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The role of Hall currents on incompressible magnetic reconnection
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Abstract

Magnetic reconnection is one of the most important energy conversion processes in space plasmas. Theoretical models of mag-
netic reconnection have been traditionally developed within the framework of magnetohydrodynamics (MHD). However, in low
density astrophysical plasmas as those found in the magnetopause and the magnetotail, the current sheet thickness can be compa-
rable to the ion inertial scale and therefore the Hall electric field becomes non-negligible. The role of the Hall current is to increase
the reconnection rate with respect to MHD predictions, which therefore poses a promising mechanism for fast reconnection. We
present results from parallel simulations of the incompressible Hall MHD equations in 2 1

2
dimensions. We quantitatively evaluate

the relevance of the Hall current in the reconnection process by performing a set of simulations with different values of the Hall
parameter. We compute the corresponding reconnection rates as a function of time, and explore the spatial structure of the fields
in the surroundings of the diffusion region. We quantify the increase of the reconnection rate as a function of the Hall parameter,
and confirm the presence of a quadrupolar structure for the out-of-plane magnetic field.
� 2006 Published by Elsevier Ltd on behalf of COSPAR.
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1. Introduction

Magnetic reconnection is likely to be the main mech-
anism by which the energy stored in stressed magnetic
fields can be converted into kinetic and thermal energy.
It is believed to play a crucial role in different astrophys-
ical environments such as the Earth�s magnetopause
Sonnerup et al. (1981), the Earth�s magnetotail (here it
is related to the release of magnetic energy, see e.g., Birn
and Hesse (1996)), the solar atmosphere (related to the
occurrence of flares, coronal mass ejections, and coronal
heating, see e.g. Priest (1984), Gosling et al. (1995)), or
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the interplanetary medium (for instance, as a conse-
quence of the interaction between magnetic clouds and
the solar wind, see Farrugia et al. (2001), Schmidt and
Cargill (2003)).

Hall currents can in turn play a significant role in the
dynamics of low density and/or low temperature astro-
physical plasmas, for which a one fluid description has
been traditionally used. For instance, they can alter
the dynamics of magnetic fields in dense molecular
clouds, trigger instabilities in accretion disks or modify
the efficiency of turbulent dynamos (Minnini et al.,
2003). Due to the low density of the plasma in the solar
wind and magnetosphere, the Hall currents can also be
of importance during magnetic reconnection at the
Earth�s magnetopause, and some signatures of these
Hall currents have been reported (Mozer et al., 2002).
However, the quantitative importance of its contribu-
tion to magnetic reconnection is still being assessed in
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the literature (see for example: Craig et al. (2003) and
Birn et al. (2001) and references therein).

Theoretical models of magnetic reconnection have
been traditionally developed within the framework of
magnetohydrodynamics (notably Parker (1957) and Pet-
schek (1964)). Nevertheles, in recent years many analyt-
ical and computational efforts have been made to clarify
the importance of the Hall effect in the reconnection pro-
cess (Craig and Watson, 2003; Smith et al., 2004; Chacón
et al., 2003; Dorelli and Birn, 2003; Dorelli, 2003).

In this paper, we study the importance of the Hall
term in incompressible magnetic reconnection. We per-
form numerical simulations of an incompressible 2 1

2
D

Hall MHD code with different values of the dimension-
less parameter �, which measures the relative importance
of the Hall current.

In Section 2, we introduce the Hall MHD equations
as well as the 2 1

2
D configuration. The basis of the

numerical model, boundary and initial conditions are
presented in Section 3. Section 4 is devoted to the anal-
ysis of the role played by the Hall currents and Section 5
contains the summary of the results presented in this
paper.
2. Hall MHD model

Highly conductive plasmas (i.e., S� 1) tend to devel-
op thin and intense current sheets in their reconnection
layers. Whenever the current width reaches values as low
as c/wpi (wpi is the ion plasma frequency and c is the
speed of light), the standard Ohm�s law needs to be ex-
tended, since it is not possible to neglect the Hall term
(Ma and Bhattacharjee, 2001). For a fully ionized plas-
ma of protons and electrons, the generalized Ohm�s law
can be written as:

E þ 1

c
v� B ¼ 1

r
j þ 1

ne
1

c
j � B �rpe

� �
; ð1Þ

where n is the electron and proton density (under the quasi-
neutrality hypothesis), e is the charge of the electron, r is
the electric conductivity, v is the plasma flow velocity,
and j is the electric current density. Assuming incom-
pressibility (i.e., $ Æ v = 0), the so-called Hall-MHD
equations can be cast in their dimensionless form as:

@tvþ ðv � rÞv ¼ ðr � BÞ � B �rp þ mr2v; ð2Þ
@tB ¼ r� ½ðv� �r� BÞ � B� þ gr2B; ð3Þ
r � B ¼ 0 ¼ r �U . ð4Þ

