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Unimodular gravity is an alternative theory of gravity to general relativity. The gravitational field
equations are given by the trace-free version of Einstein’s field equations. Due to the structure of the
theory, unimodular gravity admits a diffusion term that characterizes a possible non-conservation of
the canonical energy-momentum tensor locally. Employing this feature of unimodular gravity, in the
present work, we explicitly show how to construct an inflationary phase that can be contrasted with
current observations. In particular, we focus on three different inflationary scenarios of physical
interest. An important element in these scenarios is that the accelerated expansion is driven by
the diffusion term exclusively, i.e. there is no inflaton. Furthermore, the primordial spectrum
during inflation is generated by considering inhomogeneous perturbations associated to standard
hydrodynamical matter (modeled as a single ultra-relativistic fluid). For each of the scenarios, we
obtain the prediction for the primordial spectrum and contrast it with recent observational bounds.

I. INTRODUCTION

The inflationary paradigm, which assumes an acceler-
ated expansion of the early Universe, is consistent with
the most recent data, as reported e.g. by Planck collabo-
ration [1–3]. In the traditional version of inflation, which
is also the simplest one, the matter causing the inflation-
ary expansion is characterized by a single scalar field–the
inflaton–with a canonical kinetic term minimally coupled
to gravity described by General Relativity (GR) [4–9]. In
this simple version of inflation, the exponential expan-
sion magnifies the vacuum fluctuations of the inflaton,
and through some mechanism,1 the amplification con-
verts them into classical perturbations, leaving their im-
print as temperature and polarization anisotropies in the
Cosmic Microwave Background (CMB).

The observational data from CMB spectrum con-
strain the parameters associated to the spectrum of
the primordial perturbations. In particular, Planck
2018 collaboration [2] reports the values: ln(1010As) =
3.044 ± 0.014 and ns = 0.9649 ± 0.0042 at 68% CL
(including TT,TE,EE+lowE+lensing data). These pa-
rameters corresponds to the scalar amplitude As and
scalar spectral index ns, which characterize the am-
plitude and shape of the primordial spectrum respec-
tively. Another important inflationary parameter is
the tensor-to-scalar ratio r; the Planck 2018 collabo-

∗Electronic address: mpp@fcaglp.unlp.edu.ar
1 The specific mechanism that describes the so called quantum-to-
classical transition of the primordial perturbations is currently a
topic of debate, the interested reader may consult Refs. [66–73]
and references therein.

ration reports r < 0.061 at 95% CL, (using Planck
TT,TE,EE+lowE+lensing+BK15 data [2]), which mea-
sures the amplitude of the primordial gravitational waves
that might be generated during inflation. Given observa-
tional constraints on the inflationary parameters, namely
As, ns and r, one can discriminate among different infla-
tionary models. In particular, in the simplest version
of inflation, also known as slow-roll inflation, the poten-
tial energy of the inflaton must dominate over its kinetic
energy during a sufficient period. Therefore, the observa-
tional constraints on the inflationary parameters deter-
mine the specific inflationary potentials consistent with
the data [10].

In spite of the successful predictions, there are some
unsettled issues in the standard picture provided by slow-
roll inflation [11–13]. Some of them are: the special
initial conditions required for inflation to actually be-
gin (see however [14]); eternal inflation, an element that
is present in practically every model of inflation [15–17],
which leads to the controversial subject of the multiverse;
and the trans-Planckian problem for primordial pertur-
bations [18]. On the other hand, the precise nature and
evolution of the inflaton is highly atypical, e.g. it re-
quires negative pressure. Also, as the universe expands,
the potential energy of the inflaton decreases, and even-
tually the field decays into the normal particles of the
standard model (and possibly into dark matter particles),
this sounds remarkably similar to the Higgs mechanism,
except that the inflaton, in its simple formulation, cannot
be the Higgs field.2 The aforementioned process, known

2 Nonetheless, if the inflaton is non-minimally coupled to gravity,
the Higgs field could lead to an inflationary expansion of the
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as reheating, is actually poorly understood from the point
of view of particle physics.

In view of the previous arguments, it is reasonable to
explore alternatives to the traditional slow-roll inflation-
ary model, which may account for some of the problems
mentioned but leave the successful predictions of inflation
unchanged. Unimodular Gravity (UG) is an alternative
approach to GR that can be derived from the Einstein-
Hilbert action by restricting to variations preserving the
volume element [19–24]. The application of UG into the
cosmological context has been noted for decades [23–27]
(in particular with its connection to the cosmological con-
stant), but recently it has been rediscovered, gaining sig-
nificant attention [28–45].

The gravitational field in UG is characterized by the
trace-free Einstein equations, and due the structure of
the theory, UG admits a possible non-conservation of
the energy-momentum tensor, represented by a diffusion
term. Namely, the conservation of the energy-momentum
tensor is considered as an extra hypothesis that, when
imposed, one recovers the original Einstein Field Equa-
tions (EFE) with a cosmological constant, which is now
an integration constant [24, 25, 28, 46]. Therefore, all
the successful predictions of GR are included in the UG
theory. However, one can choose not to impose the
energy-momentum conservation; this approach leads to
non-conservative UG.3

In Refs. [33–35], the energy-momentum non-
conservation was argued to arise due to a fundamental
granularity of the spacetime at Planckian scales. More-
over, in Ref. [44] that same approach was used to charac-
terize an inflationary phase. In that work, the primordial
inhomogeneities, born at the Planck scale, are generated
by the interaction of the homogeneous part of the Higgs
field and the inhomogeneous granular structure at the
Planck scale (mediated by the scale invariance-breaking
of the Higgs); it is also important to mention that this
mechanism is based on the semiclassical gravity frame-
work. However, the inflationary expansion was driven
exclusively by the diffusion term, i.e. there was no infla-
ton.

In Ref. [45], we analyzed the generic case of a quasi-de
Sitter expansion due to the diffusion term, i.e. with-
out specifying the details of the microphysics at stake.
In particular, in that work we derived the generic con-
ditions required for any type of diffusion to generate a
realistic inflationary epoch (so the particular model of
Ref. [44] could be included in that analysis). Also, for a
given parameterization of inflation in terms of the Hubble
flow functions (HFF) [47, 48], we showed how to recon-
struct the corresponding diffusion term in such a way

slow-roll type [74].
3 We invite the reader to consult Refs. [50, 75], for a review of
proposals discussing the theoretical and conceptual constructions
surrounding the non-conservation of the energy-momentum ten-
sor.

that a smooth transition occurs between inflation and
the subsequent radiation dominated era, hence reheating
proceeds in a natural manner. The primordial spectrum
was produced by assuming inhomogeneous perturbations
corresponding to a single ultra-relativistic fluid, that is
we considered standard hydrodynamical matter.4

