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Abstract

Kochen-Specker theorem rules out the non-contextual assignment
of values to physical magnitudes. Here we enrich the usual ortho-
modular structure of quantum mechanical propositions with modal
operators. This enlargement allows to refer consistently to actual and
possible properties of the system. By means of a topological argu-
ment, more precisely in terms of the existence of sections of sheaves,
we give an extended version of Kochen-Specker theorem over this new
structure. This allows us to prove that contextuality remains a central
feature even in the enriched propositional system.
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1 Introduction

Modal interpretations of quantum mechanics (Dieks, 1988; Dieks, 1989;
Dieks, 2005; van Fraassen, 1991) face the problem of finding an objective
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reading of the accepted mathematical formalism of the theory, a reading
“in terms of properties possessed by physical systems, independently of con-
sciousness and measurements (in the sense of human interventions)” (Dieks,
2005). These interpretations intend to consistently include the possible prop-
erties of the system in the discourse looking for a new link between the state
of the system and the probabilistic character of its properties, thus sus-
taining that the interpretation of the quantum state must contain a modal
aspect. The name modal interpretation was for the first time used by B.
van Fraassen (van Fraassen, 1981) following modal logic, precisely the logic
that deals with possibility and necessity. Within this frame, a physical prop-
erty of a system means “a definite value of a physical quantity belonging
to this system; i.e., a feature of physical reality” (Dieks, 2005). As usual,
definite values of physical magnitudes correspond to yes/no propositions
represented by orthogonal projection operators acting on vectors belonging
to the Hilbert space of the (pure) states of the system (Jauch, 1996).

Formal studies of modal interpretations of quantum logic exist which are
similar to the modal interpretation of the intuitionistic logic (Dalla Chiara,
1981; Goldblatt, 1984). A description of that those kind of approaches may
be found in (Dalla Chiara et al., 2004). At first sight, it may be thought
that the enrichment of the set of (actual) propositions with modal ones
could allow to circumvent the contextual character of quantum mechanics.
We have faced the study of this issue and given a Kochen-Specker type
theorem for the enriched lattice (Domenech et al., 2006). In this paper, we
give a topological version of that theorem, i.e. we study contextuality in
terms of sheaves.

2 Basic Notions

We recall from (Goldblatt, 1986; Mac Lane and Moerdijk, 1992) and (Maeda
and Maeda, 1970) some notions of sheaves and lattice theory that will play
an important role in what follows. First, let (A,≤) be a poset and X ⊆ A.
X is a decreasing set iff for all x ∈ X, if a ≤ x then a ∈ X. For each a ∈ A we
define the principal decreasing set associated to a as (a] = {x ∈ A : x ≤ a}.
The set of all decreasing sets in A is denoted by A+, and it is well known
that (A+,⊆) is a complete lattice, thus 〈A,A+〉 is a topological space. We
observe that if G ∈ A+ and a ∈ G then (a] ⊆ G. Therefore B = {(a] : a ∈ A}
is a base of the topology A+ which we will refer to as the canonical base.
Let I be a topological space. A sheaf over I is a pair (A, p) where A is a
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topological space and p : A → I is a local homeomorphism. This means that
each a ∈ A has an open set Ga in A that is mapped homeomorphically by p
onto p(Ga) = {p(x) : x ∈ Ga}, and the latter is open in I. It is clear that p
is a continuous and open map. Local sections of the sheaf p are continuous
maps ν : U → I defined over open proper subsets U of I such that pν = 1U .
In particular we use the term global section only when U = I.

In a Boolean algebra A, congruences are identifiable to certain subsets
called filters. F ⊆ A is a filter iff it satisfies: if a ∈ F and a ≤ x then
x ∈ F and if a, b ∈ F then a ∧ b ∈ F . F is a proper filter iff F 6= A or,
equivalently 0 6∈ F . If X ⊆ A, the filter FX generated by X is the minimum
filter containing X. A proper filter F is maximal iff the quotient algebra
A/F is isomorphic to 2, being 2 the two elements Boolean algebra. It is
well known that each proper filter can be extended to a maximal one.

We denote by OML the variety of orthomodular lattices. Let L =
〈L,∨,∧,¬, 0, 1〉 be an orthomodular lattice. Given a, b, c in L, we write:
(a, b, c)D iff (a∨b)∧c = (a∧c)∨(b∧c); (a, b, c)D∗ iff (a∧b)∨c = (a∨c)∧(b∨c)
and (a, b, c)T iff (a, b, c)D, (a,b,c)D∗ hold for all permutations of a, b, c. An
element z of a lattice L is called central iff for all elements a, b ∈ L we have
(a, b, z)T . We denote by Z(L) the set of all central elements of L and it is
called the center of L. Z(L) is a Boolean sublattice of L (Maeda and Maeda,
1970; Theorem 4.15).

