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We analyze the thermodynamic limit of the Hamiltonian, states and observables, of a system
containing an oscillator interacting with a thermal bath We use the results to a compare environment
and self induced decoherence.

I. INTRODUCTION

In previous papers we developed a formalism suitable to describe the spontaneous decay process of unstable quantum
systems with continuous spectrum [1], [2]. In this approach the class of relevant observables have a diagonal singularity
in the energy representation, and the states are defined as functionals acting on the space of observables.
This formalism was later proved to be useful to describe the interaction of an atom and the electromagnetic radiation

in a thermal state. In this case the diagonal singularities were moved from the observables to the state functionals,
while the relevant local observables were represented by regular functions [3].
In both cases we have been able to find a well defined ”final” state functional of the system (t → ∞), for the

irreversible processes.
This formalism was also used to describe the decoherence process [4], following an approach that we have called

self induced decoherence (SID) [5], [6].
Later on, M. Schlosshauer [7] obtained numerical solutions of the spin bath model developed by W. H. Zurek [8],

for increasing values of the number of spins in the bath, searching for a time evolution producing the vanishing of
the off diagonal elements of the total density operator in the energy representation. The result of this search was
negative: it was not found the vanishing of the off-diagonal elements due to time evolution. On the other hand self
induced decoherence, i.e. the vanishing of the off diagonal elements, is found in our approach for close systems with
continuous spectrum. This was interpreted by M. Schlosshauer as a contradiction with the numerical results, and
therefore as a strong limitation for our approach.
Nevertheless we have shown in [6] that even if the result is correct, it cannot be used against SID since the bath of

the model of papers [7] and [8] has not a self interaction, in which case the whole system does not decohere in a finite
time (see also [9])
On the other hand, another feature of paper [7] also deserves a criticism: the spin bath model does not reduce to a

well defined continuous model for increasing number of spins in the bath. Therefore the Riemann-Lebesgue theorem,
the essential tool of SID, is not valid.
This last fact motivated us to try to get to a better understanding of the continuous limit of a discrete model. In

this paper we reanalyze the well known Lee-Friedrichs toy model that mimics the atom-radiation interaction process,
for the case of the radiation in a thermal state. The discrete spectrum case was analyzed by F. Gaioli et al. [10], and
the continuous case in the thermodynamic limit was previously developed in our paper [3]. In this case we gave for
the Lee-Friedrichs model a detailed description of the construction of the continuous limit.
In section II the model is presented for the discrete case, and the continuous limit of the Hamiltonian is obtained,

which is diagonalizable through an analytic expression of a Bogolyubov transformation. In section III we define the
suitable class of observables In section IV we obtain the general form for the state functionals, and in section VI we
obtain the time evolution and the decoherence. The conclusions are given in section VI

II. THE MODEL

Let us consider a thermal bath of oscillators, which is the scalar version of the electromagnetic radiation in a cubic
box. The Hamiltonian is given by

bHbath =X
p

ωpba†pbap, [bap,ba†p0 ] = δp p0 , (1)
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where ωp = |p|, p = 2π
L (nx, ny, nz), L is the size of the cube, and nx, ny, nz are integer numbers (c = } = 1).

The thermal bath interacts with an oscillator, having the HamiltonianbHosc = Ω bb†bb, [bb,bb†] = 1. (2)

This system can be considered as a toy model for an atom with energy levels nΩ (n = 0, 1, 2...).
The space to describe the interaction is the tensor product of the Hilbert spaces of both the oscillator and the bath.

Therefore, it is convenient to replace the creation and annihilation operators in eqs. (1) and (2), by

bb† → bbb† ≡ bb† ⊗ bIbath, ba†p → bba†p ≡ bIosc ⊗ ba†p, (3)bb→ bbb ≡ bb⊗ bIbath, bap → bbap ≡ bIosc ⊗ bap,
where bIosc and bIbath are the identity operators in the Hilbert spaces of the oscillator and the bath. The double tildes
have been used to denote operators acting on the tensor product Hilbert space.
The interaction Hamiltonian is

Hint =
X
p

gp(
bbb†bbap + bba†pbbb) (4)