In the present paper, based on the results of Ref. [45],
we will perform a phenomenological analysis. Specifi-
cally, we will explore three different inflationary scenarios
in non-conservative UG. The first scenario is motivated
by its simplicity, namely we choose the most simple pa-
rameterization of inflation in terms of the HFF. For the
second scenario, we choose a parameterization of the dif-
fusion term which was originally introduced in [45]. That
parameterization is motivated by the fact it can produce
an inflationary phase and at the same time account for
the present value of the cosmological constant. In addi-
tion, this same parameterization can accommodate, as a
particular case, a model equivalent to that of Ref. [44].
Lastly, the third scenario consists of parameterizing any
slow-roll inflation model through the HFF. Using these
HFF, we find its corresponding non-conservative UG ver-
sion (hence the third scenario actually consists of multiple
possible cases). In this manner, we can argue that any
single field inflationary model of the slow-roll type can be
mapped into an inflationary model in non-conservative
UG. For each of the three scenarios described previously,
we reconstruct the corresponding diffusion term. After-
wards, we compute the theoretical predictions for the in-
flationary parameters As, ns and r. Thus, we can find a
range of values for the parameters of the diffusion term
that are consistent with the data. Our phenomenological
analysis is in essence equivalent to the traditional method
of constraining the parameters of slow-roll inflation (for
instance as presented in [2, 10]). This is, using obser-
vational bounds, one is able to constrain the parameters
of a given diffusion term (or potential in slow-roll infla-
tion) that might lead to inflation but without specifying
in great detail the high energy theory that leads to a spe-
cific diffusion term (or potential in slow-roll inflation).

The paper is organized as follows: In Sec. II, we pro-
vide a very brief review of UG, focusing on its implemen-
tation into the cosmological context. We also introduce
the conditions required for a generic diffusion term to
generate an inflationary phase. Additionally, we show
how to reconstruct the diffusion term through the HFF.
Also, we present a preliminary analysis on how to include
scalar fields in our proposal. In Sec. III, we explicitly find
the diffusion term for each of the three scenarios consid-
ered, and also present the theoretical predictions that
will be of observational interest. In Sec. IV, we present
the results of our analysis using the observational data,

4 Additionally, in Ref. [45], we analyzed the feasibility of identify-
ing the diffusion term, responsible for the inflationary expansion,
with the current observed value of the cosmological constant.
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and exhibit the empirical constraints on the parameters
of each scenario. Finally, in Sec. V, we summarize the
main results of the paper and present our conclusions.
Throughout this work, we will use a (−,+,+,+) signa-
ture for the spacetime metric and units where c = 1 = ℏ.

II. COSMOLOGICAL BACKGROUND IN
NON-CONSERVATIVE UNIMODULAR GRAVITY

In this section we will introduce the cosmological equa-
tions in non-conservative UG. In particular, we will focus
on presenting the mechanism responsible to produce an
inflationary scenario without inflaton. A more detailed
presentation can be found in [45].

The UG action can be expressed through the functional

S[gab,ΨM ;λ] =
1

2κ

∫ [
Rϵ

(g)
abcd − 2λ(ϵ

(g)
abcd − εabcd)

]
+ SM [gab,ΨM ], (1)

where κ ≡ 8πG, ϵ
(g)
abcd is the 4-volume element associated

to the metric gab, εabcd is a fiduciary 4-volume element
(which we take as a given) and R is the Ricci scalar. The
scalar λ(x) is a Lagrange multiplier function, and SM is
the action of the matter fields represented collectively by
ΨM .

Invoking the variational principle and applying it to
action (1), results in the equations of motion. Specifi-
cally, the equations of motion are obtained by requiring
δS = 0, and performing variations of Eq. (1) with re-
spect to the dynamical variables: gab, λ and ΨM ; this
procedure yields

Rab −
R

2
gab + λ(x)gab = κTab, (2)

ϵ
(g)
abcd = εabcd, (3)

δSM

δΨM
= 0, (4)

where

Tab ≡
−2√
−g

δSM

δgab
(5)

is the energy-momentum tensor. Equation (4) is a Klein-
Gordon type of equation for the matter fields. Also g
denotes the determinant of the components of the metric
tensor gµν (in a specific coordinate basis).
As can be seen directly from 2, taking the covariant

derivative on both sides of the equation shows that in
general ∇aTab ̸= 0. In other words, UG generically ad-
mits a violation of the energy-momentum conservation,
thus the name non-conservative UG.

In fact, it is clear that action (1)–as a whole–is in-
variant under generic one-parameter family of diffeomor-
phisms, because it is constructed from an integral of ge-
ometrical objects that are defined on a manifold. In par-
ticular, we can consider the variation of action (1) with
respect to all geometrical objects, i.e. by considering dif-
feomorphisms acting on the dynamical variables (gab, λ
and ΨM ), and also on the non-dynamical ones (εabcd);
this procedure results in δS = 0 directly. Using that
property, together with the equations of motion, it can
be shown [49] that

∇a(Tab − gabQ) = 0, (6)

where Q(x) is an arbitrary function that quantifies the
violation of the conservation of Tab, the scalar Q will be
referred to as the diffusion term. Equation (2) along with
with Eq. (6), leads to ∇aλ(x) = κ∇aQ(x), which can be
solved as

λ(x) = Λ∗ + κQ (7)

In this case Λ∗ is an integration constant fixed by the
initial data. On the other hand, if one fixes Q = con-
stant, the usual conservation law is recovered ∇aTab = 0.
Therefore, conservation of Tab can be introduced in UG
as an additional premise, bringing us back to GR (with
a cosmological constant given by Λ∗). In this work, we
will not consider such possibility, and focus on the non-
conservative version of UG.
We can eliminate the Lagrange multiplier from Eq. (2).

Taking the trace of such an equation results in

λ =
1

4
(κT +R) , (8)

where T = gabTab is the trace of the energy-momentum
tensor. Substituting the former expression in Eq. (2),
leads to the trace-free part of Einstein’s field equations,
namely

Rab −
1

4
gabR = κ

(
Tab −

1

4
gabT

)
. (9)

These are UG equations for the gravitational field.
Assuming the cosmological principle and spatial flat-

ness, the line element is given by the Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2). (10)

From the previous metric, we can establish that the fidu-
ciary volume element is

εabcd = ϵ
(g)
abcd = a3eabcd, (11)

where

eabcd = dta ∧ dxb ∧ dyc ∧ dzd. (12)

or in shorthand notation d4x.
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The matter content in the universe is modeled as a
perfect fluid, namely the energy-momentum tensor is

Tµν = (ρ+ P )uµuν + Pgµν , (13)

where ρ and P are the energy density and pressure in
the rest frame of the fluid respectively, and uµ repre-
sents its 4-velocity (relative to the observer) normalized
as uµuµ = −1. Furthermore, we assume that the energy-
momentum tensor and the diffusion term Q are also spa-
tially isotropic and homogeneous, i.e. ρ(t), P (t) andQ(t).
The resulting set of Friedmann’s equations is thus

3H2 =
1

M2
P

(ρ+Q), (14)

2Ḣ + 3H2 =
1

M2
P

(−P +Q), (15)

where M2
P = κ−1 is the reduced Planck mass. The dot

denotes derivative with respect to cosmic time t and H ≡
ȧ/a is the Hubble factor. Note that we have set Λ∗ = 0
since we are always free to choose the initial values H ini,
ρini and Qini in such a way that the integration constant
vanishes.

