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Abstract

We show exact solutions of the Born–Infeld theory for electromagnetic plane waves propagating in the presence of static background fields.
The non-linear character of the Born–Infeld equations generates an interaction between the background and the wave that changes the speed
of propagation and adds a longitudinal component to the wave. As a consequence, in a magnetic background the ray direction differs from the
propagation direction—a behavior resembling the one of a wave in an anisotropic medium. This feature could open up a way to experimental tests
of the Born–Infeld theory.
© 2006 Elsevier B.V. All rights reserved.
In 1934 Born and Infeld [1,2] proposed a non-linear elec-
trodynamics with the aim of obtaining a finite value for the
self-energy of a point-like charge. The Born–Infeld Lagrangian
leads to field equations whose spherically symmetric static so-
lution yields a finite value b for the electrostatic field at the
origin. The constant b appears in the Born–Infeld Lagrangian
as a new universal constant. Following Einstein, Born and In-
feld considered the metric tensor gμν and the electromagnetic
field tensor Fμν = ∂μAν − ∂νAμ as the symmetric and anti-
symmetric parts of a unique field bgμν + Fμν . Then they pos-
tulated the Lagrangian density

(1)L= − 1

4π

[√∣∣det(bgμν + Fμν)
∣∣ − √−det(bgμν)

]
,

where the second term is chosen so that the Born–Infeld La-
grangian tends to the Maxwell Lagrangian when b → ∞. In

* Corresponding author.
E-mail addresses: aiello@iafe.uba.ar (M. Aiello), gabriel@iafe.uba.ar

(G.R. Bengochea), ferraro@iafe.uba.ar (R. Ferraro).
1 ANPCyT Fellow.
2 CONICET Fellow.
3 Member of Carrera del Investigador Científico (CONICET, Argentina).
0375-9601/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2006.09.027
four dimensions, this Lagrangian results to be

(2)L= √−g
b2

4π

(
1 −

√
1 + 2S

b2
− P 2

b4

)
,

where S and P are the scalar and pseudoscalar field invariants

(3)S = 1

4
FμνF

μν = 1

2

(|B|2 − |E|2),
(4)P = 1

4
∗FμνF

μν = E · B,

where the dual tensor is ∗Fij = 1/2εijklF
kl .

One of the typical features of non-linear electrodynamics
is the appearance of birefringence. However the Born–Infeld
Lagrangian is usually mentioned as an exceptional Lagrangian
because of the properties of being the unique structural function
which [3]: (1) Assures that the theory has a single characteris-
tic surface equation (absence of birefringence); (2) Fulfills the
positive energy density and the non-space like energy current
character conditions. Due to these conditions, the Lagrangian
has time-like or null characteristic surfaces. The Born–Infeld
electrodynamical equations can be augmented to a system of
hyperbolic conservation laws with interesting properties [4].
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It is a well established fact in non-linear electrodynamics
that the presence of background fields modifies the speed of
electromagnetic waves. This issue is studied in [3,5–9] by con-
sidering the propagation of discontinuities. The result is that the
phase velocity is lower than c. Besides, the wave four-vector
direction can be described as a null geodesic of an effective
geometry that depends on the background field [6]. When there
is no background field, the plane wave solution is the same for
the Maxwell and the Born–Infeld theory, as was pointed out by
Schrödinger [10]. Some conditions for the existence of global
smooth spatially periodic planar solutions are studied in [4].

In this work we find out exact solutions for Born–Infeld
waves propagating in the presence of a background field. As
a still unknown feature, we find that the presence of a magnetic
background modifies the ray direction, which does not result to
be coincident with the propagation direction (as it would hap-
pen in an anisotropic medium).

The Born–Infeld field F satisfies

(5)Fλμ,ν + Fνλ,μ + Fμν,λ = 0,

(6)
(√−gFμν

)
,ν

= 0,

where Fμν stand for the components of the 2-form F (anti-
symmetric 2-index covariant tensor) defined as

(7)F = F − P

b2
∗F√

1 + 2 S

b2 − P 2

b4

.

Eq. (5) is an identity coming from the definition of Fμν , while
(6) is the Euler–Lagrange equation that results from varying the
Lagrangian (2).

We will do an extensive use of geometric language for
benefiting from some properties of the exterior derivative d :
d(d · · ·) ≡ 0, dω ∧ dω ≡ 0 for any 1-form ω (wedge product
is the anti-symmetrized tensor product between p-forms). In
this language it is F = dA, and Eq. (5) read

(8)dF = 0,

(9)d∗F = 0.

We will use Cartesian coordinates in Minkowski space–time,

(10)ds2 = dt2 − dx2 − dy2 − dz2.

