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ABSTRACT We performed whole-genome sequencing with bait enrichment techniques
to analyze Andes virus (ANDV), a cause of human hantavirus pulmonary syndrome. We
used cryopreserved lung tissues from a naturally infected long-tailed colilargo, including
early, intermediate, and late cell culture, passages of an ANDV isolate from that animal,
and lung tissues from golden hamsters experimentally exposed to that ANDV isolate. The
resulting complete genome sequences were subjected to detailed comparative genomic
analysis against American orthohantaviruses. We identified four amino acid substitutions
related to cell culture adaptation that resulted in attenuation of ANDV in the typically
lethal golden hamster animal model of hantavirus pulmonary syndrome. Changes in the
ANDV nucleocapsid protein, glycoprotein, and small nonstructural protein open reading
frames correlated with mutations typical for ANDV strains associated with increased
virulence in the small-animal model. Finally, we identified three amino acid substitu-
tions, two in the small nonstructural protein and one in the glycoprotein, that were
only present in the clade of viruses associated with efficient person-to-person transmis-
sion. Our results indicate that there are single-nucleotide polymorphisms that could be
used to predict strain-specific ANDV virulence and/or transmissibility.

IMPORTANCE Several orthohantaviruses cause the zoonotic disease hantavirus pulmo-
nary syndrome (HPS) in the Americas. Among them, HPS caused by Andes virus (ANDV)
is of great public health concern because it is associated with the highest case fatality
rate (up to 50%). ANDV is also the only orthohantavirus associated with relatively robust
evidence of person-to-person transmission. This work reveals nucleotide changes in the
ANDV genome that are associated with virulence attenuation in an animal model and
increased transmissibility in humans. These findings may pave the way to early severity
predictions in future ANDV-caused HPS outbreaks.

KEYWORDS comparative genomics, orthohantavirus, person-to-person transmission

Approximately 25 rodent-borne orthohantaviruses (order Bunyavirales, family Hantaviridae,
genus Orthohantavirus) have been identified as etiologic agents of human hantavirus

pulmonary syndrome (HPS) in the Americas (1). In Argentina, most HPS cases are caused by
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Andes virus (ANDV) and somewhat uncharacterized ANDV-like viruses (e.g., Buenos Aires
virus [BASV], Lechiguanas virus [LECV], and Orán virus [ORNV]). HPS has a case fatality
range of 21 to 50%, with ANDV typically causing the highest lethality (2–5). American ortho-
hantaviruses are pathogenic for humans and subclinically infect cricetid rodents in nature;
ANDV is primarily maintained by long-tailed colilargos (Oligoryzomys longicaudatus (Bennett,
1832)) (6).

The route of orthohantavirus transmission to humans is typically zoonotic, i.e., from
rodents to humans via contaminated rodent secreta or excreta in the absence of intermedi-
ate nonmammalian vectors (7). However, in 1996, an HPS outbreak caused by ANDV strain
Epilink/96 that began in El Bolsón, Río Negro Province, Argentina, was attributed for the first
time to person-to-person transmission (4, 8, 9). Sporadic HPS outbreaks with very limited
person-to-person ANDV transmission have occurred over the last 25 years (2, 3, 10).
Recently, state-of-the-art molecular epidemiology applied to a 2018–2019 HPS out-
break in Epuyén, Chubut Province, Argentina, confirmed the unique capacity of some
strains of ANDV (in this instance, ANDV/Epuyén/18-19) to sustain forward orthohantavirus
transmission in humans (11).

ANDV and Maporal virus (MAPV) are the only orthohantaviruses that have been docu-
mented to reproduce key features of HPS and cause lethal disease in a rodent model, i.e.,
golden hamsters [Mesocricetus auratus (Waterhouse, 1839)] (12–14). Immunocompetent
golden hamsters provide uniformly lethal results when exposed to the Chilean strain ANDV/
CHI-9717869 (isolated from a long-tailed colilargo collected from Lago Atravesado, Coyhaique,
Aysen Region, Chile, in 1997) (12, 15) or the Argentinean strain ANDV/ARG (isolated from a
long-tailed colilargo collected in the vicinity of the primordial site of discovery of ANDV
[El Bolsón] in 2000) (14). However, the golden hamster model did not produce lethal
results when exposed to a closely related strain, ANDV/CHI-7913 (isolated from clinical
samples from a fatal case that was a family contact of the index case of an outbreak near
Santiago, Chile, in 1999) (16, 17). These findings indicated that subtle strain-specific genomic
differences may have dramatic phenotypic consequences (17).