3 Sheaf-theoretic view of contextuality

Let H be the Hilbert space associated to the physical system and L(H) be
the set of closed subspaces on H. If we consider the set of these subspaces
ordered by inclusion, then L(H) is a complete orthomodular lattice (Maeda
and Maeda, 1970). It is well known that each self-adjoint operator A that
represents a physical magnitude A may be associated with a Boolean sub-
lattice WA of L(H). More precisely, WA is the Boolean algebra of projectors
Pi of the spectral decomposition A =

∑
i aiPi. We will refer to WA as the

spectral algebra of the operator A. Any proposition about the system is
represented by an element of L(H) which is the algebra of quantum logic
introduced by G. Birkhoff and J. von Neumann (Birkhoff and von Neumann,
1936).

Assigning values to a physical quantity A is equivalent to establishing
a Boolean homomorphism v : WA → 2 (Isham, 1998). Thus, it is natural
to consider the following definition which provides us with a compatibility
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condition:

Definition 3.1 Let (Wi)i∈I be the family of Boolean sublattices of L(H).
A global valuation over L(H) is a family of Boolean homomorphisms (vi :
Wi → 2)i∈I such that vi | Wi ∩ Wj = vj | Wi ∩ Wj for each i, j ∈ I.

Kochen-Specker theorem (KS) precludes the possibility of assigning def-
inite properties to the physical system in a non-contextual fashion (Kochen
and Specker, 1967). An algebraic version of KS theorem is given by (Domenech
and Freytes, 2005; Theorem 3.2):

Theorem 3.2 If H be a Hilbert space such that dim(H) > 2, then a global

valuation over L(H) is not possible. 2

It is also possible to give a topological version of this theorem in the frame
of local sections of sheaves. In fact, let L be an orthomodular lattice. We
consider the family WL of all Boolean subalgebras of L ordered by inclusion
and the topological space 〈WL,W+

L 〉. On the set

EL = {(W,f) : W ∈ W, f : W → 2 f is a Boolean homomorphism}

we define a partial ordering given by (W1, f1) ≤ (W2, f2) iff W1 ⊆ W2 and
f1 = f2 | W1. Thus we can consider the topological space 〈EL, E+

L 〉 whose
canonical base is given by the principal decreasing sets ((W,f)] = {(G, f |
G) : G ⊆ W}. By simplicity ((W,f)] is noted as (W,f ].

Definition 3.3 The map pL : EL → WL such that (W,f) 7→ W is a sheaf
over WL called spectral sheaf associated to the orthomodular lattice L.

Let ν : U → EL be a local section of pL. By (Domenech and Freytes,
2005; Proposition 4.2), for each W ∈ U we have that ν(W ) = (W,f) for some
Boolean homomorphism f : W → 2 and if W0 ⊆ W , then ν(W0) = (W0, f |
W0). From a physical perspective, we may say that the spectral sheaf takes
into account the whole set of possible ways of assigning truth values to the
propositions associated with the projectors of the spectral decomposition
A =

∑
i aiPi. The continuity of a local section of p guarantees that the

truth value of a proposition is maintained when considering the inclusion
of subalgebras. In this way, the compatibility condition 3.1 of the Boolean
valuation with respect to the intersection of pairs of Boolean sublattices of
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L(H) is maintained. Thus, continuous local sections of pL are identifiable
to compatible contextual valuations.

We use ν(a) = 1 to note that there exists W ∈ U such that a ∈ W ,
ν(W ) = (W,f ] and f(a) = 1. On the other hand, if f : W → 2 is a
Boolean homomorphism, ν : (W ] → EL is such that for each Wi ∈ (W ],
ν(Wi) = (Wi, f/Wi) is a local section of pL. We call this a principal local
section.