The non-conservation of the energy-momentum tensor,
Eq. (6), implies

ρ̇+ Q̇+ 3H(ρ+ P ) = 0. (16)

Thus, given a specific form of the diffusion term Q(t)
and an equation of state P (ρ), the system of equations is
closed.

Another important aspect in the theory that becomes
modified by the non-conservation of the canonical energy-
momentum tensor, involves the so called energy condi-
tions associated to Tab. In fact, this subject has been
investigated before in Extended Theories of Gravity, and
in particular, when considering non-conservation of the
energy-momentum tensor, see e.g. [50, 51].

In order to analyze such a feature, it is convenient to
rewrite the UG equations by substituting Eq. (7) in (2),
obtaining

Rab −
R

2
gab + κQgab = κTab, (17)

where we have considered that Λ∗ = 0 (without loss of
generality). A common practice is to move the term
κQgab to the r.h.s of (17), and define T eff

ab ≡ Tab −Qgab,
i.e. to define an effective energy-momentum tensor.
Then, the energy conditions are attributed to T eff

ab . How-
ever, as explained in [51], this procedure hides the energy
conditions of the real matter fields, characterized by Tab,
because it combines the matter degrees of freedom with
a geometrical object Qgab.

5 Hence, to analyze the energy

5 The non-conservation equation ∇aTab = gab∇aQ arises because
of restricting the theory to diffeomorphisms that preserve the 4-
volume element (see constraint (3)); so Qgab is of a geometric
nature.

conditions in non-conservative UG we proceed as follows.
The weak energy condition (WEC) is defined as

TabX
aXb ≥ 0 (18)

where Xa is a timelike vector, i.e. gabX
aXb = −1. Sub-

stituting Eq. (17) in (18), and taking into account Eq.
(8), yields

RabX
aXb ≥ κ

(
T

2
−Q

)
. (19)

On the other hand, the WEC in standard GR translates
into RabX

aXb ≥ κT/2. Therefore, the second term in
the right-hand side of Eq. (19) is a modification to the
usual condition on the geometrical objects associated to
the WEC.
The strong energy condition (SEC) is defined as(

Tab −
T

2
gab

)
XaXb ≥ 0, (20)

where Xa a timelike vector. In standard GR, and
through the traditional EFE, the above condition takes
the form RabX

aXb ≥ 0. However, in UG by substituting
Eqs. (17) and (8) in (20), we obtain

RabX
aXb ≥ −κQ. (21)

We note that if Q > 0 and if RabX
aXb satisfies the

corresponding WEC and SEC inequalities in standard
GR, then RabX

aXb automatically satisfies Eqs. (19) and
(21), i.e. the WEC and SEC inequalities of UG.
Here it is important to mention that the so-called Ray-

chaudhuri Equation, which is obtained from the geomet-
rical term RabX

aXb, is modified when one considers
the diffusion term of Eq. (17). In addition, the non-
conservation of the enery-momentum tensor implies the
non-geodesic motion of pointlike particles [52].
For completeness, the dominant energy condition

states that for all future directed, timelike Y a, the vector
−T a

b Y
b should be a future directed timelike or null vec-

tor. This condition translates, through Eq. (17), that
−[Ra

b + (κQ − R/2)δab ]Y
b should be a future directed

timelike or null vector. Finally, the null energy condi-
tion states that TabZ

aZb ≥ 0, where Za is a null vector,
i.e. gabZ

aZb = 0. The NEC and Eq. (17) imply that
RabZ

aZb ≥ 0 in UG, which is the same condition as in
standard GR.

A. Characterizing the inflationary phase

The inflationary phase can be parameterized com-
pletely by the Hubble flow functions (HFF), [47, 48] de-
fined as

ϵn+1 =
ϵ̇n
Hϵn

, ϵ0 =
H ini

H
, (22)
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where n = 0, 1, 2, . . .. From Eqs. (14) (15), (22), and
assuming the equation of state (EOS) for the perfect fluid
as P = wρ, one obtains,

ϵ1 =
3(1 + w)

2(1 + Γ)
, where Γ ≡ Q/ρ. (23)

We observe from the previous equation that if Γ satisfies
Γ > (1+3w)/2, then ϵ1 < 1; meaning that an inflationary
regime can take place.

Our particular model assumes that, from the begin-
ning of the inflationary expansion, the total matter con-
tent of the universe behaves as a hydrodynamical fluid
consisting of pure radiation. Hence, the EOS p = wρ
with w = 1/3 is valid from the beginning of inflation,
during inflation, and up to near the end of the radia-
tion dominated epoch (see [45] for more details about
the post-inflationary epoch).

For w = 1/3, then

ϵ1 =
2

1 + Γ
. (24)

Therefore, inflation occurs i.e. ϵ1 < 1, if

Q

ρ
> 1. (25)

In other words, if the diffusion term Q dominates over
ρ (with EOS parameter w = 1/3), then inflation is as-
sured. This means that if inflation takes place, then the
accelerated expansion is being driven by Q (and not by
ρ as in the traditional picture).

On the other hand, inflation ends when ϵ1 ≃ 1; conse-
quently, the inflationary phase ends when Q ≃ ρ. Given
that during inflation we are modeling the matter content
as a perfect fluid consisting of pure radiation, this means
that the universe evolves into the radiation era smoothly,
that is, reheating takes places naturally.

For w = 1/3, the continuity equation (16) is expressed
as

ρ(N),N +Q(N),N +4ρ(N) = 0, (26)

where (·),N denotes derivative with respect to N . Also,
we have performed a change of variableHdt = dN , where
N is the number of e-folds, defined as a(N) ≡ eNaini.
The solution to Eq. (26) for a given generic “initial” con-
dition ρ(N0) = ρ0 is6

ρ(N) = ρ0e
−4(N−N0) − e−4N

∫ N

N0

e4N̄Q,N̄ dN̄. (27)

At this point, the only thing left to specify is the func-
tion Q, which would yield ρ from (27). In particular, one

6 Note that the name “initial” condition, does not necessarily
means that one must choose N0 = 0. In fact, the allowed ranges
are: 0 ≤ N0 ≤ Nf , and M4

P ≤ ρ0 ≤ ρend.

could analyze whether for a given diffusion term, the con-
dition (25) is satisfied. If this is the case, then Q would
generate an inflationary phase up to Q ≃ ρ, where the
end of inflation would occur after sufficient N .
Alternatively, we can reconstruct a specific form of Q

such that is compatible with a realistic inflationary phase.
Our strategy is as follows: we will assume a particular
function ϵ1 that is compatible with a full inflationary
phase. For that chosen ϵ1, we construct the correspond-
ing Q, and consider it as an ansatz. In this manner,
we can analyze some observational consequences for that
constructedQ (for a more in depth analysis see Ref. [45]).
Generalizing the analysis of Ref. [45], for a given ϵ1,

we have

ρ(N) = ρ0
ϵ1(N)

ϵ1(N0)
exp[−

∫ N

N0

2ϵ1(N̄)dN̄ ]. (28)

and

Q(N) = Q0

(
2− ϵ1(N)

2− ϵ1(N0)

)
exp[−

∫ N

N0

2ϵ1(N̄)dN̄ ]. (29)

Note however that Q0 and ρ0 are not independent; in
fact from (24), we have

Q0 =

(
2

ϵ1(N0)
− 1

)
ρ0. (30)

It can be shown that Eqs. (28) , (29), consistently solve
Eq. (26). Thus, we have inverted the problem, for any
inflationary phase completely characterized by ϵ1(N), we
can find the corresponding diffusion term, and thus the
evolution of the energy density during the accelerated
expansion.