Cell culture passaging has been associated with viral virulence attenuation for multiple
orthohantaviruses in animal models (18, 19). We therefore hypothesized that serial cell cul-
ture passaging of an ANDV known to be uniformly lethal in golden hamsters would result in
attenuation, that attenuation would be traceable to specific mutations in the ANDV genome,
and that these mutations may be catalysts for ANDV adaptation and therefore possible predic-
tive markers for virulence and/or transmissibility.

RESULTS
Cell culture passaging of Andes virus strain ARG results in virulence attenua-

tion in vivo. Andes virus strain ARG (ANDV/ARG) is one of a select few available strains
isolated directly from the rodent reservoir, long-tailed colilargos (20). To our knowl-
edge, it is also the only ANDV strain directly sequenced from rodent material (passage
0 [p0]). We hypothesized that cell culture passaging attenuates ANDV/ARG. To test this
hypothesis, we passaged ANDV/ARG p9, described previously as causing 100% lethality
in golden hamsters at 10 days after exposure (14), an additional 10 times in grivet Vero
E6 cells (to p19). In a side-by-side comparison, all golden hamsters exposed via intra-
muscular injection of ANDV/ARG p9 uniformly reached euthanasia criteria, as expected,
whereas 33.3% of those exposed to ANDV/ARG p19 recovered, and mock-exposed con-
trol animals uniformly survived (Fig. 1). Kaplan-Meier comparison of survival curves
and log rank tests (Mantel-Cox [P , 0.0001; chi-square = 18.47], trend variation with
the number of passages [P = 0.0101; chi-square = 6.610], and Gehan-Breslow-Wilcoxon
[P = 0.0005; chi-square = 15.13]) demonstrated that these survival differences are statis-
tically significant. ANDV/ARG RNA was consistently detected in golden hamster lung
samples (3.8 � 106 to 1.7 � 1010 RNA copies per 100 mg of perfused tissue) in the
ANDV/ARG p9 and p19 cohorts but not in the mock-exposed control cohort.

Phylogenetic analysis informs the evolutionary history of Buenos Aires virus
and Andes virus strain ARG. We performed phylogenetic analysis of ANDV/ARG and
Buenos Aires virus (BASV) small (S) and medium (M) genomic segments as well as the
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ANDV/ARG large (L) segment. Coding-complete nucleic-acid sequences determined in
this study were assessed together with previously determined sequences of ANDV,
ANDV-like viruses Lechiguanas virus (LECV) and Orán virus (ORNV), BASV/BA02-C1S, and
several American orthohantaviruses (Laguna Negra virus [LANV], Sin Nombre virus [SNV],
Maporal virus [MAPV], Rio Mamoré virus [RIOMV], and Choclo virus [CHOV]). Four distinct
ANDV clades are apparent in the most divergent S segment tree (Fig. 2B; details about the
strains are listed in Table S1 in the supplemental material):

1. ANDV/CHI-7913 (Chile; long-tailed colilargo) and ANDV/NRC-4/18 (Argentina; human)
2. ANDV/Epilink/96, ANDV/Epuyén/18-19, ANDV/AREB14/P2 (Argentina, human;

associated with person-to-person transmission) and ANDV/NCR-2/97 and
ANDV/NRC-6/18 (Argentina, human)

3. ANDV/ARG (Argentina; long-tailed colilargo)
4. ANDV/CHI-9717869 (Chile; long-tailed colilargo).

ANDV/ARG is therefore not directly related to the other ANDV strains associated with
person-to-person transmission. Interestingly, BASV clusters separately from ANDV sensu
stricto together with LECV and ORNV; and, based on the analysis of the S, M, and L segments
(Fig. S1), ANDV/CHI-9717869 appears to be the more ancestral strain. Furthermore, the analysis
also shows that ANDV/ARG genetic distances to other strains reflect their geographic distribu-
tion (Fig. 2B).

