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Abstract: Cyclophilins (CyPs) are a family of enzymes involved in protein folding. Trypanosoma
cruzi, the causative agent of Chagas disease, has a 19-kDa cyclophilin, TcCyP19, that was found to be
secreted in parasite stages of the CL Brener clone and recognized by sera from T. cruzi-infected mice
and patients. The levels of specific antibodies against TcCyP19 in T. cruzi-infected mice and subjects
before and after drug treatment were measured by an in-house enzyme linked immunosorbent assay
(ELISA). Mice in the acute and chronic phase of infection, with successful trypanocidal treatments,
showed significantly lower anti-TcCyP19 antibody levels than untreated mice. In children and adults
chronically infected with T. cruzi, a significant decrease in the anti-TcCyP19 titers was observed
after 12 months of etiological treatment. This decrease was maintained in adult chronic patients
followed-up 30–38 months post-treatment. These results encourage further studies on TcCyP19 as an
early biomarker of trypanocidal treatment efficiency.

Keywords: Chagas; Trypanosoma cruzi; cyclophilin; TcCyP19; ELISA; biomarker; benznidazole;
nifurtimox; parasiticidal treatment

1. Introduction

Chagas disease, which is produced by the unicellular hemoflagellate parasite Try-
panosoma cruzi, is one of the most neglected tropical diseases. It can be transmitted by
triatomine insects by vertical transmission and, to a lesser extent, by blood transfusions and
food contamination [1]. This disease affects about six million people, 12,000 of whom die
each year. The highest prevalence of Chagas disease in the Latin American region is found
in Bolivia (6.75%), Argentina (4.13%) and Paraguay (2.54%) [2]. This infection is also spread
by migration of infected people to non-endemic areas such as the USA, Canada, many
European countries and the Western Pacific [3]. The course of Chagas disease consists of
three distinct phases: acute, indeterminate and chronic. The initial acute phase occurs after
the entry of T. cruzi into the host. At this stage, death occurs in a few cases (<5–10% of
symptomatic cases) as a complication of acute myocarditis and/or meningoencephalitis.
After the acute phase, the infection evolves to a chronic phase. In the chronic phase, approx-
imately 60–70% of patients never present apparent clinical manifestations of the disease,
whereas the remaining 30–40% develop the cardiac and/or gastrointestinal form of Chagas
disease [4]. This disease is very complex and the persistence of the parasite in tissues has
implications for the development of clinical manifestations [5].

Two of the licensed drugs with proven efficacy against Chagas disease are Benznida-
zole (BNZ) and Nifurtimox. Trypanocidal treatment with these drugs in both adults and
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children is effective in terms of seroconversion and parasite load clearance [6,7]. Current
guidelines recommend parasiticidal treatment in the acute phase of T. cruzi infection, in
children younger than 18 years old, in women of childbearing age, in patients with reac-
tivated parasite infection after immunosuppression and in chronic patients with mild or
no cardiac alterations [8]. Treatment in the chronic phase of the infection in patients with
severe cardiomyopathy exerts a trypanocidal effect in certain geographical areas, but does
not lead to an improvement in the clinical outcome [9]. BNZ or nifurtimox treatments
are better tolerated by infants than by older children or adult patients, who frequently
present side effects, dermatitis by hypersensitivity and digestive intolerance due to a nitro-
heterocyclic-compound-related mechanism of action. In fact, about 12–18% of patients
suspend treatments due to these side effects [10–12].

One of the methods currently used to assess treatment efficiency is seroconversion, and
follow-up studies have demonstrated that the rate of reversion to negative serology is very
high when T. cruzi-infected babies are treated [13]. The decrease in anti-parasite antibodies
is expected to be slower than in babies when treatments are administered between 5 and
14–16 years of age [14,15], but faster than treated adults, since serology in adults might take
years or even more than a decade to detect a decrease in specific antibody levels [16].

Preclinical studies in a murine model aiming to obtain a more efficient parasiticidal
treatment with less undesirable effects showed that lower BNZ concentrations alone or
in combination with Allopurinol (ALLO), and even other formulations such as nano-
or micro-particles, improved the solubility and biopharmaceutical performance of the
drug [17–20].