When the size L of the cubic box is very big, the vector p becomes a continuous variable. Using the following well
known transformationsµ

2π

L

¶3X
p

→
Z
d3p,

µ
2π

L

¶3
δp p0 → δ3(p− p0),

µ
L

2π

¶3/2 ba†p → ba†(p), (5)

we can obtain the continuous version of the expressions (1):

bHbath = Z d3pωp bba†(p)bba(p), [bba(p),bba†(p0)] = δ3(p− p0). (6)

For a well defined limit of the interaction Hamiltonian of eq. (4), the coupling coefficients gp should have the

asymptotic form gp = (2π/L)
3/2Vp, when L→∞, where Vp is a regular function of the continuous variable p. If this

is the case we obtain the continuous limit

bHint = Z d3pVp[bba†(p)bbb+bbb†bba(p)]. (7)

For the case of dipolar electromagnetic interaction, the coefficients have the form gp = (2π/L)3/2Vp, where the

L−3/2 factor comes from the expansion in normal modes of the quantum field. This is a clear example to understand
that we need more than one discrete spectrum becoming continuous to have a well defined model in the continuous
limit.
There is an analytic expression which diagonalizes the total Hamiltonian

bH = bHosc + bHbath + bHint = Z d3pωp
bbA†(p)bbA(p), (8)

with the following Bogolyubov transformations [3]

bbA†(p) = bba†(p) + Vp
η+(ωp)

⎡⎣bbb† + Z d3p0
Vp0bba†(p0)

ωp − ωp0 + i0

⎤⎦ ,
bbb† = Z d3p0

Vp0

η−(ωp0)
bbA†(p0),

bba†(p) = bbA†(p) + Z d3p0
Vp0Vp

η+(ωp0)(ωp0 − ωp + i0)
bbA†(p0),

η±(ωp) = ωp − Ω−
Z
d3p0

V 2p0

ωp − ωp0 ± i0
(9)

The main goal of quantum theory is to provide a way to compute probabilities for the results of experiments
following a given preparation. Therefore the model just presented would not be complete unless we characterize
the class of states and observables by suitable definitions . This characterization will be developed in the next two
sections.
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III. OBSERVABLES

A. Oscillator observables

All the observables of the oscillator can be obtained in terms of the corresponding operators bb† and bb. It is easy to
prove from eqs. (3) that

(
bbb†)n(bbb)m = (bb†)n(bb)m ⊗ bIbath.

Therefore, for a regular function Oosc(x, y) we can write

Oosc(
bbb†,bbb) = Oosc(bb†,bb) ⊗ bIbath,

and we have obtained the way in which any operator representing an observable of the oscillator can be lifted to the
tensor product space. This class of operators are relevant to study the environment induced decoherence (EID) of the
oscillator.
Using the Bogolyubov transformation given in eqs. (9) we can write

Oosc(
bbb†,bbb) = Oosc(bb†,bb)⊗ bIbath = OoscµZ d3p0

Vp0

η−(ωp0)
bbA†(p0); Z d3p0

Vp0

η+(ωp0)
bbA(p0)¶ .

If Oosc(x, y) is a regular function, the oscillator observables can be expressed in the following way

bOosc ⊗ bIbath =X
n,m

Z
d3nk

Z
d3mpD(k1, ..., kn; p1, ..., pm)

bbA†(k1)...bbA†(kn) bbA(p1)...bbA(pm), (10)

where D(k1, ..., kn; p1, ..., pm) are regular functions of all the variables k and p.

B. Bath observables

The values of global observables of the bath, like energy, momentum or number of particles, increase with the
volume of the cubic box and we do not expect well defined values when L → ∞. Therefore this class of observables
should not be included in the continuous limit. However, we expect well defined values of quasi-local observables of
the bath, having the form [11]

bB(r) = Z d3r01...d
3r0m

Z
d3r1...d

3rnbΨ†(r01)...bΨ†(r0m) b(r, r01...r0m, r1...rn) bΨ(r1)...bΨ(rn),
bΨ†(r) = 1

(2π)3/2

Z
d3pba†(p) exp(−i p · r),

where b(r, r01...r
0
m, r1...rn) goes to zero if any of the r

0
1, ..., r

0
m, r1, ..., rn does not belong to a neighborhood of r.