In Eqs. (2)–(4), we have normalized B and v to the Alfvén
speed va ¼ B0=

ffiffiffiffiffiffiffiffi
4pq
p

(where B0 is a typical magnetic field
intensity and q is the mass density), the total gas pressure
p to qv2

a, and longitudes and times, respectively, to L0 and
L0/va. The dimensionless dissipation coefficients are the
viscosity m and the electric resistivity g defined as
g ¼ c2

4pr
. ð5Þ

The dimensionless coefficient � is defined as

� ¼ c
wpiL0

; ð6Þ

is a measure of the relative strength of the Hall effect.
The dimensionless electron velocity is

ve ¼ v� �r� B. ð7Þ
From Eq. (3) it is apparent that in the non-dissipative
limit (i.e., g! 0) the magnetic field remains frozen to
the electron flow ve rather than to the bulk velocity v.

The incompressible Hall MHD simulations reported
in this paper are carried out under the geometric
approximation known as 2 1

2
D (two and a half

dimensions).
This approximation is based on the assumption that

there is translational symmetry along the ẑ coordinate
(i.e., oz = 0). Therefore, the solenoidal magnetic and
velocity fields, can be represented as:

B ¼ r� ½ẑaðx; y; tÞ� þ ẑbðx; y; tÞ; ð8Þ
U ¼ r� ½ẑ/ðx; y; tÞ� þ ẑuðx; y; tÞ; ð9Þ

where a(x,y, t) is the magnetic flux function and /(x,y, t)
is the stream function. In this approximation, the Hall
MHD equations take the form:

@ta ¼ ½/� �b; a� þ gr2a; ð10Þ
@tb ¼ ½/; b� þ ½u� �j; a� þ gr2b; ð11Þ
@tw ¼ ½/;w� þ ½j; a� þ mr2w; ð12Þ
@tu ¼ ½b; a� þ ½/; u� þ mr2u. ð13Þ

The nonlinear terms are the standard Poisson brackets
(i.e., [p,q] = oxpoyq � oypoxq), w = �$2/ is the ẑ-com-
ponent of the flow vorticity and j = �$2a is the ẑ-com-
ponent of the electric current density which vectorial
expression can be written:

j ¼ r� bẑþ jẑ. ð14Þ

The set of Eqs. (10)–(13) completely describes the recon-
nection problem for this particular geometry. One of the
most important consequences of including the Hall ef-
fect is the coupling between the ẑ-component of the
fields to the scalar potentials a and /. Note that if
� = 0, then the system decouples and the solutions for
a and / are determined by the solution of Eqs. (10)
and (12), thus becoming completely independent from
the ẑ fields.
3. Simulation model

In the present paper, we study the Hall reconnection
phenomena by means of the numerical integration of



Fig. 1. Contour labels of potentials a(x,y) and /(x,y) at t = 2, for a
purely MHD simulation (i.e., � = 0) with 2562 grid points. The
continuous traces correspond to positive levels, and the dotted traces
to negative labels.
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Eqs. (10)–(13). The computation is carried out in a rect-
angular domain assuming periodic boundary condi-
tions. The spatial coordinates span the ranges
�p 6 x,y 6 p. The magnetic vector potential a(x,y, t),
the stream function /(x,y, t) and ẑ-components of the
magnetic field b(x,y, t) and velocity field u(x,y, t) are ex-
panded in their corresponding spatial Fourier ampli-
tudes ak(t), /k(t), bk(t) and uk(t). The equations for
these Fourier amplitudes are evolved in time using a
second order Runge-Kutta scheme and the nonlinear
terms are evaluated following a 2/3 dealiased pseudo-
spectral technique. In order to provide a reconnection
scenario, the present simulations start with the fluid at
rest, and the following initial condition for the x̂ compo-
nent of the magnetic field:

Byðx; y; tÞ ¼
B0 tanh½x�p=2

D � if � p 6 y < 0;

�B0 tanh½xþp=2
D � if 0 6 y < p.

(
ð15Þ

corresponding to a periodic array of oppositely oriented
current sheets. In the present paper, we chose B0 = 1
and D = 0.04p, to simulate two initially thin current
sheets, where the reconnection process will take place.
In order to drive reconnection, a monocromatic pertur-
bation with kx = 1 and an amplitude of 2% of the initial
magnetic profile (see Eq. (15)) is added to the initial con-
dition in the full rectangular domain.