Sequencing of passaged variants of Andes virus strain ARG reveals sites of ad-
aptation associated with attenuation in the golden hamster model. To identify
genotypic differences associated with golden hamster model outcome phenotype, we
sequenced the S, M, and L genomic segments of ANDV/ARG p0 (sampled from the long-
tailed colilargo). The resulting isolate was seeded in Vero E6 cells for analysis of p3, p9 (14),
and p19, as well as lung-tissue homogenates from golden hamsters exposed to ANDV/
ARG p9. We also included a human blood sample of Buenos Aires virus (BASV/BA02-C1S)
from a case of HPS in La Plata, Provincia de Buenos Aires, in 2002 (21). We obtained com-
plete genomic sequences for all segments (.98.3% coverage) for all ANDV strains, except
for the L segment from the p0 strain (46.1% coverage). Sequences are available in GenBank
under accession no. OP555720 to OP555735.

The comparative analysis revealed only a few nucleotide changes over passages (Table 1),
and p0 and p3 sequences were identical. By p9, three single-nucleotide polymorphisms (SNPs)
were observed: two in the S segment (S46N in the nucleocapsid [N] open reading frame [ORF]
and V20I in the small nonstructural protein [NSs] [7] ORF) and one in the L segment (I1295M
in the large protein [L] ORF). By p19, four additional SNPs were observed: two in the S seg-
ment, including a synonymous change at nucleotide position G57A and a nonsynonymous
change at G103A (A21T), and two that were derived by nonsynonymous substitution,
including one in the M segment (S97P), and one in the L segment (P1675S); also, one
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FIG 1 Cell culture passaging of Andes virus results in virulence attenuation in vivo. Shown are Kaplan-
Meier survival curves of golden hamsters inoculated intramuscularly with three different preparations until
the study endpoint. ANDV/ARG, Andes virus strain ARG; p, passage.
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reversion was observed in the S segment (affecting S46 in the N ORF and V20 in the small
nonstructural protein [NSs] ORF). As expected, the p19 sequence had the highest number of
nonsynonymous substitutions. The changes were predominantly transitions (87.5%). After
correction by segment length, it is evident that most nucleotide substitutions accumulated
in the S segment. Surprisingly, very few SNPs were observed in the M segment. Interestingly,
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CHOV/588 #KT983771

ORNV/AND Nort #AF325966
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FIG 2 Phylogenetic analysis informs the evolutionary history of Buenos Aires virus (BASV) and Andes virus strain ARG (ANDV/ARG). (A) Small (S) segment
analysis. Large (L) and medium (M) segment analyses are included in Fig. S1. All variants are listed with the strain name, region of origin, year of isolation, and
accession number. Different colors are used for identification: brown for non-ANDV South American orthohantaviruses, green for ANDV-like viruses, light blue for
ANDV strains in clades 1, 2, and 4, and some in clade 3, and dark blue for passaged strains in clade 3. Detailed information on epidemiological history of the
strains is listed in Table S1. (B) Geographic distribution of American orthohantavirus strains analyzed in panel A. Mulchén and Coyhaique are in Chile; the other
locations are in Argentina. The inset shows the area of endemicity of ANDV in Argentina and Chile.
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no reversions were detected in the genomic sequences of ANDV/ARG p9 in the lungs of
golden hamsters exposed to ANDV/ARG p9. (Note that no data were collected from the
lungs of golden hamsters exposed to ANDV/ARG p19).

Sequencing of Andes virus strain ARG reveals virulence markers compared
with pathogenic and nonpathogenic strains of Andes virus utilized in the golden
hamster model. To identify potential genotypic virulence markers in the ANDV/ARG
genome, we initially focused on 23 specific SNPs that had been described between the
golden hamster attenuated ANDV/CHI-7913 compared to golden hamster lethal ANDV/CHI-
9717869 (17). We also mapped five additional SNPs between those genomes, as the NSs
ORF was not included in the original comparison (17). In 23 of those 28 positions, ANDV/
ARG p0 shared nucleotide bases with attenuated ANDV/CHI-7913. ANDV/CHI-97177869 and
ANDV/ARG shared only position 11 of the Gn glycoprotein, position 938 of the Gc glyco-
protein, and positions 20 and 37 of the NSs ORFs (Table 2). ANDV/ARG differ from both
ANDV/CHI-7913 and ANDV/CHI-9717869 at genome position 46 of the N ORF.