B. Possible options for including scalar fields

Before ending this section, we would like to discuss
two possible manners of introducing scalar fields in the
proposed model. In this way, we hope to inspire some
model building prospects within such a framework.
First, we can consider the following toy model: we

maintain the assumption that Q is a positive diffusion
term, but characterize the matter fields by a scalar field
ϕ(x) minimally coupled to gravity. The scalar field is
the only type of matter (or dominates over other matter
degrees of freedom). Therefore, from Eq. (5), we have
that

Tab = ∇aϕ∇bϕ+ [X − V (ϕ)] gab, (31)

where we have defined the kinetic term as

X ≡ −1

2
gab∇aϕ∇bϕ. (32)

The non-conservation equation of Tab (6) leads to

(∇a∇aϕ− ∂ϕV )∇bϕ = ∇bQ. (33)
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The energy momentum tensor in Eq. (31), can be
rewritten as characterizing a “perfect fluid” for the scalar
field, i.e.

Tab = (ρϕ + Pϕ)UaUb + Pϕgab, (34)

where the energy density and pressure associated to the
scalar field are given as

ρϕ = X + V, Pϕ = X − V, (35)

with 4-velocity Ua = −gab∇bϕ/
√
2X.

We will now assume that the spacetime is homoge-
neous/isotropic, and, for simplicity, spatially flat. There-
fore, the spacetime is described by the flat FLRW metric.
On the other hand, we can also consider that the scalar
field can be approximated by a homogeneous scalar field,
i.e. ϕ ≃ ϕ(t), so X = ϕ̇2/2. Under these assumptions,
Eq. (23) is expressed as

ϵ1 =
3

2

(ρ+ P )

(ρ+Q)
=

3X

X + V +Q
, (36)

where in the last equality we have used Eqs. (35). There-
fore, the condition for an inflationary phase ϵ1 < 1, ob-
tained from (36), is

V +Q > 2X. (37)

Thus, if the diffusion term dominates over the kinetic
term Q ≫ X, then Q can drive the accelerated expan-
sion in the early universe. This conclusion is independent
if V dominates or not over X, i.e. ϕ may not be the infla-
ton. Additionally, the inflationary phase will end when
V + Q ≃ 2X. Evidently, the next step to analyze the
feasibility of this toy model is to consider small inho-
mogeneous perturbations around the scalar field and the
background spacetime. This study is beyond the scope
of the present work, but it is an interesting possibility for
future research.

The second option to introduce scalar fields, is to con-
sider in addition a radiation fluid. Consequently, the to-
tal matter content is modeled as radiation plus a scalar
field. The radiation fluid can be thought of as consisting
of electromagnetic radiation (and possibly gravitons).

As before, we describe the background spacetime as a
spatially flat FLRW; so the background matter content
is homogeneous and isotropic. Specifically, the energy
density and pressure of the radiation fluid, ρr and Pr

respectively, are highly homogeneous. Also, we assume
that the scalar field can be decomposed in a homogeneous
background plus a small (inhomogeneous) perturbation,
ϕ(x) = ϕ0(t) + δϕ(x).
Additionally, we assume that the diffusion term, which

could emerge due to quantum gravitational effects [33,
34, 44], decreases during the expansion, and feeds the
radiation fluid. Therefore, the continuity equation for
radiation is expressed as

ρ̇r + 3H(ρr + Pr) = −Q̇0, (38)

where Pr = ρr/3. In the above equation, a key assump-
tion is that the diffusion process does not disrupt the
homogeneity and isotropy of the background matter and
geometry configurations to leading order. In other words
we are assuming Q = Q0(t) + δQ(x), with Q0 ≫ |δQ|.
For the background part of the scalar field one has,

ρ̇ϕ + 3H(ρϕ + Pϕ) = 0 (39)

where ρϕ and Pϕ are given in Eq. (35), with X = ϕ̇2
0/2

and V = V (ϕ0). Consequently, the continuity equation
for the total matter content of the background, i.e. Eq.
(38) + Eq. (39), reflects the non-conservation of the total
background Tab.

Next, we will analyze the conditions for generating an
accelerated expansion. If we assume that the scalar field
dominates over the radiation fluid, then condition (37)
is maintained, i.e. Q0 + V > 2X implies an inflationary
phase. Note that, as in the previous case, if the diffusion
term is much larger than the kinetic term, Q0 ≫ X, then
the exponential expansion is driven exclusively by Q0.

As we have mentioned, the origin of the diffusion term
could be linked to a possible fundamental granularity of
the spacetime at Planckian scales. The interaction of the
scalar field with this granularity could generate the pri-
mordial perturbations. Phenomenologically, this interac-
tion could be represented by the term δQ(x). Then, one
could use Eq. (33) at the leading order in δϕ, δQ, δgab to
analyze the behavior of the perturbations.

On the other hand, it may well be the case that the
term δQ(x) is dominated by thermal fluctuations from
the radiation fluid. In this case, the whole scenario re-
sembles to the so called warm inflation framework [53–
56]. In the latter, the interaction of the scalar field with
the heat reservoir (modeled by the radiation fluid) in-
duces primordial perturbations. However, there are some
caveats when making the association between warm in-
flation and our model based in non-conservative UG.
Clearly, the most glaring difference is that in warm in-
flation the total energy-momentum tensor is conserved.
The other distinction is that in warm inflation, the scalar
field drives the accelerated expansion. However, this lat-
ter discrepancy can be eliminated by considering that,
in our model, the potential V dominates over the kinetic
term, V ≫ X, so the condition for inflation is fulfilled, i.e.
Q+V > 2X. In this situation, the entire framework is es-
sentially warm inflation except for the non-conservation
of the total energy-momentum tensor. In fact, this fea-
ture might be helpful for solving the grateful exit problem
in warm inflation [57], because in our proposal inflation
would end when V + Q ≃ 2X. Thus, much of the phe-
nomenology of warm inflation and its extensive studies
comparing to CMB data may then become useful to the
inflationary models based on non-conservative UG and
vice versa.
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III. THREE INFLATIONARY SCENARIOS:
THEORETICAL ANALYSIS

In the present section we will introduce three inflation-
ary scenarios in non-conservative UG, each one of them
has different motivations that we consider of physical in-
terest. Our main objective here is to derive all the theo-
retical equations required for comparing the predictions
with observations.