Previous studies have shown that T. cruzi overexpresses cyclophilins (CyPs), which
are a family of proteins highly conserved among species. These proteins have peptidyl
prolyl cis-trans isomerase (PPIase) activity involved in protein folding [21] and are inhibited
by Cyclosporin A, an immunosuppressive agent [22]. In mammals, the most represented
cyclophilin is CyPA, a cytosolic and secreted protein with many biological functions [23].
In our laboratory, we have described the CyP family of T. cruzi, composed of 15 coding
genes [24]. When we analyzed the expression of these genes in the epimastigote stage, we
were able to isolate four Cyclosporin A affinity proteins, identified by mass spectrometry
as TcCyP19, TcCyP22, TcCyP28 and TcCyP40 with molecular weights of 19, 22, 28 and
40 kDa, respectively [24]. We further studied cytosolic TcCyP19, which is homologous to
mammalian CyPA, and found that it is abundantly expressed in epimastigotes, amastigotes
and trypomastigotes and that it exhibits PPIase activity, sensitive to the inhibitory action
of Cyclosporin A and its non-immunosuppressive derivatives [25–27]. Many cytosolic
proteins secreted by T. cruzi have been described as virulence factors with immunostim-
ulatory properties, and, when the parasite secretome was characterized, TcCyP19 was
found to be secreted [28]. This cyclophilin promotes epimastigote survival by neutralizing
parasiticidal peptides in the reduviid T. cruzi vector [29]; when secreted by amastigotes,
TcCyP19 induces intracellular production of reactive oxygen species in host cells, promoting
parasite growth [30], and is involved in infectivity and virulence [31].

The aim of this work was to analyze the antibody levels against TcCyP19 in sera
from T. cruzi-infected experimental animals and patients before and after treatment with
trypanocidal drugs to evaluate its potential value as an early marker for the efficacy of
trypanocidal treatment.

2. Results
2.1. TcCyP19 Cyclophilin Is Secreted in the Extracellular Environment

Since TcCyP19 has been previously found to be excreted/secreted in different T. cruzi
strains [29–31], we first analyzed the secretion of TcCyp19 in the T. cruzi CL Brener clone, the
reference strain of the T. cruzi genome project, and the parasite source of this cloned gene.
TcCyP19 was found to be secreted in the supernatants of epimastigotes, trypomastigotes
and amastigotes of cultures of the CL Brener clone. We then searched whether this protein
elicits specific antibodies in T. cruzi-infected mice and humans. Anti-TcCyP19 antibodies
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were found in the sera of mice infected with the T. cruzi Nicaragua isolate in the acute and
chronic phase, as well as in the blood samples obtained from chronically T. cruzi-infected
humans (Figure 1).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW  3  of  14 
 

 

2. Results 

2.1. TcCyP19 Cyclophilin Is Secreted in the Extracellular Environment 

Since TcCyP19 has been previously found to be excreted/secreted in different T. cruzi 

strains [29–31], we first analyzed the secretion of TcCyp19 in the T. cruzi CL Brener clone, 

the reference strain of the T. cruzi genome project, and the parasite source of this cloned 

gene. TcCyP19 was  found  to  be  secreted  in  the  supernatants  of  epimastigotes,  trypo-

mastigotes and amastigotes of cultures of the CL Brener clone. We then searched whether 

this protein elicits specific antibodies in T. cruzi-infected mice and humans. Anti-TcCyP19 

antibodies were found in the sera of mice infected with the T. cruzi Nicaragua isolate in 

the acute and chronic phase, as well as in the blood samples obtained from chronically T. 

cruzi-infected humans (Figure 1). 

 

Figure 1. The T. cruzi recombinant protein, TcCyP19, electrotransferred onto nitrocellulose strips, 

was recognized by sera from a chronically T. cruzi-infected patient (H+), a chronically T. cruzi-in-

fected mouse (Mc) and an acute T. cruzi-infected mouse (Ma). As negative controls, sera from an 

uninfected human  (H−) and an uninfected mouse  (M−) were used. Polyclonal mouse antibodies 

against the TcCyP19 recombinant protein were used as a positive control (P). 

To determine whether  this qualitative binding of  antibodies  against TcCyP19 ob-

served in T. cruzi-infected hosts was correlated to parasite levels of this secreted protein, 

a further analysis would be the quantification of specific antibodies when mice and hu-

mans diminish their parasitemia through a parasiticidal treatment. We then developed an 

enzyme-linked immunosorbent assay (ELISA) using TcCyP19 recombinant protein as an-

tigen. 