Next, we focused on comparing the amino acid changes that arose during ANDV/ARG
passaging with the differences in virulence observed in the golden hamster model. We iden-
tified five: A21T in the N ORF, V20I in the NSs ORF, S97P in the Gn glycoprotein, and I1295M
and P1675S in the L ORF.

A21T, which appeared only in ANDV/ARG p19, occurs in a region known to participate in
orthohantavirus NSs homotypic interactions (22). Additionally, we identified a second amino
acid change in the N ORF (S46N), which was encoded only by ANDV/ARG p9 (Table 1 and
Table 2). Interestingly, in the same N ORF, Simons et al. reported an ANDV-specific kinase-
recruitable hypervariable domain (HVD) in the N ORF by comparison of ANDV/CHI-7913
with other American orthohantaviruses and demonstrated its importance in regulating inter-
feron (IFN) signaling (23). The HVD, which consists of 44 residues (nucleotides 252 to 296),
encodes six characteristic amino acids (at positions A253, K262, N273, H286, T289, and T296)
that are determinants of the phosphorylation of S386 in the N ORF, which is posited as a vir-
ulence determinant (23). Although we confirmed that S386 and five of the six residues are
conserved among all ANDV and ANDV-like viruses (Table 2 and Table 3), A253 is exclusive
for ANDV, whereas P (BASV and LECV) or L (ORNV) is found in ANDV-like viruses; Q is found
in MAPV, RIOMV, and LANV; and P is found in SNV and CHOV.

The recently discovered ANDV NSs antagonizes the type I IFN response by inhibiting mi-
tochondrial antiviral-signaling protein (MAVS) signaling by binding MAV without disrupting
MAVS-TBK-1 (22). In the presence of ANDV NSs, the ubiquitinylation of MAVS is reduced.

TABLE 1 Sequencing of passaged variants of ANDV/ARG reveals sites of adaptation associated with attenuation in the golden hamster modela

Genomic region

Position ANDV passage in:

Typent aa
Rodent tissue;
ARG p0

Cell culture
Infected golden hamster
lungs; Mau/ARG p9ARG p3 ARG p9 ARG p19

S segment
GenBank no. OP555723 OP555720 OP555721 OP555722 OP555728
N ORF 57 5 CAG (Q) CAG (Q) CAG (Q) CAA (Q) CAG (Q) Syn

103 21 GCT (A) GCT (A) GCT (A) ACT (T) GCT (A) Nonsyn
179 46 AGT (S) AGT (S) AAT (N) AGT (S) AAT (N) Nonsyn

NCR 1488 Not coding G G G T G
NSs ORF (11) 179 20 GTA (V) GTA (V) ATA (I) GTA (V) ATA (I) Nonsyn

M segment
GenBank no. OP555724 OP555725 OP555726 OP555727 OP555729

337 97 TCC (S) TCC (S) TCC (S) CCC (P) TCC (S) Nonsyn

L segment
GenBank no. NA OP555732 OP555733 OP555734 OP555735 Functional region

3557 1175 NA ACC (T) ACT (T) ACT (T) ACT (T) Syn
3919 1295 NA ATA (I) ATG (M) ATG (M) ATG (M) Nonsyn
5057 1675 NA CCT (P) CCT (P) TCT (S) CCT (P) Nonsyn

aUnderlined letters represent changes observed during passage. Abbreviations: Syn, synonymous; Nonsyn, nonsynonymous; NA, not available.
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The V20I SNPs in the NSs ORF were observed arising in the ANDV/ARG p9 strain by the
same mutation at nucleotide position 179 in the S segment. (Note that the NSs ORF is at
position 11 compared with the N ORF.) ANDV/CHI-9717869 and ANDV/CHI-7913 differ
in the NSs ORF at five amino acid positions (5, 20, 33, 35, and 37) (Table 2 and Table 3).