In Ref. [45] it was shown in detail that the theoreti-
cal predictions of the inflationary model considered here,
which is based in non-conservative UG, are exactly the
same as in standard (single field slow-roll) inflation. In
particular, to achieve that result, we made two key as-
sumptions: (i) the total matter content in the early uni-
verse behaves as a perfect fluid consisting of pure radia-
tion, so T = 0 = δT and (ii) the quantity Q, character-
izing the non-conservation of the energy-momentum ten-
sor, is completely homogeneous, so δR = δQ = 0. Fur-
thermore, under assumptions (i) and (ii), in [45] it was
shown that the perturbed EFE at linear order in UG are
exactly the same as in traditional GR, i.e. δRµ

ν = κδTµ
ν

(see also [58, 59]).
The scalar power spectrum obtained is thus,

Ps(k) = As

(
k

k⋄

)ns−1

, (40)

where

As =
H2

⋄
8π2ϵ1⋄M2

P

, ns = 1− 2ϵ1⋄ − ϵ2⋄ (41)

and the tensor-to-scalar ratio is

r = 16ϵ1⋄. (42)

The ⋄ denotes we are evaluating the corresponding quan-
tity at the time of “horizon crossing” for the mode k⋄, i.e.
when k⋄ = a⋄H⋄. Consequently, if we find the corre-
sponding expressions for: ϵ1(N), ϵ2(N), and H(N) in
the non-conservative UG framework, then it is straight-
forward to obtain the predicted power spectrum after
evaluating such expressions at N⋄. Note that because of
assumption (i), the mode associated to k corresponds to
small inhomogeneities in the matter fluid δρk, consisting
of pure radiation.

Before introducing the three inflationary scenarios, it
is worth mentioning another important parameter in the
traditional (slow-roll) inflationary model, i.e. the reheat-
ing parameter [60, 61], given as

lnRrad =
1− 3w̄reh

12(1 + w̄reh)
ln

(
ρreh
ρend

)
, (43)

where w̄reh is the mean equation of state parameter dur-
ing reheating, ρreh is the energy density at the end of
the reheating era, and ρend is the energy density at the
end of inflation. In slow-roll inflation, the reheating pa-
rameter Rrad put constraints on the interval Nf − N⋄

[60, 61], where Nf is the total number of e-folds that in-
flation lasts. However, in our inflationary model due to
assumption (i), w̄reh = 1/3 exactly, in fact w = 1/3 since
the beginning of inflation, during inflation, after the end
of inflation, and during the radiation dominated era up
to the matter dominated epoch (see [45] for a more de-
tailed presentation of the post-inflationary epoch). As a
consequence, in our model lnRrad = 0, this implies that
the interval Nf − N⋄ is fixed simply by the dynamical
equations of the background, i.e. (28) and (29). Also, it
means that reheating proceeds in a smooth manner.
In the following, we will show how to obtain the main

theoretical quantities involved to compute As, ns and r
in the three inflationary scenarios mentioned.

A. First scenario

This scenario is motivated by its simplicity. Namely,
one of the most simple parameterizations of ϵ1 character-
izing inflation is

ϵ1(N) =
1

(1 +Nf −N)γ
, γ > 0, (44)

where Nf ≥ 65, as usual. Consequently,

ϵ2(N) =
γ

1 +Nf −N
. (45)

This parameterization is also inspired by the one intro-
duced in Ref. [62], where it was argued to be one of the
most general descriptions of inflation, i.e. without as-
suming a specific model for the matter fields other than
the EOS (which in the case of Ref. [62] is P ≃ −ρ).
From Eqs. (28) and (29), we obtain the following ex-

pressions:

ρ(N) =
ρend

(1 +Nf −N)γ

× exp

{
2

1− γ

[
(Nf −N + 1)

1−γ − 1
]}

(46)

and

Q(N) =

[
2− 1

(1 +Nf −N)γ

]
ρend

× exp

{
2

1− γ

[
(Nf −N + 1)

1−γ − 1
]}

.(47)

Note that we have chosen N0 = Nf , so ρ0 = ρend. Then,
from Friedmann equation (14), we have

H2(N) =
2ρend
3M2

P

exp

{
2

1− γ

[
(Nf −N + 1)

1−γ − 1
]}
(48)

Thus, there are two parameters in this case: γ and ρend.
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B. Second scenario

This second case was originally presented in Ref. [45].
The motivation there was to find a specific parameteriza-
tion of Q such that it can produce an inflationary phase
and also coincides with the present value of the cosmolog-
ical constant. That is, we explored a possibility in which
inflation and the late time accelerated expansion might
be unified within non-conservative UG. In this paper, we
will only analyze the observational bounds imposed on
that specific model coming from inflation. Therefore, we
left for future work the same analysis employing data of
the current value of the cosmological constant.

In this case, we parameterize

ϵ1(N) = 1 + tanh

[
2

3
α(N −Nf )

]
+ exp(−4αN) (49)

then

ϵ2(N) =
2α

3

(
−6 exp(−4αN) + sech2 [2/3α(N −Nf )]

1 + exp(−4αN) + tanh [2/3α(N −Nf )]

)
(50)

As we have shown in Ref. [45], this case results in the
following expressions (which can be obtained using (49)
in Eqs. (28), (29))

ρ(N)

M4
P

=

{
1 + tanh

[
2

3
α(N −Nf )

]
+ exp(−4αN)

}
× exp

[
1

2α

(
−1 + e−4αN − 4αN

)]
×

{
cosh(2αNf/3)

cosh [2α (N −Nf ) /3]

}3/α

(51)

and

Q(N)

M4
P

=

{
1− tanh

[
2

3
α(N −Nf )

]
− exp(−4αN)

}
× exp

[
1

2α

(
−1 + e−4αN − 4αN

)]
×

{
cosh(2αNf/3)

cosh [2α (N −Nf ) /3]

}3/α

. (52)

Substituting Eqs. (51) and (52) into Eq. (14), we can
obtain H(N). The initial conditions chosen are ρ(0) =
ρ0 = M4

P , hence Q(0) = M4
P . In other words, in this

model we have selected natural initial conditions. The
only parameter in this case is α.
Another important feature in this scenario is that for

certain values of α, this case reproduces the main charac-
teristics of the model originally introduced in [44] (we will
be more specific in the next section). In such a model,
the energy-momentum non-conservation is motivated by
considering a fundamental granularity of the spacetime
at Planckian scales. The diffusion term that arises in that
model can be used to characterize an inflationary phase.
However, in that same work, the primordial spectrum is

generated by resorting to fluctuations of the Higgs scalar
field during the inflationary regime within the semiclas-
sical gravity framework. If one chooses to drop the semi-
classical gravity hypothesis and instead quantize simul-
taneously the metric and matter perturbations, as it is
done in standard slow-roll inflation, then the present sce-
nario includes the model of Ref. [44]. Therefore, the
parameterization (49), which led to ρ and Q as in Eqs.
(51) and (52) can be considered as a refinement of the
model in Ref. [44]