2.2. Detection of Antibodies against TcCyP19 Protein in T. cruzi-Infected Mice 

In our in-house ELISA to detect TcCyP19, the sera from all uninfected mice were neg-

ative, with optical density (OD) values at 490 nm below 0.05. In contrast, all T. cruzi-in-

fected mice developed OD values at 490 nm above 0.05, indicating a signal-to-cutoff ratio 

higher than 1, which indicates the presence of antibodies against the TcCyP19 recombinant 

protein. 

C3H/HeN mice inoculated with 1000 trypomastigotes of the T. cruzi Nicaragua iso-

late (TcN) were treated in the acute phase of the infection with low doses of BNZ formu-

lated in nanoparticles (10 and 50 mg/kg/day of BNZnps (BNZnp10 and BNZnp50)) [18]. 

We then searched for anti-TcCyP19 antibodies in sera from these treated mice by us-

ing our in-house ELISA. Mice treated with BNZnp50 showed a significant decrease in an-

tibody levels compared to untreated mice in the acute phase of the infection. In contrast, 

mice  treated with BNZnp10  showed high  titers of  anti-TcCyP19 antibodies,  correlated 

with  an  inefficient  parasiticidal  treatment  (Figure  2A).  Since  untreated  TcN-infected 

C3H/HeN mice resulted only in a 15% survival rate, with the aim to study drug treatments 

during  the  chronic phase of  the T.  cruzi  infection, another mouse model was assayed: 

C57BL/6J mice inoculated with 3000 TcN trypomastigotes. These mice showed a survival 

rate of 45% after the acute phase. We then evaluated the levels of anti-TcCyP19 antibodies 

in mice in the chronic phase of T. cruzi infection by comparing the administration of con-

tinuous and  intermittent  treatments [19]. The  levels of anti-TcCyP19 antibodies  in mice 

treated with  continuous administration of BNZ and  in  those  treated with  intermittent 

Figure 1. The T. cruzi recombinant protein, TcCyP19, electrotransferred onto nitrocellulose strips, was
recognized by sera from a chronically T. cruzi-infected patient (H+), a chronically T. cruzi-infected
mouse (Mc) and an acute T. cruzi-infected mouse (Ma). As negative controls, sera from an uninfected
human (H−) and an uninfected mouse (M−) were used. Polyclonal mouse antibodies against the
TcCyP19 recombinant protein were used as a positive control (P).

To determine whether this qualitative binding of antibodies against TcCyP19 observed
in T. cruzi-infected hosts was correlated to parasite levels of this secreted protein, a further
analysis would be the quantification of specific antibodies when mice and humans diminish
their parasitemia through a parasiticidal treatment. We then developed an enzyme-linked
immunosorbent assay (ELISA) using TcCyP19 recombinant protein as antigen.

2.2. Detection of Antibodies against TcCyP19 Protein in T. cruzi-Infected Mice

In our in-house ELISA to detect TcCyP19, the sera from all uninfected mice were nega-
tive, with optical density (OD) values at 490 nm below 0.05. In contrast, all T. cruzi-infected
mice developed OD values at 490 nm above 0.05, indicating a signal-to-cutoff ratio higher
than 1, which indicates the presence of antibodies against the TcCyP19 recombinant protein.

C3H/HeN mice inoculated with 1000 trypomastigotes of the T. cruzi Nicaragua isolate
(TcN) were treated in the acute phase of the infection with low doses of BNZ formulated in
nanoparticles (10 and 50 mg/kg/day of BNZnps (BNZnp10 and BNZnp50)) [18].

We then searched for anti-TcCyP19 antibodies in sera from these treated mice by using
our in-house ELISA. Mice treated with BNZnp50 showed a significant decrease in antibody
levels compared to untreated mice in the acute phase of the infection. In contrast, mice
treated with BNZnp10 showed high titers of anti-TcCyP19 antibodies, correlated with an
inefficient parasiticidal treatment (Figure 2A). Since untreated TcN-infected C3H/HeN
mice resulted only in a 15% survival rate, with the aim to study drug treatments during
the chronic phase of the T. cruzi infection, another mouse model was assayed: C57BL/6J
mice inoculated with 3000 TcN trypomastigotes. These mice showed a survival rate of
45% after the acute phase. We then evaluated the levels of anti-TcCyP19 antibodies in mice
in the chronic phase of T. cruzi infection by comparing the administration of continuous
and intermittent treatments [19]. The levels of anti-TcCyP19 antibodies in mice treated
with continuous administration of BNZ and in those treated with intermittent treatment
(BNZit75) in combination with ALLO were lower and showed a significant difference
with antibody titers of untreated T. cruzi-infected mice. However, mice receiving BNZit75
without the addition of ALLO did not exhibit significantly different levels of anti-TcCyP19
antibodies compared to those of untreated mice (Figure 2B).