We performed numerical simulations with a moder-
ate spatial resolution of 256 · 256 grid points, and dif-
ferent values of the Hall parameter (� = 0.00, 0.07,
0.15), to study the role of the Hall term in the overall
dynamics of the reconnection process. We also run a
set of low-resolution simulations (128 · 128 grid
points) for several values of � (� = 0.00, 0.01, 0.03,
0.06, 0.10, 0.15), to compute the total reconnected flux.
In all these simulations, the dissipation coefficients are
set to g = m = 0.01 to ensure that all the lengthscales
are properly resolved. Note that pseudospectral
methods conserve the energy of the system, i.e., no
numerical dissipation is artificially introduced by the
simulation (Canuto et al., 1988).
Fig. 2. Contour labels of potentials a(x,y) and /(x,y) at t = 2 (upper
panels) and the z-components of the magnetic (b) and velocity (u) fields
(lower panels). It corresponds to a Hall MHD simulation with
� = 0.07, and 2562 grid points. The continuous traces correspond to
positive levels, and the dotted traces to negative labels.
4. Hall effect and reconnection

Fig. 1 shows the behavior of the potentials a and /
for the case � = 0, i.e., for a purely MHD simulation.
The initial magnetic field given by Eq. (15) relaxes to this
configuration with an X-point centered at x = p/2,y = 0
and another one at x = �p/2,y = p (see Fig. 1(a)). The
velocity field displays the typical quadrupolar structure
around X-points. The ẑ components of the magnetic
(i.e., b) and velocity (i.e., u) fields are initially zero,
and remain equal to zero for � = 0 (see Eqs. (11) and
(13)).
When � 6¼0, the configuration of potentials a and /
changes, but not in any essential manner, as shown in
the two upper panels of Fig. 2. The ẑ components of
the fields, on the other hand, acquire a sizeable fraction
of the total energy. As shown by the lower panels of
Fig. 2, the out-of-plane magnetic field component devel-
ops a quadrupolar structure around the X-points, as
reported by previous authors (Sonnerup, 1979; Teras-
awa, 1984). This component of the magnetic field is pro-
duced by the difference between the ion and electron
flows in the reconnection region which leads to the
appearence of in-plane Hall currents. Fig. 2 also shows
the development of out-of-plane flows in the surround-
ings of the current layers.
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The upper panel of Fig. 3 presents the spatial distri-
bution of the out-of-plane electric current density for
the case with no Hall effect. Two relatively thin current
sheets with opposite orientations can be observed at the
sites indicated by the X-points in Fig. 1. In the lower pa-
nel of Fig. 3, we show the resulting current distribution
for the case where the Hall parameter is � = 0.07. It can
be readily seen that the current sheet becomes shorter
and thinner and resembles a structure of the type sug-
gested by Petschek. This shortening and shrinking of
the current sheet comes along with the appearance of
a complex structure for the ẑ-components of the mag-
netic field and the velocity, as already shown in the lower
Fig. 3. Halftones of the electric current density component along the
z-direction, j(x,y) for simulations of 2562 grid points, taken at t = 2.
The upper panel corresponds to � = 0 (i.e., purely MHD) and the lower
panel to � = 0.07.

Fig. 4. Total reconnected magnetic flux as a function of time, for
various simulations performed with 1282 grid points. To the right of
each curve, the corresponding value of � is indicated.
panels of Fig. 2. These intense current layers coming out
from the X-points coincide with the location of separa-
trices of the out-of-plane magnetic field (see Fig. 2).

One of the most important features to evaluate the
efficiency of the reconnection process is the reconnected
flux. The magnetic flux reconnected as a function of time
at the X-point can be calculated in terms of the difference
of the magnetic potential in the X-point and the O-point,
i.e., aX(t) � aO(t). The effect of the Hall term on the
reconnected flux is shown in Fig. 4. As � is increased
the reconnection process is observed to become more effi-
cient, as evidenced by the total reconnected flux.
5. Conclusions

We have investigated the role of the Hall effect in the
magnetic reconnection process. With this goal in mind,
we performed numerical simulations of the Hall MHD
equations in 2 1

2
D.

The inclusion of the Hall term leads to smaller and
thinner current sheets, to the development of a quadru-
polar structure in the out-of-plane magnetic field com-
ponent, and to the generation of out-of-plane flows in
the surroundings of the X-points.

Also, the Hall effect leads to a faster reconnection
process, as evidenced by the larger total reconnected
flux. From numerical simulations, an empirical scaling
was obtained by Fitzpatrick (2004a) (see also Fitzpa-
trick (2004b)) and also by Smith et al. (2004). These
studies report that the maximum reconnection rate
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scales like Rmax � �3/2, and that it is also sensitive to the
amplitude of magnetic fluctuations. On the other hand,
Wang et al. (2001) analytically derived the scaling
Rmax � �1/2, which they also tested with Hall-MHD sim-
ulations. We need to run simulations at higher Reynolds
numbers to test these scalings. Our current results lie in
between these two predictions, but these are only preli-
minary conclusions because of the non-negligible role
of dissipation. Note that both Fitzpatrick (2004b) and
Smith et al. (2004) apply hyper-resistivity in their simu-
lations, while we only rely on plain resistivity to break
the magnetic field lines.
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