We are looking for waves propagating in a uniform back-
ground magnetic field. So we propose the solution

F = E(ξ)dξ ∧ dx + BB dx ∧ dz − BE dy ∧ dz

(11)− BL dx ∧ dy + γE(ξ) dt ∧ dz,

where

(12)ξ = z − βt

is the sole variable in the solution and BB , BE , BL are the
components of the uniform background magnetic field B =
BEx̂ +BBŷ +BLẑ. Eq. (11) means Fxz = −E(ξ)+BB , Ftx =
−βE(ξ), etc. So the electric field is −E(ξ)x̂ + γE(ξ)ẑ, and
the magnetic field is −E(ξ)ŷ + B. Fig. 1 shows the orienta-
tion of the wave and the background fields. The terms having
Fig. 1. Schematic picture of the wave and the background fields.

E(ξ) compose the wave; ξ is its phase. β � 1 in (12) takes
into account the fact that waves might propagate inside the light
cone. The solution (11) fulfills (8) for any function E(ξ) (since
dξ ∧ dξ ≡ 0, etc.).

The invariants S and P for the proposed solution are

(13)2S = (
1 − γ 2 − β2)E(ξ)2 +B2 − 2E(ξ)BB,

where B2 = B2
L + B2

E + B2
B , and

(14)P = (−βBE + γBL)E(ξ).

In order to work out (9), we will compute the numerator in ∗F .
According to (7) it is

∗(
F − P

b2
∗F

)

= ∗F + P

b2
F

= E(ξ)d(t − β dz) ∧ dy − BB dt ∧ dy − BE dt ∧ dx

− BL dt ∧ dz − γE(ξ) dx ∧ dy + b−2(−βBE + γBL)

· E(ξ)
(
E(ξ)dξ ∧ dx + BB dx ∧ dz − BE dy ∧ dz

(15)− BL dx ∧ dy + γE(ξ) dt ∧ dz
)
.

By replacing dz with dξ + β dt , the previous result can be
rewritten as
∗(

F − P

b2
∗F

)
= (−BE − b−2βBB(−βBE + γBL)E(ξ)

)
dt ∧ dx

+ ((
1 − β2)E(ξ) − BB

− b−2βBE(βBE − γBL)E(ξ)
)
dt ∧ dy

+ (−γE(ξ) + b−2BL(βBE − γBL)E(ξ)
)
dx ∧ dy

(16)+ dξ ∧ · · · .
Since d(dξ ∧ · · ·) ≡ 0, because ξ is the only variable in the
field F , then the fulfillment of (9) exclusively depends on the
behavior of the three first terms in the former result. Taking
into account that the differentiation of these terms with respect
to ξ will produce three independent components, then (9) can
only be satisfied if ∗F has components tx, ty and xy equal to
constants. Remarkably, the component xy in (16) is linear and
homogeneous in E(ξ), but this feature is not shared with the
denominator in (7). So, in order to get ∗Fxy = const, it should
be E(ξ) = 0 or

(17)γ =
BEBL

b2

1 + B2
L

β.
b2
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This value for γ can be replaced in the components ∗Ftx and
∗Fty , which will turn to be constants for β equal to

(18)β =

√√√√√1 + B2
L

b2

1 + B2

b2

.

In fact, the values of the examined components result to be in-
dependent of the function E(ξ), and (9) is accomplished:

∗Ftx = − BE√
1 + B2

b2

, ∗Fty = − BB√
1 + B2

b2

,

(19)∗Fxy = 0.

The obtained values for γ and β imply that

(20)

√
1 + 2S

b2
− P 2

b4
=

√
1 + B2

b2
− BBE(ξ)

b2
√

1 + B2

b2

.

The value β < 1 in (18) is the speed of propagation of a Born–
Infeld electromagnetic wave in the presence of a uniform mag-
netic background. The constant γ �= 0 in (17) implies the exis-
tence of a non-zero electric longitudinal component of the wave
due to its interaction with the background. Of course, these dif-
ferences with the Maxwellian behavior disappear in the limit
b → ∞.

Let us now consider the energy flux for a Born–Infeld wave
in the presence of a background field. The energy–momentum
tensor in the Born–Infeld theory is

T μν = 2√−g

δL
δgμν

(21)

= − 1

4π

[
Fμ

ρFνρ + b2gμν

(
1 −

√
1 + 2S

b2
− P 2

b4

)]
.

In particular the energy flux components are quite simple; for
instance

T tz = − 1

4π
F t

ρFzρ = − 1

4π

(
F t

xFzx + F t
yFzy

)
(22)= FtxFxz + FtyFyz√

1 + 2S

b2 − P 2

b4

.

Remarkably, the terms proportional to P in the numera-
tor cancel out. This is a foreseeable feature because P is a
pseudoscalar while the energy flux S is a polar vector. Thus
the Poynting vector is

(23)S = 1

4π

E × B√
1 + 2S

b2 − P 2

b4

.