The S97P Gn change, found only in ANDV/ARG p19, could not be associated with any
functional change. The site has only been reported as part of an antibody epitope (24). The
S residue is conserved in BASV and LANV Gn proteins, whereas other orthohantavirus Gn
proteins (LECV, ORNV, MAPV, RIOMV, SNV, and CHOV) have an A at that position (Table 2).

M1295 and S1675 in the L ORF were encoded by ANDV/ARG p9 and p19 strains, respec-
tively, but those genomic regions could not be associated with any functionality. M1295 has
not been observed previously in nature; other orthohantaviruses have I1295 (MAPV, RIOMV,
LANV, and CHOV) or Y1295 (SNV) (Table 2). S1675 has not been observed in L ORFs of other
orthohantaviruses, and the P1675 position appears entirely conserved (Table 2).

Sequencing of Andes virus strain ARG reveals potential transmissibility markers
when comparing Andes virus strains with differences of efficiency in person-to-person
potential. The presence of outbreak-related determinants associated with person-to-
person transmission was assessed by comparing genomic sequences of ANDV strains from
clades clearly associated with person-to-person transmission and ANDV strains and ANDV-
like viruses (BASV, LECV, and ORNV) that had not (Table 3). Interestingly, BASV, the most
closely related ANDV-like virus (Fig. 2A and B), has also been implicated in secondary trans-
missions but with limited efficiency (21, 25).

Only one mutation in the M segment (resulting in T641I) was unique to person-to-per-
son-associated clade 2 strains. Only one mutation in the S segment (resulting in A253N)
was exclusively present in ANDV, whereas S386 is conserved among ANDV strains and
ANDV-like viruses. Our analysis did not include the L segment of ANDV-like viruses
because those sequences remain unavailable.

Five M ORF positions were unique to ANDV genomes compared with genomes of
American orthohantaviruses (amino acid residue positions 499, 569, 570, 641, and 1133)
(Table 2). Four positions (569, 570, 641, and 1133) are also shared by ANDV-like viruses
(Table 3). S97 is encoded by all ANDV strains and BASV. V499I was present in some PTP
strains and also in ANDV-like strains, whereas the T641I change was only encoded by ANDV
strains from the clade associated with person-to-person transmission. However, only the latter
(T641I) had been mapped in the vicinity of the absolutely conserved pentapeptide WAASA
cleavage site, where signal peptidases cleave Gn and Gc (26). Since position 641 maps to a
region that provides a signal to cellular peptidases, this change might affect the cleavage’s
efficiency. Signal peptides share several characteristic features determined by their amino
acid composition (27), including a tripartite architecture with a positively charged N terminus
and a hydrophobic segment that determines the strength of the signal. T641 changes from
a polar noncharged amino acid (T) to a nonpolar (I) amino acid.

In comparison with the bulk of described ANDV isolates, the recently discovered ANDV
NSs ORF presents seven sites of variation. Three are unique to ANDV/CHI-9717869 (Q5, E33,
and L35) and two are unique to ANDV/CHI-7913 (I20 and D37). Intriguingly, we identified
two SNPs in the NSs ORF at positions 40 (Q40R) and 47 (N47S) that were present only in the
clade 2 strains (e.g., ANDV/Epuyén/18-19 and ANDV/Epilink/96) associated with person-
to-person transmission. Both NSs ORF changes need to be functionally evaluated for their
effect on MAVS signaling.

DISCUSSION

Passaging in cell culture, especially when involving different hosts, usually results in
virus adaptation, often affecting their virulence (19, 28, 29). However, ANDV/ARG p0 and p3
genome sequences were identical, and very few mutations were accumulated in the p9,
p19, and hamster strains. The two amino acid substitutions (A21T and S46N) in N mapped
to the intramolecular coiled-coil structure in the N-terminal region (a1 and a2), an excep-
tionally well-conserved region implicated in antibody recognition, formation of the ribonu-
cleoprotein complex, and genome encapsidation (30–33). Interestingly, one adaptation
appears to involve a change in NSs, which has been recently related to IFN regulation. Only
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a single nucleotide change (T337C) was found in the M segment during late passaging
(p19). This is unexpected since the M segment encodes Gn and Gc, two of the most variable
regions of the genome in evolutionary terms.