A global section τ : WL → EL of pL is interpreted as follows: the map
assigns to every W ∈ WL a fixed Boolean valuation τw : W → 2 obviously
satisfying the compatibility condition. Thus, KS theorem in terms of the
spectral sheaf reads (Domenech and Freytes, 2005; Theorem 4.3):

Theorem 3.4 If H is a Hilbert space such that dim(H) > 2 then the spectral

sheaf pL(H) has no global sections. 2

4 An algebraic study of modality

With these tools, we are now able to build up a framework to include modal
propositions in the same structure as actual ones. To do so we enrich the or-
thomodular lattice with a modal operator taking into account the following
considerations: 1) Propositions about the properties of the physical system
are interpreted in the orthomodular lattice of closed subspaces of the Hilbert
space of the (pure) states of the system. 2) Given a proposition about
the system, it is possible to define a context from which one can predicate
with certainty about it together with a set of propositions that are compat-
ible with it and, at the same time, predicate probabilities about the other
ones. In other words, one may predicate truth or falsity of all possibilities
at the same time, i.e. possibilities allow an interpretation in a Boolean al-
gebra. In rigorous terms, for each proposition P , if we refer with 3P to
the possibility of P , then 3P will be a central element of the orthomodular
structure. 3) If P is a proposition about the system and P occurs, then
it is trivially possible that P occurs. This is expressed as P ≤ 3P . 4)
Assuming an actual property and a complete set of properties that are com-
patible with it determines a context in which the classical discourse holds.
Classical consequences that are compatible with it, for example probability
assignments to the actuality of other propositions, shear the classical frame.
These consequences are the same ones as those which would be obtained by
considering the original actual property as a possible one. This is interpreted
in the following way: if P is a property of the system, 3P is the smallest
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central element greater than P . From consideration 1) it follows that the
original orthomodular structure is maintained. The other considerations are
satisfied if we consider a modal operator 3 over an orthomodular lattice L
defined as 3a = Min{z ∈ Z(L) : a ≤ z} with Z(L) the center of L.

Let A be an orthomodular lattice. We say that A is Boolean saturated

if and only if for all a ∈ A the set {z ∈ Z(A) : z ≤ a} has a maximum
(Domenech and Freytes, 2005). In this case, the maximum is denoted by
2(a). In view of (Maeda and Maeda, 1970; Lemma 29.16), complete ortho-
modular lattices with an operator e(a) =

∨
{z ∈ Z(L) : z ≤ a}, are examples

of Boolean saturated orthomodular lattices. They form a variety of algebras
〈A,∧,∨,¬,2, 0, 1〉 of type 〈2, 2, 1, 1, 0, 0〉, noted as OML2 (Domenech et

al., 2006). OML2 are axiomatized as follows:

S1 Axioms of OML S5 2(x ∧ y) = 2(x) ∧ 2(y)

S2 2x ≤ x S6 y = (y ∧ 2x) ∨ (y ∧ ¬2x)

S3 21 = 1 S7 2(x ∨ 2y) = 2x ∨ 2y

S4 22x = 2x S8 2(¬x ∨ (y ∧ x)) ≤ ¬2x ∨ 2y

On each algebra of OML2 we can define the possibility operator as
the unary operation 3 given by 3x = ¬2¬x. It satisfies a ≤ 3a and
3a = Min{z ∈ Z(A) : a ≤ z}. If L is an orthomodular lattice then there
exists an orthomodular monomorphism f : L → A such that A ∈ OML2

(Domenech et al., 2006; Theorem 10). We refer to A as a modal extension

of L. In this case we can see the lattice L as a subset of A. If L2 ∈ OML2

is a modal extension of L, we define the possibility space of L in L2 as 3L =
〈{3p : p ∈ L}〉L2 . If W is a Boolean sublattice of L then 〈W ∪ 3L〉L2 is a
Boolean sublattice of L2; in particular 3L is a Boolean sublattice of Z(L2)
(Domenech et al., 2006; Theorem 14). The possibility space represents the
modal content added to the discourse about properties of the system.

5 Sheaves and modality

Let us consider L2 a modal extension of L. Then, the spectral sheaf pL is
a subsheaf of pL2 . In this case we refer to pL2 as a modal extension of pL.
It is clear that local sections of pL can be seen as local sections of pL2 . We
define the set

Sec(3L) = {ν : (3L] → EL2 : ν is principal section of pL2}
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Since 3L is a Boolean algebra, it is a subdirect product of 2. Thus, it
always exists a Boolean homomorphism f : 3L → 2, resulting Sec(3L) 6= ∅.
From a physical point of view, Sec(3L) represents all physical properties as
possible properties. The fact that Sec(3L) 6= ∅ shows that, in the frame of

possibility, one may talk simultaneously about all physical properties.
In the orthomodular lattice of the properties of the system, it is always

possible to choose a context in which any possible property pertaining to
this context can be considered as an actual one. We formalize this fact in
the following definition and then we prove that this is always possible in our
modal structure:

Definition 5.1 Let L be an orthomodular lattice, W a Boolean sublattice

of L, q ∈ W and L2 be a modal extension of L. If ν ∈ Sec(3L) such

that ν(3q) = 1 then an actualization of q compatible with ν is an extension

ν ′ : U → EL2 such that (〈W ∪ 3L〉L2 ] ∈ U

Theorem 5.2 Let L be an orthomodular lattice, W a Boolean sublattice of

L, q ∈ W and L2 be a modal extension of L. If ν ∈ Sec(3L) such that

ν(3q) = 1 then there exists an actualization of q compatible with ν.