2.3. Detection of Antibodies against TcCyP19 Protein in Chronically Infected T. cruzi Patients

Sixteen T. cruzi-infected adults and seventeen T. cruzi-infected children who had
received trypanocidal treatment were evaluated in this study. The data of recruited patients,
including gender, age, drug treatment and time at which the blood sample was obtained
after the treatment, are summarized in Table 1. Adult and pediatric patients were treated
with BNZ or Nifurtimox (as described in Section 4.6).
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Figure 2. Anti-TcCyP19 specific antibody levels tested in an in-house ELISA. (A) Serum samples were
obtained from C3H/HeN mice infected with a T. cruzi Nicaragua isolate (TcN) treated in the acute
phase of the infection with a formulation of Benznidazole in nanoparticles. BNZnp10: mice treated
with 10 mg BNZ/kg/day (N); BNZnp50: mice treated with 50 mg BNZ/kg/day (�) (as described in
Section 4.4) Sera from untreated T. cruzi-infected mice (•) were used as a positive control (** p < 0.01).
(B) Serum samples were obtained from C57BL/6J mice infected with TcN treated in the chronic phase
of the infection. Mice were treated with continuous doses of BNZc75+ALLO (�) and BNZc50+ALLO
(o) or intermittent treatments with one dose of BNZit75+ALLO (�) or BNZit75 (�) (as described in
Section 4.5). Sera from untreated T. cruzi-infected mice were used as positive control (4) (** p < 0.01,
* p < 0.05). Results are expressed using the signal-to-cutoff (S/Co) ratio, by dividing the OD value of
the samples tested by the OD value of the assay cut-off. The dash line represents S/Co = 1, the ratio
obtained with sera from uninfected mice.

Table 1. Patients included in this study.

N Sex (%) Treatment Mean Age
in Years
(Range)

Mean Time (Months)
of Sampling after
Treatment (Range)Female Male BZN

(%)
Nifurtimox

(%)

Adults 16 12/16
(75)

4/16
(25)

15/16
(94)

1/16
(6)

38.9
(22–48)

11.9
(2–39)

Children
Group A 10 5/10

(50)
5/10
(50)

9/10
(90)

1/10
(10)

8.3
(6–14)

73
(48–120)

Group B 7 3/7
(43)

4/7
(57)

6/7
(86)

1/7
(14)

12.6
(1116)

59.7
(48–73)

Human sera were tested with the in-house ELISA developed to detect TcCyP19 an-
tibodies. All serum samples from uninfected humans showed OD values below 0.05 at
490 nm. In contrast, most of the serum samples from T. cruzi-infected humans developed
OD values above 0.05 with a signal-to-cutoff ratio higher than 1, which evidenced the
presence of anti-TcCyP19 antibodies.

In Table 1, “Children, group A” refers to those children who achieved seroconversion
after treatment. “Children, group B” refers to those who sustained serological responses
after a 5-year post-treatment follow-up [15].

From each recruited adult patient, we obtained one blood sample previous to treatment
with BNZ or Nifurtimox, and another sample after the complete drug treatment. Anti-
TcCyP19 antibodies were tested by our in-house ELISA in these paired samples, before and
after parasiticidal treatment in the first blood sample withdrawn after treatment at a mean
of 11.9 months for adults and 6 months for children.
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The antibody levels against the TcCyP19 recombinant protein from adult T. cruzi-
infected and treated patients are shown in Figure 3.
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It is worth noting that the serum samples of T. cruzi-infected patients in the chronic
phase showed great variability regarding the reactivity to this recombinant protein, a fact
that can also be observed in the conventional ELISA method and in Figure 4. From the
adult patients studied, we obtained three to four blood samples at different times, from 6 to
38 months, after treatment. The decrease in antibodies against TcCyP19 recombinant protein
and total T. cruzi antigens detected by the conventional ELISA assay can be visualized
individually in Figure 4. In these four adult patients, the anti-TcCyP19 antibody titers
allowed us to visualize a successful trypanocidal effect earlier, between 4 and 6months
post-treatment, compared with the antibody levels measured by the conventional ELISA
serology (Figure 4).

