3.2(3) 3.4(5) 0.78 6.7(4) 1.4(1) 0.50  0.69 0.8(1) 0.6(1) 0.60 0(0) 0(0)  NA 0.18 NA 

0.3 0.6 0.41 0.8 0.2 0.21  0.34 1.0 0.1 
0.99 

0.0 0.0 
 

NA 0.10  NA 

C-ST100-
IVNve 

INV 

6.5(3) 5.3(5) 0.99 11.7(4) 0(0) NA  NA 0(0) 2.1(1) 
NA 

0(0) 0(0) 
 

NA 0.66 NA 

0.3 0.6 0.41 0.8 0 NA  NA 0.0 0.1 NA 0.0 0.0  NA 0.10 NA 

 

CA-MRSAG and HA-MRSAG community-associated and healthcare-associated methicillin-resistant S. 

aureus genotypes.  

% (n) of cases and % (n) of INV isolates, NA: Not applicable 
aN: Total number of pediatric patients with S. aureus infections in each category [healthcare onset (HO or 

HAHO), community onset (CO: including CACO + HACO), community-associated community-onset 

infections (CACO), healthcare-associated community-onset (HACO)].  
bINV: Total number of patients with invasive S. aureus infections in each category . 
cIn: Incidence: Number of cases /100,000 monthly visits. Number of visits (V) include: outpatient facility, 

emergency service and admissions during that month. 
dInI: Incidence of Invasive infections: Number of cases of invasive infections/100,000 monthly visits. 

Number of visits (V) include: outpatient facility, emergency service and admissions during that month. 
eGenotypes (major clones) are denoted as: type (by PFGE)-Sequence Type (ST by MLST)-SCCmec type. 

P values ≤ 0.05 for all comparisons are shown in boldface font.  
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Table 5: Staphylococcus aureus (SA) infections across hospitals from Argentine provinces and 
Buenos Aires city (2015): percentage and incidence by region, including MSSA, MRSA and 
MRSA genotypes; comparisons with 2009 data. 

 

 
S. aureus infections 

% (n) / incidence of cases of infections 
 

 North Centre South 2015 

 
2009 
Na: 86 

%(n)/ Inb 

2015 
Na: 144 
%(n)/ Inb 

2009 vs. 
2015 P 

value/OR 
(95%CI) 

2009 
Na: 433 

%(n)/ Inb 

2015 
Na: 446 

%(n)/ Inb 

2009 vs. 
2015 P 

value/OR 
(95%CI) 

2009 
Na: 72 

%(n)/ Inb 

2015 
Na: 78 

%(n)/ Inb 

2009 vs. 
2015 P 

value/OR 
(95%CI) 

North vs 
Centre P 
value/OR 
(95%CI) 

North vs 
South P 

value/OR 
(95%CI) 

Centre vs 
South P 

value/OR 
(95%CI) 

SA 
100(86) 100(144)  100(433) 100(446)  100(72) 100(78)     

76.5 81.1 0.68 34.7 41.0 
0.0128/1.2 
(1.04-1.35) 

58.0 81.4 
 0.0370/1.4 
(1.02-1.93) 

 <0.0001/2.0  
(1.64-2.39) 

0.98 
<0.0001/0.50 
(0.40-0.64) 

MSSA 
18.6(16) 27.1(39) 0.21 46.7(202) 51.6(230) 0.19 70.8(51) 74.4(58)  0.78 

 
<0.0001/0.35 
(0.23-0.53) 

<0.0001/0.13 
(0.07-0.24) 

0.0002/0.37 
(0.21-0.63) 

14.2 21.9 0.14 16.2 21.2 
0.0053/1.3 
(1.08-1.58) 

41.1 60.5 
 0.041/1.5 
(1.01-2.14) 

 0.82 
<0.0001/0.36 
(0.24-0.54) 

<0.0001/0.35 
(0.26-0.47) 

MRSA 
81.4(70) 

72.9(105
) 

0.21 53.3(231) 48.4(216) 0.19 29.2(21) 25.6(20) 0.78 
 <0.0001/2.9 
(1.90-4.32) 

<0.0001/7.9 
(4.19-14.54) 

0.0002/2.7 
(1.59-4.66) 

62.2 59.1 0.73 18.5 19.9 0.45 16.9 20.8 0.50 
 <0.0001/3.0 
(2.36-3.76) 

<0.0001/2.8 
(1.77-4.55) 

0.83 

In: MSSA vs MRSA 
P value/ OR 

(95%CI) 

<0.0001/0.23 
(0.13-0.39)  

<0.0001/0.37 
(0.26-0.54) 