These observables can be represented as

bB(r) =X
n,m

Z
d3mk

Z
d3npB(r; k1, ..., km; p1, ..., pn)ba†(k1)...ba†(km)ba(p1)...ba(pn), (11)

where B(r; k1, ..., km; p1, ..., pn) are regular function. No singular terms seem to appear in the observables of the bath.

If we replace the operators ba† and ba by their lifted versions bba† and bba, and then we use eq. (9) to write these operators
in terms of

bbA† and bbA, the bath operators can be expressed as
bIosc ⊗ bObath =X

n,m

Z
d3mk

Z
d3npC(k1, ..., km; p1, ..., pn)

bbA†(k1)...bbA†(km) bbA(p1)...bbA(pn), (12)

where C(k1, ..., km; p1, ..., pn) is a regular function.
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C. General observables

The expressions (10) and (12) for the oscillator and the bath suggest that a suitable definition for the more general
relevant observables of the composed system (oscillator plus bath) is given by

bbO =X
n,m

Z
d3nk

Z
d3mpO(k1, ..., kn; p1, ..., pm)

bbA†(k1)...bbA†(kn) bbA(p1)...bbA(pm), (13)

where O(k1, ..., kn; p1, ..., pm) are regular functions of the variables k and p

IV. STATES

We only need to define the class of initial states bbρ0 in the Schrödinger representation. We first consider the discrete
case and in a second step the case L→∞. Oscillator and bath are supposed to be initially uncorrelated, i.e.

h bOosc ⊗ bObathi = Tr[bbρ0 bOosc ⊗ bObath] = Tr[bρ0osc bOosc]Tr[bρ0bath bObath]
The oscillator state bρ0osc presents no difficulty, as it can be represented by a standard density operator. Therefore,

for bOosc = (bb†)n(bb)mwe can write
Tr[bρ0osc(bb†)n(bb)m] ≡ ρ0nm (14)

The bath state bρ0bath is more involved. As we wish to analyze the interaction between the oscillator and a thermal
bath, let us start considering, for the discrete case, the initial state of the bath at temperature T . It is represented
by the density operator

bρ0bath = 1

Z
exp[− 1

kT
bHbath], (15)

where Tr[bρ0bath] = 1, Z is a normalization constant, and bHbath =Pp ωpba†pbap.
For the thermal state given by eq. (15) the following mean values are obtained [11]

Tr[bρ0bath ba†p1 ...ba†pnbap01 ...bap0m ] = δnm
X

perm(p01...p
0
n)

δp1 p01 ...δpn p0n fp1 ... fpn , fp =
1

exp(
ωp
kT )− 1

, (16)

where the sum is over all possible permutations of the indexes (p01, ..., p
0
n). All the operators representing observables

of the bath can be written in terms of products of creation and annihilation operators ba† and ba.
For a thermal state of the bath the number of exited modes becomes infinite when L → ∞, and we have what is

called thermodynamic limit.
The density operator of eq. (15) is not defined when L → ∞, but the mean value given by eq. (16) has a well

defined limit

lim
L→∞

Tr[bρ0bath ba†(p1).....ba†(pn)ba(p01).....ba(p0m)] = δnm
X

perm(p01...p
0
n)

δ3(p1 − p01).....δ3(pn − p0n) fp1 .....fpn . (17)

In spite of the fact that the density operator is not defined in the continuous limit, the well defined limit of eq. (17)
is useful to define a state functional ρ0bath such that

(ρ0bath|ba†(p1).....ba†(pn)ba(p01).....ba(p0m)) ≡ δnm
X

perm(p01...p
0
n)

δ3(p1 − p01).....δ3(pn − p0n) fp1 .....fpn . (18)

The singular structure of the state functional is a characteristic of the thermodynamic limit. However, a more
general singular structure of the initial state is necessary to describe the approach to thermal equilibrium of the bath
[11]. We are not dealing with the approach to equilibrium of the bath state in this paper, because this approach
cannot be obtained from the model we studied, as there is no interaction between the different bath modes. The
thermal equilibrium of the bath we are considering is an initial condition, due to a previous preparation which is not
modelled in our approach.
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Lifting the previous expressions (14) and (18) to the tensor product Hilbert space, in the limit L→∞, we obtain
an initial state functional (ρ0| for the composed system oscillator-bath, satisfyingµ