Serum samples from children treated with BNZ or Nifurtimox were grouped in two
categories according to the results of the conventional serology after treatment at the
end of follow-up: a group who achieved seronegativization after 12 months of trypanoci-
dal treatment (group A), and in another group who did not achieve seronegativization
(group B) [15]. The levels of antibodies against the TcCyP19 recombinant protein found in
both groups were significantly different (p = 0.0377 for group A and p = 0.0199 for group B)
after one year of trypanocidal therapy (Figure 5). In addition, a significant decrease in
anti-TcCyP19 protein was also found 6 months post-treatment (p = 0.0296) in children of
group B, who did not show a decrease in the conventional serological response (Figure 5).
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3. Discussion

TcCyP19 is highly expressed in all studied parasite stages. We found it secreted in the
supernatants of parasite cultures in the T. cruzi CL Brener clone, the reference strain in the
T. cruzi genome Project. TcCyP19 sequence was deposited in GenBank with the Accession
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number AI021872. There is a large amount of evidence that Cyclophilin A (CyPA), its
homologous protein in mammals, is secreted by different cell types [32]. Other research
groups have previously demonstrated that TcCyp19 is secreted by epimastigotes of several
T. cruzi strains [29]. This protein has also been found secreted by trypomastigotes of the
T. cruzi Y strain, and in the host cell cytosol by intracellular amastigotes [31]. TcCyP19
homologous protein has also been found in the secretome of African trypanosomes [33].

The amino acid sequence of TcCyp19 does not indicate a secretion signal, and in
addition, in the absence of an endoplasmic reticulum (ER) signal sequence, neither TcCyP19
nor CyPA are secreted through the classical ER-Golgi secretory pathway. More experimental
evidence is needed to assess the secretion mechanism of these cyclophilins.

Biomarkers are defined as biological molecules found in blood or other body fluids
that could be measurable indicators of a condition or disease. In this work, we analyzed
a secreted T. cruzi protein to assess the efficiency of parasiticidal treatments in T. cruzi-
infected hosts. When trypanocidal drugs reduce parasite loads in treated hosts, a logical
consequence is the lower amount of parasite-secreted proteins [34].

We used the signal-to-cutoff (S/Co) ratio to express the results of our in-house ELISA—
TcCyP19—which has been very useful in the screening of viral infections such as hepatitis
C because it accurately predicts HCV viremia [35,36] and allows the clinical classification
of HIV-infected patients [37].

T. cruzi Nicaragua isolate-infected mice treated in the acute phase of infection with BNZ
formulated in nanoparticles survived up to 60 days post-treatment, confirming trypanocidal
efficiency, while 85% of untreated mice did not survive the T. cruzi infection. Mice treated
with BNZnp50 in the acute phase of the infection, which was the most efficient treatment,
showed low levels of anti-TcCyP19 protein and negative titers of anti-T. cruzi antibody
levels in a conventional ELISA compared to BNZnp10-treated mice, who presented higher
humoral responses against T. cruzi and TcCyP19 protein. This is in accordance with the
lower levels of parasitemia, assessed by qPCR, and the less histopathological damage found
in mice treated with more efficient treatments such as BNZnp50 [18].

T. cruzi Nicaragua isolate-infected C57BL/6J mice treated during the chronic phase
of infection with an intermittent administration of BNZit75 or in combination with ALLO
showed higher levels of anti-TcCyP19 antibodies than those receiving continuous par-
asiticidal treatments. This difference has also been observed with conventional ELISA,
although no differences were observed in the parasite load of both groups of experimental
animals [19]. In the TcN-C57BL/6J mouse model, all BNZ treatments reduced the inflam-
matory lesions in the heart, and ALLO addition decreased the inflammation in BNZc50
continuous treatments. No significant differences were found in anti-TcCyP19 antibody
levels in BNZit75-treated mice compared to untreated animals and those treated with
BNZit75 + ALLO [19]. In C57BL/6J mice treated in the chronic phase of T. cruzi infection,
continuous drug treatments showed an increased reduction in anti-TcCyP19 antibodies
than intermittent administration of BNZ (Figure 2B).

Trypanocidal treatments in Chagas disease have been extensively studied in adult
chronic patients, being one of the main challenges in the evaluation of treatment efficiency
in clinical, parasitological and serological studies.

In chronically T. cruzi-infected patients, it is very difficult to evaluate treatment success
by measuring the conversion to negative serology in T. cruzi infection. Although serological
tests with T. cruzi total proteins such as antigens are very sensitive in diagnosing an
infection, they are not useful to test the success of antiparasitic treatments due to the long
persistence of specific antibodies, which have been found even more than 10 years post-
treatment [38,39]. Moreover, a study that followed up 430 chronic Chagas disease patients
after treatment showed that a complete seronegative status was achieved in an average of
11.7 years [16].