 0.1634 0.5073  
0.0004/2.4 
(1.47-4.02) 

<0.0001/2.9 
(1.75-4.80) 

    

CA-
MRSAG 

72.1(62) 65.9(95) 0.42 36.0(156) 43.0(192) 
0.0330/1.3 
(1.02-1.76) 

15.3(11) 19.2(15)  0.67 
 <0.0001/2.6 
(1.73-3.79) 

<0.0001/8.1 
(4.24-15.64) 

0.0001/3.1 
(1.77-5.70) 

55.1 53.5 0.85 12.5 17.7 
0.0130/1.4 
(1.14-1.75) 

8.9 15.6  0.14 
 <0.0001/3.0 
(2.37-3.87) 

<0.0001/3.4 
(2.00-5.85) 

0.65 

HA-
MRSAG 

9.3 (8) 6.9(10) 0.51 17.3 (75) 5.4(24) 
<0.0001/0.3 
(0.17-0.44) 

13.9 (10) 6.4(5)  0.20  0.48 0.88 0.71 

7.1 5.6 0.62 6.0 2.2 
<0.0001/0.4 
(0.23-0.58) 

8.1 5.2  0.42 
 0.0099/2.6 
(1.24-5.26) 

0.88 0.07 

N-ST30-IVc 
54.7(47) 44.4(64) 0.13 12.5(54) 31.4(140) 

<0.0001/3.2 
(2.27-4.54) 

2.8(2) 10.3(8) 0.07 
 0.0042/2.0 
(1.19-2.57) 

<0.0001/7.0 
(3.20-15.32) 

<0.0001/4.0 
(1.91-8.38) 

41.8 36.0 0.43 4.3 12.9 
<0.0001/2.4 
(1.57-3.61) 

1.6 8.3 
 0.0211/5.2 
(1.26-21.22) 

 <0.0001/2.8 
(2.08-3.76) 

<0.0001/4.3 
(2.11-8.83) 

0.22 

I-ST5-IVc 
16.3(14) 9.7(14) 0.14 18.9(82) 6.7(30) 

<0.0001/0.3 
(0.20-0.48) 

11.1(8) 3.8(3) 0.09  0.2341 0.11 0.33 

12.5 7.9 0.22 6.6 2.8 
<0.0001/0.4 
(0.28-0.64) 

6.4 3.1 0.27 
 0.0007/2.8 
(1.53-5.34) 

0.13 0.83 

A-ST5-Ic 
8.1(7) 4.9(7) 0.31 10.8(47) 2.7(12) 

<0.0001/0.2 
(0.12-0.438) 

9.7(7) 6.4(5) 0.45  0.1996 0.62 0.08 

6.2 3.9 0.38 3.8 1.1 
<0.0001/0.3 
(016-0.55) 

5.6. 5.2 0.89 
 0.0040/3.6 
(1.44-8.83) 

0.63 
0.0013/0.21 
(0.08-0.58) 

C-ST100-
IVNvc 

0(0) 2.1(3) NA 1.8(8) 2.7(12) 0.40 4.2(3) 0(0) NA 0.6873 NA NA 

0.0 1.7 NA 0.6 1.1 0.40 2.4 0.0 NA 0.7104 NA NA 

USA300-
ST8-IVc 

0(0) 5.6(8) NA 1.2(5) 1.6(7) 0.82 0(0) 3.8(3) NA 
0.0138/3.7 
(1.36-10.03) 

0.5753 0.1752 

0.0 4.5 NA 0.4 0.6 0.41 0.0 3.1 NA 
<0.0001/7.0 
(2.62-18.68) 

0.5885 
0.0414/0.21  
(0.06-0.73) 

DD-ST97-
IVc 

0(0) 3.5(5) NA 0.7(3) 1.6(7) 0.35 0(0) 0(0)  0.1596 NA NA 

0.0 2.8 NA 0.2 0.6 0.20 0.0 0  
<0.0059/4.4 
(1.45-13.14) 

NA NA 

 

CA-MRSAG and HA-MRSAG community-associated and healthcare-associated methicillin-

resistant S. aureus genotypes. 

aN: Total number of patients with S. aureus infections in each Argentina region.  

bIn: Incidence: Number of cases /100,000 monthly visits. Number of visits (V): include 

outpatient facility, emergency service and admissions during that month. 

V
2009

: North: 112,427; Centre: 1,247,957 and South 124,121 visits  

V
2015

: North: 177,554; Centre: 1,086,859 and South 95,839 visits. 
cGenotypes (major clones) are denoted as: type (by PFGE)-Sequence Type (ST by MLST)-

SCCmec type 
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