C. Third Scenario

In this scenario we present a method for reconstructing
a particular Q given a single field slow-roll potential with
one parameter. In this manner, we can argue that any
single field inflationary model of the slow-roll type can
be mapped to an inflationary model in non-conservative
UG for a specific Q. The procedure is as follows.
For a given particular potential V (ϕ), with a single

parameter λ, one calculates ϕ as a function of the number
of e-folds N to the end of inflation; we denote such period
of e-foldings as ∆N ≡ Nf −N . In particular, we need to
solve the equation of motion for the homogeneous part
of the field ϕ(t) in the slow-roll approximation together
with Friedmann’s equation. That is, after a change of
variables N(t), the equations to solve are: 3H2 ≃ V/M2

P
and 3H2ϕ,N ≃ −∂ϕV . Those equations can be combined
to yield

dϕ

dN
= −M2

P

d lnV

dϕ
, (53)

Denoting by I the primitive

Iλ(ϕ) ≡
∫ ϕ

dφ
Vλ(φ)

∂ϕVλ(φ)
, (54)

equation (53) can be solved

N = − 1

M2
P

[Iλ(ϕ)− Iλ(ϕini)]. (55)

So, we have

Nf = − 1

M2
P

[Iλ(ϕend)− Iλ(ϕini)], (56a)

N = − 1

M2
P

[Iλ(ϕ)− Iλ(ϕini)], (56b)

From the previous expressions, it follows that

ϕ = I−1
λ [Iλ(ϕend) +M2

P∆N ]. (57)

For a particular given potential Vλ(ϕ), equation (57)
allow us to express the first HFF in terms of λ and ∆N ,
i.e. ϵ1(λ,∆N). This is useful since we can use such an
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expression in Eqs. (28) and (29), which will lead us to
the reconstruction of the diffusion term.

The first step is to use the equation of ϵ1 in terms of the
potential V and its derivative ∂ϕV (see [47, 48]), namely

ϵ1(λ, ϕ) ≃
M2

P

2

(
∂ϕV

V

)2

. (58)

Inserting the explicit form of the potential as a function of
ϕ, i.e. Vλ(ϕ), into (58) results in ϵ1(λ, ϕ). Subsequently,
substituting solution (57), which is of the form ϕ(∆N),
into (58), one can finally obtain ϵ1(λ,∆N). Recall that
we can find the value of the field at the end of inflation
by using the condition ϵ1(ϕend) ≃ 1. At this point, we
are done with slow-roll inflation.

With the calculated expression of the HFF at hand,
ϵ1(λ,∆N), we can reconstruct the corresponding diffu-
sion term (as in the previous two scenarios) by using Eqs.
(28),(29), and choosing ρ0 = ρend, N0 = Nf . This is, we
can reconstruct the corresponding inflationary phase in
non-conservative UG based on a particular inflationary
slow-roll model.

As a concrete example for this scenario, we can focus
on large field inflationary models characterized by a po-
tential of the power law type, i.e.

V (ϕ) = M4

(
ϕ

MP

)p

. (59)

This example is also relatively easy to handle since all ex-
pressions involved, in the aforementioned method, can be
obtained analytically. Following the previous procedure
(from Eq. (53) up to Eq. (58)), we obtain

ϵ1(N) =
p

4(Nf −N) + p
, (60)

so

ϵ2(N) =
1

Nf −N + p/4
. (61)

In this case, using (28),(29), we obtain

ρ(N) = ρend

[
p

4(Nf −N) + p

]1−p/2

(62)

and

Q(N) = ρend

[
2− p

4(Nf −N) + p

] [
p

4(Nf −N) + p

]−p/2

(63)
Lastly, from Friedamnn’s equation, we have

H2(N) =
2ρend
3M2

P

[
4

p
(Nf −N) + 1

]p/2
. (64)

The two parameters in this case are: p and ρend.

IV. THREE INFLATIONARY SCENARIOS:
OBSERVATIONAL ANALYSIS

In order to test the previous three scenarios with ob-
servational data, we proceed to run publicly available nu-
merical codes: CAMB [63] and COSMOMC [64]. The first
computes CMB anisotropies by integrating the differen-
tial coupled equations describing the primordial universe,
while the second implements Markov–Monte Carlo chains
to estimate a set of cosmological parameters.
The standard ΛCDM cosmological model was used

in order to establish a baseline reference to distinguish
whether or not our proposed scenarios fit the latest ob-
servational data. The dataset implemented consisted of
Planck 2018 TT,TE,EE + lowEB + lensing + BK15,
which combines latest Planck temperature and polariza-
tion data [3] with BICEP2/Keck 2015 release [65]. We
found the aforementioned combination of datasets to be
the most adequate for our purpose.
The usual set of standard cosmological parameters was

allowed to vary, that is to say Ωbh
2 (baryon density to-

day), Ωch
2 (cold dark matter density today), τ (Thomson

scattering optical depth due to reionization), 100ΘMC

(100 × approximation to rs/DA), ln(10
10As) (log power

of the primordial curvature perturbations) and ns (scalar
spectrum power–law index), plus r (tensor power spec-
trum amplitude). As for the pivot scale, we take the
standard value k0 = 0.05 Mpc−1.
The runs performed with the previous input allowed us

to create marginalized joint 68% and 95% confidence level
regions for the cosmological parameters of the ΛCDM
model. In particular, we focused on the inflationary pa-
rameters ln(1010As), ns and r. For each confidence re-
gion, we overlay the theoretical predictions of each model
to evaluate their compatibility with the data. An ex-
tra feature added to the majority of our plots is a star
point ⋆, which singles out a specific set of values for the
parameters characterizing each scenario. The ⋆ symbol
represents a reference model that ensures the model’s pre-
dictions are consistent with observational data for those
specific parameter values.
In the next subsections we will analyze in detail for

each proposed scenario the behavior of the functions
Q(N) and ρ(N). Also, employing the parameter esti-
mation contours built by the above procedure, together
with specific theoretical plots, we will analyze the feasi-
bility of each inflationary UG model by considering the
variation of the corresponding relevant parameter(s).

A. First scenario

The functions Q(N)/M4
P and ρ(N)/M4

P , given by Eqs.
(47) and (46), are plotted in Fig. 1. The total number
of e-folds of inflation here is taken to be Nf = 100. The
energy density at end of inflation is chosen to be fixed at
ρend = 10−11M4

P . We have chosen that scale because it
is a reasonable energy scale for the beginning of the radi-
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ation dominated epoch, ∼ 10−15 GeV. The γ parameter
in this scenario is allowed to vary; the different color lines
refer to a set of chosen values, characterizing a range of
feasible values.

In Figs. 2 and 3, we show a comparison between
the predictions of the theoretical model and the param-
eter likelihood contours characterizing inflation, i.e. r
vs ln(1010As), ns vs r and ns vs ln(1010As). As can be
seen, not any value shown in Fig. 1 is consistent with the
data. This separation contributes to the predictability of
the model. Namely, despite the fact that a range of γ
values are allowed in the theoretical approach, not all of
them are eligible by the observational data.