In this context, there is a need to identify biomarkers that allow the evaluation of the
treatment efficacy in a short period of time, providing information on the progression of
the disease.
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The quantification of parasite DNA is valuable to measure the parasiticidal treatment
success in acute T. cruzi infections, characterized by high parasite loads in baseline samples.
The measure of parasitemia by qPCR is very useful to detect the amplification of T. cruzi
DNA as a failure of the trypanocidal treatment since it detects parasite persistence. In
chronic T. cruzi infections, children present a larger proportion of parasite load in their
pre-treatment sample [7] than adult patients. In this group of samples of T. cruzi-infected
subjects, we were not able to detect parasitemia after treatment because most of them had
no detectable parasite load in their baseline sample or a blood sample was not available.
Previous studies have demonstrated that parasite hemocultures performed with blood
samples from treated patients are significantly different from those performed with samples
from untreated patients [39,40]. However, a negative hemoculture and negative DNA
amplifications after treatment do not indicate parasitological cure, since the parasite load
could be below the sensitivity of these methods or might fluctuate during the chronic phase
of T. cruzi infection [39,41]. In this context, a multiplex serological assay has proved to
be more efficient than conventional serology in evaluating subjects with chronic Chagas
disease after etiological treatment, since recombinant antigens have been found to detect
seroconversion at earlier time points after therapy [6].

The children and adults chronically infected by T. cruzi studied in this work showed sig-
nificantly lower levels of antibodies against the TcCyP19 recombinant protein at 12 months
after etiological treatment, and this was generally sustained until 48–120 months or
30–38 months after treatment in the case of children and adults, respectively. Interest-
ingly, we also detected a decline in the specific antibodies for TcCyP19 in the group of
chronically T. cruzi-infected children that previously had not exhibited any change in con-
ventional serology [15]. Moreover, four out of seven of this group of children whose blood
samples were analyzed by a multiplex serological assay showed a significant decline in
more than two recombinant proteins at 12 months post-treatment [15].

Due to the limitations of conventional serology and the lack of reliable parasitological
assays to follow up the success of trypanocidal treatments, some other T. cruzi molecules
were assayed as potential biomarkers of an early therapeutic response. The T. cruzi KMP11,
HSP70 and PFR2 [42]; TcTASV antigens [43]; and Tc_5171 antigen [34], among many others,
have been proposed as follow-up biomarkers, reviewed in [41,44]. In particular, the T.
cruzi Ca2+-binding flagellar protein F29 has been extensively studied as an early marker
of response to treatment with parasiticidal drugs in samples from treated patients. A
significant decrease in antibodies against the anti-F29 antigen in an in-house ELISA was
noted when monitoring the response to drug treatments [45], and although a low specificity
has been detected [46], recent results have shown that 77.2% of T. cruzi-infected children
treated with a 60-day regimen with Nifurtimox seroconvert for ELISA-F29 [47].

Most of these recombinant antigens were recognized by sera from Chagas disease
patients with statistical significance compared with the sera from healthy donors. In general,
a significant decrease in the reactivity against many biomarkers was observed in a high
percentage of patients soon after etiological treatment and in the reactivity during the
post-treatment follow-up period.

Many efforts have been made to identify T. cruzi serological biomarkers, but further
studies are needed regarding the assessment of therapeutic efficacy in patients living in
different endemic areas and those with pathological alterations and of its specificity respect
to other infectious diseases. Although the ELISA-TcCyP19 described in this work requires
analytical and clinical validation, this recombinant protein seems a promising tool to assess
early parasiticidal treatment follow-up in T. cruzi-infected patients.

4. Materials and Methods
4.1. Parasites

Epimastigotes of the T. cruzi CL Brener clone were cultured at 28 ◦C in Liver Infusion
Tryptose (LIT) medium (Difco) supplemented with 10% fetal bovine serum (FBS) (Natocor,
Córdoba, Argentina). Cell-derived T. cruzi trypomastigotes were obtained from cell cultures
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by using Vero cells at 37 ◦C in a 5% CO2 atmosphere in RPMI 1640 medium (Sigma Aldrich,
St. Louis, MO, USA) supplemented with 10% FBS. Axenic amastigotes were obtained by
incubation in RPMI medium with 10% FBS and pH 5.0 of cell-derived trypomastigotes for
24 h at 37 ◦C in a 5% CO2 atmosphere.