ρ0
¯̄̄̄µbbb†¶r bba†(p1).....bba†(pn)µbbb¶s bba(p01).....bba(p0m)¶

=
³
ρ0
¯̄̄³bb†´r ³bb´s ⊗ ba†(p1).....ba†(pn)ba(p01).....ba(p0m)´

=
³
ρ0osc

¯̄̄³bb†´r ³bb´s ´ ¡ρ0bath ¯̄ba†(p1).....ba†(pn)ba(p01).....ba(p0m)¢
= ρ0rs δnm

X
perm(p01...p

0
n)

δ3(p1 − p01).....δ3(pn − p0n) fp1 .....fpn . (19)

To obtain the last expression we have used the results of eqs. (14) and (18).
We can also obtain an expression for the action of the initial state functional on products of the creation and

annihilation operators
bbA† and bbA,µ

ρ0
¯̄̄̄ bbA†(p1).....bbA†(pn)bbA(p01).....bbA(p0m)¶

=

⎛⎝ρ0

¯̄̄̄
¯̄
⎧⎨⎩bba†(p1) + Vp1

η+(ωp1)

⎡⎣bbb† + Z d3p0
Vp0bba†(p0)

ωp1 − ωp0 + i0

⎤⎦⎫⎬⎭ .....
⎞⎠ ,

where we have used once again eqs. (9). Using the linearity of the state functional and eq. (19), we obtain

(ρ0|bbA†(p1).....bbA†(pn)bbA(p01).....bbA(p0m))
= δnm

X
perm(p01...p

0
n)

δ3(p1 − p01).....δ3(pn − p0n) ρ0(p1, ..., pn) + ρ0(p1...pn; p
0
1...p

0
m), (20)

where ρ0(p1, ..., pn) = fp1 ...fpn and ρ0(p1...pn; p
0
1...p

0
m) are regular functions. The just defined observables and states

are a generalization of those defined in paper [3] for the particular case n = m = 2.
The presence of the Dirac deltas in the previous expression shows that the initial bath states necessarily have a

singular structure, and can not be represented by ordinary density operators.

V. TIME EVOLUTION

A. The final state

Taking into account the diagonal form of the Hamiltonian given in eq. (8), we obtain the Heisenberg representation
of the creation and annihilation operators

bbA†(k, t) = bbA†(k) exp(itωk).
Them the time dependence of the mean value of an observable of the form given in eq. (13) is given by

(ρ0 | bbO(t)) =X
n,m

Z
d3nk

Z
d3mpO(k1, ..., kn; p1, ..., pm)(ρ

0 | bbA†(k1)...bbA†(kn) bbA(p1)...bbA(pm)) ×
× exp it(ωk1 + ...+ ωkn − ωp1 − ...− ωpm). (21)

Therefore using eq. (20)

(ρ0 | bbO(t))
=
X
n,m

Z
d3nk

Z
d3mp

⎡⎣δnm X
perm(p01...p

0
n)

δ3(p1 − p01).....δ3(pn − p0n) fp1 ...fpn + ρ0(p1...pn; p
0
1...p

0
m)

⎤⎦×
×O(k1, ..., kn; p1, ..., pm)× exp it(ωk1 + ...+ ωkn − ωp1 − ...− ωpm),
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so using the Riemann Lebesgue theorem we obtain

lim
t→∞

(ρ0 | bbO(t)) =X
n

Z
d3np fp1 ...fpnO(p1, ..., pn; p1, ..., pn) ≡ (ρ

∗ | bbO). (22)

The whole system reaches in a weak limit an equilibrium state functional (ρ∗ |. This would be the best version we
can have of SID in this case. The general case will be studied elsewhere.
The time dependent state functional of the oscillator (ρosc(t)| (in Schrödinger representation), is obtained by

considering observables of the form
bbO = bOosc ⊗ bIbath and it is defined through the following equation

(ρ0 | bbO(t)) = (ρ(t) | bbO) = (ρ(t) | bOosc ⊗ bIbath) ≡ (ρosc(t) | bOosc) (23)