Interestingly, we could also correlate some of the changes with differences in viru-
lence in a small-animal model. ANDV/ARG p9 is uniformly lethal in hamsters (14).
However, ANDV/ARG p19 was significantly less lethal (66.4%). Compared side by side, the
ANDV/ARG p9 and p19 only diverged in five encoded residues (A21T and N46S in N, I20V
in NSs, S97P in Gn, and P1675S in RNA-directed RNA polymerase [RdRp] encoded by the
S, M, and L segments, respectively). Nevertheless, based on previous knowledge of func-
tional domains, only the changes in N had been associated with viral replication.
Structural studies of the N-terminal region of SNV and ANDV demonstrated that basic res-
idues interact with the N core to stabilize interprotomer N association and formation of ri-
bonucleoprotein (RNP) complexes (32). The A21T change likely affects that region, which
is exceptionally well conserved among orthohantaviruses. The region is a target of the
most cross-reactive antibodies against orthohantavirus, immunodominant, and proposed
to have important effects regarding N polymerization, RNP complex formation, and sub-
cellular localization of the assembly sites (30–32). We hypothesize that A21T and other
changes in N (Table 2 and Table 3) may affect N oligomerization dynamics. The impor-
tance of this area as a potential determinant of pathogenesis might be underscored by
the observed differences in the region at positions 31 (A31T) and 38 (D38E) (Table 3) that
define ANDV-like viruses (i.e., BASV, LECV, and ORNV). The changes, all located at the
bend between the two parallel coiled regions, could potentially affect the structure of the
region. On the other hand, these two changes are only encoded by ANDV-like viruses,
but not by LANV, MAPV, RIOMV, or SNV (Table 2). Thus, if these markers are associated
with virulence, they would act via changes in the structure and not necessarily by SNP dif-
ferences. Although the A21T change observed in late passages of ANDV/ARG is intrigu-
ing, A21 is conserved in BASV, LECV, and ORNV, but not SNV (Table 2). Collectively, this
could indicate that structural changes in this area could be driving virulence differences
instead of SNPs. Nonetheless, the limited animal data presented here could be improved
with the use of imaging, advanced histological analyses, and other multiomics technolo-
gies. Support from developing countries and funding agencies for the study of these
neglected pathogens is urgently needed as the resources for these types of studies in
low- or middle-income countries (LMICs) are lacking.

Moreover, our analysis confirmed that the amino acid position S386, previously posited
by Simons as a determinant of virulence (23), is conserved by ANDV, ANDV-like viruses
(BASV, LECV, and ORNV), and LANV. In the N HVD, all ANDV strains share the described
signature six residues, which are not found in any other orthohantavirus N HVD (Table 2).
However, only five residues are shared with the three ANDV-like viruses, whereas A253
seems to be an exclusive ANDV marker (Table 3). We therefore suggest that A253 is an
ANDV-exclusive virulence determinant and that the S386 modification and the five
remaining HDV residues are virulence determinants for all viruses currently classified in
the species Andes orthohantavirus (i.e., ANDV and ANDV-like viruses). However, based on
the differences in lethality in hamsters among ANDV/CHI-9713 (nonlethal in golden ham-
sters), LANV (nonlethal in Brandt’s hamsters [Mesocricetus brandti (Nehring, 1898)]) (34),
MAPV (moderately lethal in golden hamsters), and ANDV/CHI-9717869 and ANDV/ARG
(highly lethal in golden hamsters), the change in S386 does not appear to be a virulence
determinant in hamsters. The N ORF has been associated with multiple functions associ-
ated with pathogenesis and virulence. The efficiency of orthohantavirus replication is
inversely proportional to the ability of infected cells to activate MxA expression (35). The
MxA protein is a critical component of the antiviral state induced by type I IFN (36). In
turn, MxA protein binds to N, forming an MxA-N protein complex in a yet-to-be-defined
manner (37). Moreover, the N protein also has a role in regulating the antiviral state. For
instance, ANDV N hinders autophosphorylation of TBK1, resulting in the inhibition of
interferon regulatory factor 3 (IRF3) phosphorylation and RIG-I/MDA5-directed type I IFN
induction (38). Additionally, N can affect protein kinase R (PKR) dimerization (39), thereby

Pathogenic Determinants in the Andes Virus Genome mSphere

Month YYYY Volume XX Issue XX 10.1128/msphere.00018-23 10

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sp
he

re
 o

n 
06

 J
un

e 
20

23
 b

y 
20

0.
51

.9
3.