4.2. Expression and Purification of T. cruzi CyP19 Recombinant Protein

The coding region for the TENU0559 DNA clone was cloned into a pQE30 plasmid
(Qiagen, Gilden, Germany) and the E. coli M15 strain was transformed. TcCyP19 recombi-
nant protein expression was induced with 1 mM isopropyl-L-D-thiogalactopyranoside and
purified by a Ni2-nitriloacetate agarose column, as previously described [25].

4.3. Obtention and Purification of Polyclonal Antibodies against TcCyP19

Specific antibodies against the purified TcCyP19 recombinant protein were obtained
by inoculating BALB/c mice. A mixture of 200 micrograms of TcCyP19 with 100 microliters
of Freund incomplete adjuvant was administered in 10 weekly doses by the intraperitoneal
route. Antibodies were purified from sera from immunized mice by Protein A Sepharose®

High Performance chromatography (Sigma Aldrich, St. Louis, MO, USA) according to the
manufacturer’s instructions.

4.4. Sera from Mice Infected with T. cruzi and Treated in the Acute Phase

Four-week-old female C3H/HeN mice were intraperitoneally infected with 1000 culture-
derived trypomastigotes of the Nicaragua isolate of T. cruzi and then treated with a Ben-
znidazole (N-benzyl-2-nitro-1-imidazole-acetamide; ®Abarax ELEA Lab, Buenos Aires,
Argentina) nanoparticle formulation (BNZnp) for 30 days, at 2 to 32 days post-infection
at a dose of 50 mg/day (BNZnp50) (n = 6) or 10 mg/kg/day (BNZ-np10) (n = 6). Control
infected mice without treatment (n = 5) received only the drug vehicle (olive oil). Blood
from uninfected mice and T. cruzi-infected treated and untreated mice was collected from
the orbital venous sinus (500 µL) at 3 and 6 months post-infection, and serum was obtained
by centrifugation of coagulated blood.

4.5. Sera from Mice Infected with T. cruzi and Treated in the Chronic Phase

Four-week-old female C57BL/6J mice were intraperitoneally infected with 3000 culture-
derived T. cruzi Nicaragua isolate trypomastigotes. Mice received treatments at 3 months
post-infection with continuous 30 doses of BNZ (BNZc) of 50 mg/kg/day (n = 5) or
75 mg/kg/day (n = 4), or an intermittent dose regimen of BNZ (BNZit) of 75 mg/kg/day
(n = 9) supplemented in one dose every 7 days 13 times. In addition, in all schemes,
30 doses of 64 mg/kg/day ALLO (4-hydroxypyrazol 3, 4-d pyrimidine, Gador Lab, Buenos
Aires, Argentina) were supplied, except to one group of mice that received only BNZit
75 mg/kg/day (n = 4). Blood from uninfected and infected treated and untreated mice
was collected from the orbital venous sinus (500 µL) at 3 and 6 months post-infection, and
serum was obtained by centrifugation of coagulated blood. In both sets of experiments,
mice were located in a room with a controlled temperature and water and food ad libitum
and then randomly selected prior to infection and assignment to the treatment groups.

4.6. Sera from Patients Infected with T. cruzi and Treated in the Chronic Phase

T. cruzi-infected adult volunteers (n = 16, twelve females and four males aged 22–48 years
old) and T. cruzi-infected children (n = 17, eight females and nine males, 5 to 16 years old)
were enrolled at the Clinical Department of INP-ANLIS Malbrán. All children were born to
T. cruzi-infected women. Age- and sex-matched children with negative serological findings
were recruited as uninfected controls. Adults and children were living in a non-endemic
area (Buenos Aires) and, at the time of the recruitment, were considered infected by T. cruzi
by our Diagnostic Department, since they were seropositive for at least two of the three
tests performed: indirect immunofluorescence assay, indirect hemagglutination assay and
ELISA [8]. Individuals were classified in the 0 group according to the Kuschnir clinical
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classification. Adult and pediatric patients were treated with BNZ, 5 mg/kg body weight
per day for 60 days or with 10 mg/kg per day of nifurtimox for 60 days. One blood
sample before treatment and several others after treatment were obtained from each patient,
and some of them were followed up until 38 months post-treatment (Table 1). Twenty
serum samples from healthy and infected but not treated adult patients who attended the
Diagnostic Department of the INP-ANLIS Malbrán for diagnosis were, respectively, used
as negative and positive controls for the ELISA developed to detect TcCy19 and Western
blotting. Age- and sex-matched children with negative serological findings were recruited
as uninfected controls.