Continuous lines show the prediction for some possible
values of γ, while the dots depict different e-folds. The
values taken as a reference, identified by the ⋆ symbol, are
inside the 68% CL region, these are N = 43 and γ = 2.02.
Therefore, those values yield theoretical predictions that
are consistent with observations. On the other hand,
γ = 1.5 enters the 68% CL regions shown in Fig. 2, but
is excluded by the data at a 95% CL when comparing ns

and ln(1010As) , see Fig.3.

B. Second scenario

In the second scenario, Eqs. (52) and (51) are plotted
in Fig. 4 corresponding to the functions Q(N)/M4

P and
ρ(N)/M4

P respectively. In this case, we have assumed
Nf = 371, which is depicted as a vertical dashed line.
Several values of the free parameter α are shown. The
value α = 0.1 has particular interest as it reproduces the
same dynamical behavior of ρ and Q of Ref. [44], from
now on we refer to that model as the AP model.

At first glance, some value of α between [10−2, 10−1]
seems to be a good potential choice. Clearly, this in-
dicates that we can consider such a range as a prior
probability for future parameter estimation with Markov
chains in order to find the best fit–to–data.

Once again, the star point ⋆ singles out the values of
N and α that suit observations for this scenario. The
contours regions ns vs ln(1010As) and ns vs r are shown
in Fig. 5. There we can observe that some values for
α will be excluded by the observational data at a 95%
CL, but some others will prevail, giving predictability to
the model. Moreover, the contour r vs ln(1010As) shown
in Fig. 6 will result in stricter exclusion values for the
model’s parameters. In particular, the value α = 0.1,
corresponding to the AP model (without semiclassical
gravity) is ruled out by the data (it does not even ap-
pear close to the confidence regions). However, we note
that the value α = 0.0229 can be considered as an ex-
cellent guess as a starting point for a COSMOMC run. The
“drawback” of this scenario is that it requires “too much”
inflation, i.e. Nf ≃ 370.

C. Third scenario

As we have mentioned, this last scenario involves actu-
ally many models since it maps any single-field slow-roll
model to a specific form of the diffusion term Q that can
generate an inflationary expansion. Therefore, the results
for this scenario are already known because in principle
the predictions obtained are the same as the ones from
slow-roll inflation.
To test this assumption, we choose the power law

model of single-field slow-roll inflation, i.e. the one char-
acterized by the potential in Eq. (59). Latest results
from Planck collaboration have already ruled out prac-
tically any model of the power law type [2]. Thus, we
know in advance what we should expect in this case.
We fix the energy density at the end of inflation ρend =

10−11M4
P and Nf = 100 for the exact same reason as

in the first scenario. In Fig. 7, we plot the functions
Q(N)/M4

P and ρ(N)/M4
P with 2 < p < 8. This time no

⋆ point is drawn because there are no suitable values N
and p consistent with the data.
We proceed to perform the same tests as before for

this case. Figs. 8 and 9 show 68% and 95% CL re-
gions for observational data, comparing together ns, r
and ln(1010As). No possible value of p is found such that
the predicted quantities fall inside the confidence regions.
This indicates that an inflationary expansion in UG with
a diffusion term that can be mapped to slow-roll inflation
of the power law type is ruled out, as expected, by the
latest cosmological observations.

V. CONCLUSIONS

The structure of unimodular gravity (UG) allows for
a possible non-conservation of the canonical energy-
momentum tensor, resulting in a so called diffusion term
Q. This diffusion term could be responsible for generat-
ing a realistic inflationary phase [45], perhaps due to a
fundamental granularity of the spacetime [44]. That is, in
this approach, there is no need to postulate the existence
of the inflaton to produce an inflationary expansion in the
early universe. Moreover, the primordial inhomogeneities
arise from the inhomogeneous part of standard hydro-
dynamical matter, modeled as a single ultra-relativistic
fluid, i.e. pure radiation.
In this article, we have presented a phenomenological

analysis involving three different inflationary scenarios
in non-conservative UG, each with promising theoreti-
cal perspectives. The inflationary scenarios considered
were characterized through the Hubble Flow Functions
(HFF). The HFF allowed us to reconstruct the corre-
sponding diffusion function Q(N), which closed the set
of cosmological equations. Consequently, we have ob-
tained the corresponding predictions for the scalar am-
plitude As, the scalar spectral index ns and the tensor-
to-scalar ratio r. The three scenarios were challenged
to fit observational data in order to be deemed eligible
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FIG. 1: Q(N)/M4
P and ρ(N)/M4

P (Eqs. (47) and Eq. (46) respectively) are plotted for different values of γ and a fixed value
for ρend = 10−11M4

P . The star marks the specific values N = 43 and γ = 2.02, as a reference which is compatible with the
observational data. Note that total number of e-folds that inflation lasts is chosen to be Nf = 100, shown as a vertical dashed
line.

0.00 0.02 0.04 0.06 0.08 0.10 0.12
r

3.00

3.02

3.04

3.06

3.08

3.10

ln
(1

010
A s

)

N=43

Gamma
1.35
1.50
2.02

0.950 0.955 0.960 0.965 0.970 0.975 0.980
ns

0.00

0.02

0.04

0.06

0.08

0.10

0.12

r

N=43

Gamma
1.35
1.50
2.02

FIG. 2: Confidence regions for the first scenario, comparing parameter values of interest. Different values of γ are tested,
proving good potential to fit the data. The star point marks N = 43 and γ = 2.02, which we present as a reference.

from a realistic point of view. Specifically, the conjunct
Planck temperature/polarization and Bicep/KECK col-
laboration results were used for this purpose. Based on
these data, marginalized joint 68% and 95% confidence
level regions were constructed for the cosmological pa-
rameters r, ns, and ln(1010As).

In the first scenario, the HFF were parameterized in
the most simple manner using a single parameter γ,
Eqs. (44) and (45). Setting the total inflation period
to Nf = 100 e-folds, and the energy density at the end
of inflation to ρend = 10−11M4

P , we were able to progres-
sively restrict a feasible value for γ while discriminating

others. In particular, γ ≃ 2 would seem to provide a good
fit to the data, see Figs. 2, 3. Thus, this scenario is a po-
tentially strong candidate as an alternative to single-field
slow-roll inflation.

The second scenario was motivated by Ref. [45], which
explored the idea that the diffusion term could account
simultaneously for the inflationary period and the cur-
rent value of the cosmological constant, i.e. using the
same Q. Another interesting motivation in this case
was the natural initial conditions considered, these are:
ρ0 ≃ Q0 ≃ M4

P at the beginning of inflation. The cor-
responding parameterization in this scenario involved a
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P [Eqs. (52) and (51) respectively] are plotted assuming different values of α. A
star depicts the specific value for N = 128 and α = 0.0229. The value α = 0.1 reproduces the AP model.

single parameter α. Additionally, such parameterization
includes, as the particular case α = 0.1, an equivalent
model as the one presented originally in Ref. [44], which
we refer to as the AP model. Our results indicate that
only values very close to α = 0.022 appear to be a suit-
able match for the data, see Figs. 5, 6. However, one
possible shortcoming of this scenario is that it requires
Nf ≃ 370 e-folds of total duration of inflation. While
there is no upper bound for how much inflation should
last that is imposed by observations or theoretically, the
number Nf ≃ 370 is almost four times more than what
would normally be expected. Further analysis is required
for this scenario, especially if the initial intent was to ac-

count for the present value of the cosmological constant.
On the other hand, the value α = 0.1, corresponding to
the AP model, is not compatible with the data. Nonethe-
less, the ruled out AP model is not exactly the same as
the one in Ref. [44]. The former is based on the standard
procedure in which both the metric and matter perturba-
tions are quantized, while the latter was developed using
the semiclassical gravity framework, where only the mat-
ter fields are subjected to quantization.