To find an explicit expression for the final state of the oscillator, let us consider

bbO = (bb†)n(bb)m ⊗ bIbath = (bbb†)n(bbb)m =
=

Z
d3k1...d

3kn

Z
d3p1...d

3pm
Vk1 ...VknVp1 ...Vpn

bbA†(k1)...bbA†(kn) bbA(p1)...bbA(pm)
η−(ωk1)...η−(ωkn)η+(ωp1)...η+(ωpm)

. (24)

Therefore using eq. (22) and (24) we obtain

lim
t→∞

(ρ(t)|(bbb†)n(bbb)m) = δnm

"Z
d3k

V 2
k
fk

η−(ωk)η+(ωk)

#n
Then from (23)

lim
t→∞

(ρosc(t) | (bb†)n(bb)m) = (ρ∗osc|(bb†)n(bb)m)
This last equation shows that the oscillator reaches, in a weak limit, a final state of equilibrium. For a small

interaction we have [3]

V 2
k

η−(ωk)η+(ωk)
∼=

δ(ωk − Ω)
4πΩ2

Considering also the expression for fk given in eq. (16) we finally obtain

(ρ∗osc|(bb†)n(bb)m) = δnm

"
1

exp( ΩkT )− 1

#n

These results correspond to an oscillator at temperature T , for which the density operator is bρ∗osc ∝ exp[− 1
kT Ω

bb†bb].
Obviously the final state can be represented by a density operator which is diagonal in the energy basis of the oscillator

B. Decoherence time

We can show through this model that the characteristic time for approaching equilibrium strongly depends on the
observable.

Let us consider the oscillator observable
bbO = (bb†)n(bb)m⊗ bIbath. Taking into account eqs. (24) and the general form

of the state functional given by eq. (20) we obtain

(ρ(t)|bbO) = δnm

"Z
d3k

V 2
k
fk

η−(ωk)η+(ωk)

#n
+

+

Z
d3k1...d

3kn

Z
d3p1...d

3pm
Vk1 ...VknVp1 ...Vpn B(p1...pn; p

0
1...p

0
m)

η−(ωk1)...η−(ωkn)η+(ωp1)...η+(ωpm)
×

× exp it(ωk1 + ...+ ωkn − ωp1 − ...− ωpm),
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where B(p1...pn; p
0
1...p

0
m) are regular functions depending on the temperature of the bath.

If the analytic extension η+(z) from the upper to the lower complex half plane of η+(ω) has a simple zero at z = z0,
where z0 is close to the real axis, the time dependence of the last expression will be dominated by a factor of the form
exp it(nz∗0 −mz0). Therefore the time dependent part of the mean value decays almost exponentially.
Let us also consider an observable of the bath, for example

bbO = bIosc ⊗ ba†(p)ba(k) = bba†(p)bba(k). It is possible to
show that the time dependent part of the mean value of this observable will approach to zero, but this approach is
not dominated by an exponential decay.
All these features are reminiscent of what happened in the model of paper [6]

VI. CONCLUSIONS

If irreversibility is defined as the existence of a well defined state when t→∞, there is no irreversibility for systems
with discrete energy spectrum. SID cannot be implemented in a model with discrete spectrum of energy, because
Riemann-Lebesgue theorem can not be used if there are no integrals.
If the gap between the discrete eigenvalues of the Hamiltonian becomes very small for increasing values of the box

size L, it may be possible to find an approximate irreversibility, where there is a time evolution to something like an
equilibrium state, but not for too large times. A system with discrete spectrum is quasi periodic, and therefore a
recurrence time exists for which the state of the system is arbitrary close to the initial state. However, the recurrence
time may be very large for a big value of the size L of the box.
If we have a Hamiltonian, and a class of states, and a class of observables for which there are well defined limit

expressions when L → ∞, and only in this case, a ”limit quantum model” with continuous spectrum could be
obtained. In this case SID can be implemented and it can be expected that the predictions for the time evolution
may approximately coincide with the predictions for the discrete model, for a big L and a not too big t, as it is shown
for the Friedrichs model by F. Gaioli et al [10].
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