4.7. Immuno-Enzymatic Analysis of Proteins Electrotransferred to Nitrocellulose Membranes
(Western Blot)

The T. cruzi recombinant protein TcCyP19 was separated by SDS-PAGE and elec-
trotransferred from polyacrylamide gels onto nitrocellulose membranes in Tris 25 mM,
glycine 192 mM and 20% v/v of methanol in Mini Protean II (Bio Rad, Hercules, CA, USA)
equipment at 30 V overnight at 4 ◦C. Strips were blocked in 5% skimmed milk in PBS at
room temperature (RT) for 1 h and then incubated at RT for 1 h with polyclonal mouse
anti-TcCyP19 (1:2000). For the detection of TcCyP19 in the sera from mice and humans,
strips were incubated for 1 h at RT with sera from anti-TcCyP19 elicited in mice (1:1000), an
uninfected human, a chronic adult T. cruzi-infected patient, an uninfected mouse, and a
chronic and acute T. cruzi-infected mouse, all diluted to 1:100. Membranes were washed
with PBS-Tween20 and then incubated at RT for 1 h with biotinylated anti-mouse IgG
(Jackson, West Grove, PA, USA) (1:2000) or goat anti-human Horseradish Peroxidase (Invit-
rogen, Waltham, MA, USA) (1:5000) (Abcam, Cambridge, United Kingdom). After washing,
membranes were incubated with streptavidin-horseradish peroxidase (Jackson) (1:1000) at
RT for 30 min. Detection was performed with alpha-chloronaphtol.

4.8. In-House ELISA for Evaluation of Anti-TcCyP19 Antibodies (ELISA-TcCyP19)

Each well of the ELISA plate was primed overnight at 4 ◦C with TcCyp19 recombinant
protein (50 ng/well). Subsequently, wells were washed with PBS-0.05% Tween 20 and
incubated with blocking solution (PBS supplemented with 5% skim milk). After three
washes with PBS-0.05% Tween, a 1:200 dilution of both mouse and human samples, controls
and trypanocidal drug-treated samples were added and incubated at 37 ◦C for 1 h. After
three washes, HRP goat anti-human IgG antibody (Invitrogen) or anti-mouse antibodies
labeled with biotin (Invitrogen) and then peroxidase (Roche, Basel, Switzerland) were
incubated at 37 ◦C for 1 h. After three washes with PBS-0.05% Tween 20, the reaction was
developed using o-phenylenediamine dihydrochloride and hydrogen peroxide (0.02%)
at 37 ◦C for 10 min. The enzymatic reaction was stopped by adding 2N H2SO4. Optical
densities (OD) were read at 490 nm with an ELISA microplate reader (MINDRAY ME-
96A). The results are presented as normalized signal-to-cutoff (S/Co) ratios calculated by
dividing the OD value of the sample being tested by the OD value of an internal cutoff.

4.9. Statistical Analysis

Data analyses were performed using the GraphPad PRISM 8.0.1 software. The normal
distribution of data was verified by the Shapiro–Wilk normality test. Treatment groups were
compared using the Kruskal–Wallis test, followed by Dunn’s multiple comparison tests. For
data with a gaussian distribution, a Paired t-test was applied to analyze differences in S/Co,
and two-tailed p values were calculated. A unpaired nonparametric Mann–Whitney test
was performed to compare the S/CO values of two groups. Differences were considered to
be statistically significant when p < 0.05.

5. Conclusions

The use of recombinant TcCyP19 as an antigen in an ELISA allowed the detection of
an efficient trypanocidal treatment in mice with chronic and acute T. cruzi infections. The
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reactivity with the TcCyP19 antigen also significantly decreased in the sera from chronically
T. cruzi-infected adults and children treated with trypanocidal drugs at 12 months after
treatment, while conventional serology remains reactive for decades. Remarkably, this
recombinant protein could detect lower levels of specific antibodies in those treated children
who sustained their conventional serological response. These results encourage us to
further evaluate this recombinant protein in an increased number of T. cruzi-infected
treated patients for analytical and clinical validation to support the use of TcCyP19 as a
biomarker of the efficacy of antiparasitic treatment in patients chronically infected with
T. cruzi.
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