Proof: Suppose that ν(3L) = (3L, f). Let F be the filter associated
with the Boolean homomorphism f . We consider the 〈W ∪ 3L〉L2-filter Fq

generated by F ∪{q}. Fq is a proper filter. In fact: if Fq is not proper, then
there exists a ∈ F such that a ∧ q ≤ 0. Thus q ≤ ¬a being ¬a a central
element. But 3q is the smallest Boolean element greater than q. Then 3q ≤
¬a or equivalently 3q ∧ a = 0. And this is a contradiction since 3q, a ∈ F .
Thus, we may extend Fq to be a maximal filter FM in 〈W ∪ 3L〉L2 . If we
consider the natural projection fFM

: 〈W ∪3L〉L2 → 〈W ∪3L〉L2/FM ≈ 2,
the local section ν ′ : (〈W∪3L〉L2 ] → EL2 is an actualization of q compatible
with ν. 2

The next theorem allows a representation of the Born rule in terms of
continuous local sections of sheaves. This rule quantifies possibilities from
a chosen spectral algebra.

Theorem 5.3 Let L be an orthomodular lattice, W a Boolean sublattice of

L, and ν : (W ] → EL a principal local section. If we consider a modal

extension L2 of L then there exists an extension ν ′ : U → EL2 such that

〈W ∪ 3L〉L2 ∈ U .
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Proof: Suppose that ν(W ) = (W,f). Let i : W → 〈W ∪ 3L〉L2 be
the Boolean canonical embedding. We see that there exists a Boolean ho-
momorphism f ′ : 〈W ∪ 3L〉L2 → 2 such that f = f ′i = f ′ | W since
2 is injective in the variety of Boolean algebras (Sikorski, 1948). Thus
ν ′ : (〈W ∪ 3L〉L2 ] → EL2 is the extension required. 2

We note that this reading of the Born rule is a kind of the converse of
the possibility of actualizing properties given by Theorem 5.2.

Definition 5.4 Let L an orthomodular lattice, L2 be a modal extension
and ν ∈ Sec(3L). An actualization compatible with ν is a global section
τ : WL → EL of pL such that τ(W ∩ 3L) = ν(W ∩ 3L).

Theorem 5.5 Let L be an orthomodular lattice. Then pL is a global section

τ iff for each modal extension L2 there exists ν ∈ Sec(3L) such that τ is a

compatible actualization of ν.

Proof: Suppose that pL admits a global section τ : WL → EL and let
τ(W ) = (W,fW ). We consider the family (AW = W ∩ 2L)W∈WL

. Let
f0 :

⋃
W AW → 2 such that f0(x) = fW (x) if x ∈ W . f0 is well defined

since τ is a global section. If we consider 〈
⋃

W AW 〉L2 the subalgebra of
L2 generated by the join of the family (AW )W , it may be proved that it
is a Boolean subalgebra of 3L. We can extend f0 to a Boolean homo-
morphism f ′

0 : 〈
⋃

W AW 〉L2 → 2. Since 2 is injective in the variety of
Boolean algebras (Sikorski, 1948), then there exists a Boolean homomor-
phism f : 3L → 2 which extends it to f ′

0. If we consider ν ∈ Sec(3L) such
that ν(G) = (G, f | G), it result that τ is a compatible actualization of ν.
The converse is immediate. 2

To conclude we may say that the addition of modalities to the discourse
about the properties of a quantum system enlarges its expressive power.
At first sight it may be thought that this could help to circumvent contex-
tuality, allowing to refer to physical properties belonging to the system in
an objective way that resembles the classical picture. In view of the last
theorem, since any global section of the spectral sheaf is a compatible ac-
tualization of a local one belonging to Sec(3L), a global actualization that
would correspond to a family of compatible valuations is prohibited. Thus,
the theorem states that the contextual character of quantum mechanics is
maintained even when the discourse is enriched with modalities.
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