11
4.

https://journals.asm.org/journal/msphere
https://doi.org/10.1128/msphere.00018-23


preventing PKR phosphorylation, which is essential for its enzymatic activity. PKR inhibits
virus replication (40).

Bunyaviral NSs are nonessential for virus replication, but they are pathogenesis determi-
nants by acting as IFN antagonists (41). As a case in point, ANDV/CHI-9717869 NSs antago-
nize the type I IFN induction pathway (22). We therefore hypothesize that the two changes
observed in NSs of ANDV strains associated with person-to-person transmission might
enhance IFN antagonist potential. Moreover, the number of changes in ANDV/CHI-9717869
compared with ANDV/CHI-7913 and ANDV/ARG might explain the differences in lethality in
the golden hamster animal model.

In the M segment, the amino acid change T641I is also shared among ANDV strains
associated with person-to-person-transmission but not among ANDV-like viruses. However,
the change is also found in ANDV/NRC-6/18, which has not been associated with person-to-
person transmission, and it is absent in ANDV/NRC-3/18, which has been involved in an
event of secondary transmission (Table 3). T641 is located in the signal peptide of Gc, in the
region preceding the hyperconserved cleavage site WAASA. Because host protease binding
sites are guided by the signal from this region (22), we hypothesize that this change might
affect the dynamics and speed of ANDV glycoprotein retention and trafficking. Signal pep-
tides share several characteristic features determined by their amino acid composition (42),
including a tripartite architecture with a positively charged N terminus and a hydrophobic
segment that determines the strength of the signal. The comparative data presented here
need to be complemented experimentally. For instance, recombinant vesicular stomatitis
Indiana viruses expressing orthohantavirus glycoproteins could be used to partially compen-
sate for the current lack of reverse-genetics systems for orthohantaviruses (43).

The phylogenetic analysis showed that ANDV/ARG is closely related to variants caus-
ing disease in humans and groups according to their geographic origin. ANDV/CHI-7913 is
most closely related to ANDV/ARG, more than sequences obtained from patients reported
in the region of endemicity. ANDV/CHI-9717869, on the other hand, is the most genetically
divergent and remote geographically. Indeed, ANDV/ARG and ANDV/CHI-7913 share the
most positions compared to ANDV/CHI-9717869. Thus, the decision to use ANDV/CHI-
9717869 as the accepted exposure stock for medical countermeasure assessment needs
to be revised, as this strain is a clear outlier that might not be representative of wild-type
circulating strains.

Taken together, the results of our study indicate that determination and subse-
quent comparison of wild-type, cell-culture-passaged, and animal model-derived
ANDV—and likely other orthohantavirus genome sequences—may allow predictions
regarding their overall virulence and transmissibility, possibly informing counter-
measure approaches. To strengthen such predictions, additional sequence information
from yet-to-be-characterized ANDV strains and completion of genomic sequences of ANDV-
like viruses are warranted.

MATERIALS ANDMETHODS
Viruses and cells. Andes virus strain ARG (ANDV/ARG) was isolated from a long-tailed colilargo

(Oligoryzomys longicaudatus (Bennett, 1832)) in grivet [Chlorocebus aethiops (Linnaeus, 1758)] kidney epithelial
Vero E6 cells (CRL-1586; ATCC, Manassas, VA, USA) (20). Continuous ANDV infection of cells was monitored by
immunofluorescence performed with a rabbit polyclonal serum generated against ANDV nucleocapsid protein
(N) open reading frame (ORF) and real-time reverse transcription-quantitative PCR (RT-qPCR), and cultures were
passaged blindly. Serial passaging (p9 to p19) was performed at a multiplicity of infection of 0.1.