The third scenario actually involves many different
models. Specifically, we have shown how to map any
single-field slow-roll inflation model, characterized by its
potential, to an inflation model in non-conservative UG.
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10As) and r in the ΛCDM model. Color lines denote different values of the free parameter α for the second inflationary
scenario in UG.
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FIG. 6: Stringent restrictions for the value of α arise when tensor-to-scalar ratio and scalar spectral index regions are built
from the latest observational data. This contour progressively reduces the acceptable margin of validity for the free parameter
in the second scenario. Also, it shows that α = 0.0229 is a prediction consistent with all the data, hence the ⋆ symbol.

Therefore, the predictions of any slow-roll inflation model
can be reproduced in UG, where the inflationary expan-
sion is driven by a particular diffusion function Q. As a
practical example, we considered a power law type of po-
tential and found its corresponding diffusion term. Our
analysis is consistent with what is already known about
this particular model [2, 10]. Namely, it is not compatible

with the latest observational data, see Figs. 8, 9.

We conclude that further research is necessary to es-
tablish our proposal as a solid alternative to traditional
single-field slow-roll inflation. In particular, it is required
to formally develop the quantum field theory of the mat-
ter fields involved, e.g. by considering the Higgs field
(and its fluctuations) as in [44]. Another open aspect, is
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FIG. 7: Plots of the functions Q(N)/M4
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P [Eqs. (63) and (62) respectively] for the third scenario. We vary the
free parameter p between 2 and 8 to illustrate the corresponding behavior in this case.
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FIG. 8: Contours of the scalar spectral index vs. scalar amplitude/tensor-to-scalar ratio show that no value of the free parameter
p fall inside any confidence region. Thus, the UG inflationary model, inspired by the single-field power law potential, is ruled
out by the data.

to clearly explain the generation of primordial inhomo-
geneities from the microphysics which also produces the
Q term. We hope to address those (and other possible)
issues in future works.
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UNLP, as this work was mainly done under Programa
de Retención de Recursos Humanos. We are especially
grateful to the anonymous referee for a helpful review.
Their comments and suggestions have led to significant
improvements in the presentation of the material in this
manuscript.

Data Availability

Observational constraints used in this article were ob-
tained using Plik v3.1 likelihood software available at
Planck Legacy Archive http://pla.esac.esa.int, together

http://pla.esac.esa.int


15

0.0 0.4 0.8 1.2 1.6 2.0 2.4
r

2.50

2.75

3.00

3.25

3.50

3.75

4.00

ln
(1

010
A s

)

p
2.00
4.00
6.00
8.00

FIG. 9: The lowest possible value p = 2 is barely close to the 95% confidence level region in the ln(1010As) vs r contour.
Theoretical predictions become less compatible with the observational data as p increases.

with COSMOMC, CAMB and GetDist codes available at
https://cosmologist.info. Markov-Monte Carlo chains

underlying this article may be available upon request to
the corresponding author.

[1] N. Aghanim et al. (Planck), Astron. Astrophys. 641, A1
(2020), 1807.06205.

[2] Y. Akrami et al. (Planck), Astron. Astrophys. 641, A10
(2020), 1807.06211.

[3] N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6
(2020), 1807.06209.

[4] A. H. Guth, Phys. Rev. D23, 347 (1981).
[5] S. W. Hawking, Phys. Lett. 115B, 295 (1982).
[6] A. D. Linde, Phys. Lett. B108, 389 (1982).
[7] A. D. Linde, Phys. Lett. B 129, 177 (1983).
[8] V. F. Mukhanov and G. V. Chibisov, JETP Lett. 33, 532

(1981), [Pisma Zh. Eksp. Teor. Fiz.33,549(1981)].
[9] V. F. Mukhanov, H. A. Feldman, and R. H. Branden-

berger, Phys. Rept. 215, 203 (1992).
[10] J. Martin, C. Ringeval, and V. Vennin, Phys. Dark Univ.

5-6, 75 (2014), 1303.3787.
[11] A. Ijjas, P. J. Steinhardt, and A. Loeb, Phys. Lett. B 723,

261 (2013), 1304.2785.
[12] R. Penrose, Fashion, Faith, and Fantasy in the New

Physics of the Universe (Princeton University Press,
2016), ISBN 9781400880287.

[13] G. W. Gibbons and N. Turok, Phys. Rev. D 77, 063516
(2008), hep-th/0609095.

[14] D. Chowdhury, J. Martin, C. Ringeval, and V. Vennin,
Phys. Rev. D 100, 083537 (2019), 1902.03951.

[15] G. Barenboim, W.-I. Park, and W. H. Kinney, JCAP 05,
030 (2016), 1601.08140.

[16] W. H. Kinney, Phys. Rev. Lett. 122, 081302 (2019),
1811.11698.

[17] G. León, Eur. Phys. J. C 77, 705 (2017), 1705.03958.
[18] J. Martin and R. H. Brandenberger, Phys. Rev. D 63,

123501 (2001), hep-th/0005209.

[19] A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Berlin
(Math. Phys. ) 1919, 349 (1919).

[20] W. Buchmuller and N. Dragon, Phys. Lett. B 207, 292
(1988).

[21] W. G. Unruh, Phys. Rev. D 40, 1048 (1989).
[22] Y. J. Ng and H. van Dam, J. Math. Phys. 32, 1337 (1991).
[23] D. R. Finkelstein, A. A. Galiautdinov, and J. E. Baugh,

J. Math. Phys. 42, 340 (2001), gr-qc/0009099.
[24] G. F. R. Ellis, H. van Elst, J. Murugan, and J.-P. Uzan,

Class. Quant. Grav. 28, 225007 (2011), 1008.1196.
[25] S. Weinberg, Reviews of Modern Physics 61, 1 (1989).
[26] L. Smolin, Phys. Rev. D 80, 084003 (2009), 0904.4841.
[27] U. Jean-Philippe, Dark energy, gravitation and the

Copernican principle (2010), p. 3.
[28] G. F. R. Ellis, Gen. Rel. Grav. 46, 1619 (2014), 1306.3021.
[29] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, JCAP

05, 046 (2016), 1512.07223.
[30] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, Class.

Quant. Grav. 33, 125017 (2016), 1601.07057.
[31] C. Corral, N. Cruz, and E. González, Phys. Rev. D 102,
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