Pathogenicity assessment. An established lethal animal model of ANDV infection, using golden
hamsters [Mesocricetus auratus (Waterhouse, 1839)] (12), was leveraged to compare the previously estab-
lished pathogenicity of the ANDV strain ARG (ANDV/ARG p9) (17) and to assess the pathogenicity of
ANDV/ARG p19. Eight 12-week-old golden hamsters (four males and four females, obtained from the
Instituto Nacional de Producción de Biológicos in Buenos Aires) were exposed intramuscularly to 100 mL
of mock inoculum (phosphate-buffered saline [PBS]). Nine 12-week-old golden hamsters (four males and
five females) were exposed intramuscularly to 100 mL of PBS containing 105 focus-forming units (FFU) of
ANDV/ARG p19. Exposed golden hamsters were placed individually in ventilated cages and monitored
daily up to 33 days postexposure. Food and water were available ad libitum. All animal experiments were per-
formed in an accredited animal biological safety level 3 ABSL-3 biocontainment laboratory in compliance with
institutional guidelines and Argentinian national law no. 14,346, which regulates experiments involving animals

Pathogenic Determinants in the Andes Virus Genome mSphere

Month YYYY Volume XX Issue XX 10.1128/msphere.00018-23 11

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sp
he

re
 o

n 
06

 J
un

e 
20

23
 b

y 
20

0.
51

.9
3.

11
4.

https://journals.asm.org/journal/msphere
https://doi.org/10.1128/msphere.00018-23


and adheres to principles stated in the Guide for the Care and Use of Laboratory Animals (44) of the National
Research Council. An Institutional Animal Care and Use Committee approved all procedures involving animals.

RT-qPCR. Lung specimens were obtained from all golden hamsters following standard necropsy pro-
tocols. Total RNA was extracted from lung specimens using TRIzol, as described previously (45). RT-qPCR using
ANDV genomic small (S) segment primers was performed following published procedures (46). Two microliters
of each RNA sample were amplified in duplicate assays with a CFX detection system (Bio-Rad, Hercules, CA,
USA), using TaqMan RT-PCR master mix (Quanta Biosciences, Gaithersburg, MD, USA), according to the manu-
facturers’ instructions. A primer set designed to detect the human RNase P gene was used to ensure that sam-
ples were free of PCR inhibitors and that RNA extractions were homogeneous.

Genomic and phylogenetic analyses. Virus genome sequencing was performed using three ANDV
cell culture passages (early [p3], intermediate [p9], and late [p19]), cryopreserved lung tissue from a naturally
ANDV-infected long-tailed colilargo (p0), and lung tissues obtained from golden hamsters exposed to ANDV/
ARG p9. Also included in the analysis was a blood clot sample from a HPS patient (case C1-s, survivor, 14 years
old) associated with secondary transmission of Buenos Aires virus (BASV) in Central Argentina (21).

Total RNA was extracted from cell culture supernatants, lung tissues, and clinical samples utilizing
TRIzol. Virus genome sequencing was performed as previously described (11, 47). Briefly, a targeted bait-
enrichment approach was used to enrich transcriptome sequencing (RNA-seq) libraries for sequencing on
the MiSeq platform (Illumina, San Diego, CA, USA). Orthohantavirus sequences from each genomic segment
(S, M, and L) were collected (Table S1) and aligned using MAFFT v.7.397, implemented in ClustalW version 2.0
(48). The initial data set consisted of coding-complete sequences obtained in this work and listed in Table S1.
Other American orthohantavirus sequences from GenBank were also included. The resulting alignments were
visually inspected to identify synonymous and nonsynonymous changes. Phylogenetic trees were recon-
structed using IQ-TREE v.1.6.12 (49) with automatic model selection (50). Branch supports were assessed by
1,000 ultrafast bootstraps (49).

Data availability. Sequencing data are publicly available through GenBank under accession no.
OP555720 to OP555735.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, EPS file, 1.3 MB.
TABLE S1, XLSX file, 0.01 MB.
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