Then the energy flux vector associated with the solutions ob-
tained above are:

(24)Sx = 1

4π

γE(ξ)(E(ξ) − BB)√
1 + 2S

2 − P 2

4

,

b b
(25)Sy = 1

4π

βE(ξ)BL + γE(ξ)BE√
1 + 2S

b2 − P 2

b4

,

(26)Sz = 1

4π

βE(ξ)(E(ξ) − BB)√
1 + 2S

b2 − P 2

b4

.

As it is usual when E(ξ) is a periodic function, we will con-
sider just the temporal averaging of the energy flux. Differing
from what happens in the Maxwell theory, the non-linear fea-
tures of the Born–Infeld theory will lead to non-null transversal
components of 〈S〉. This characteristic can be easily perceived
in 〈Sx〉. In fact Sx is an energy flux along the wave polariza-
tion direction due to the existence of a longitudinal electric
field, which is a consequence of the interaction between the
wave and the background field. For a monochromatic wave,
E(ξ) = E0 cos(β−1ωξ), the averaged flux at the lower order
in b−2 is

(27)〈Sx〉 = E2
0BLBE

8πb2
+O

(
b−4),

(28)〈Sy〉 = E2
0BLBB

8πb2
+O

(
b−4),

(29)〈Sz〉 = E2
0

8π

[
1 − 4B2

B + 2B2
E + B2

L

2b2

]
+O

(
b−4).

In this approximation, the transversal part of 〈S〉 is parallel to
the transversal background field. The angle α between 〈S〉 and
the direction of propagation is

(30)tanα =
BL

√
B2

E + B2
B

b2
+O

(
b−4).

In the same way we can calculate the energy density:

T 00 = |E|2 + b−2P 2

4π

√
1 + 2S

b2 − P 2

b4

− b2

4π

(
1 −

√
1 + 2S

b2
− P 2

b4

)

(31)= b2

4π

[
1 + b−2|B|2√
1 + 2S

b2 − P 2

b4

− 1

]
.

Therefore the averaged energy density for the studied solution
is

〈
T 00〉 = E2

0

8π

[
1 − 3B2

B + B2
E + B2

L

2b2

]
+ B2

8π

[
1 − B2

4b2

]
(32)+O

(
b−4)

which is lower than the corresponding Maxwellian energy den-
sity. We remark that, at order b−2, the modulus of the energy
velocity 〈S〉〈T 00〉−1

wave does not differ from the phase velocity β .
Now we will just display the solutions for the case of a

constant electric background field E = EEx̂ +EBŷ +ELẑ. Fol-
lowing the same procedure we applied in the previous case, the
solution of (8) and (9) is

F = E(ξ)dξ ∧ dx + EE dt ∧ dx + EB dt ∧ dy

(33)+ EL dt ∧ dz + γE(ξ) dt ∧ dz
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with

(34)β =
√

1 − E2
B + E2

E

b2
, γ = ELEE

b2

√
1 − E2

B+E2
E

b2

.

Then

(35)

√
1 + 2S

b2
− P 2

b4
=

√
1 − E2

b2

(
1 + EEE(ξ)

βb2

)
and the constant components of ∗F are

∗Ftx = −

√√√√√1 − E2
E+E2

B

b2

1 − E2

b2

EB, ∗Fxy = − EL√
1 − E2

b2

,

(36)∗Fty =

√√√√√1 − E2
E+E2

B

b2

1 − E2

b2

EE,

where E2 = E2
B + E2

L + E2
E . The components of Poynting vec-

tor S are

Sx = 1

4π

(EL + γE(ξ))E(ξ)√
1 + 2S

b2 − P 2

b4

, Sy = 0,

(37)Sz = − 1

4π

(EE − βE(ξ))E(ξ)√
1 + 2S

b2 − P 2

b4

.

As a remarkable feature, the factor EL + γE(ξ) in the numera-
tor of Sx is proportional to the square root in the denominator;
thus these factors cancel out and Sx results to be linear and ho-
mogeneous in E(ξ). So there is a main difference according to
the Born–Infeld wave propagates in a magnetic or an electric
background field: in the second case the direction of the aver-
aged energy flux coincides with the propagation direction:

〈Sx〉 = 0, 〈Sy〉 = 0,

(38)〈Sz〉 = E2
0

8π

(
1 + 2E2

E + E2
L

2b2

)
+O

(
b−4),

where E0 is the wave amplitude.
The speeds of propagation (18) and (34) can be compared

with the results obtained in [3,6]. These papers study the propa-
gation of discontinuities in the presence of background fields in
a general non-linear theory. It is shown that the equation ac-
complished by the wave four-vector can be understood as if
rays propagate along null geodesics of an effective metric. In
the case of the Born–Infeld electrodynamics the effective met-
ric ḡμν is

(39)ḡμν =
(

b2 + 1

2
Fρσ Fρσ

)
gμν + FμλF

λ
ν

being gμν the space–time metric, and Fμν is the background
electromagnetic field where the rays propagate. For a ray prop-
agating along the z direction it is

(40)ds̄2 = ḡ00 dt2 + ḡzz dz2 = 0 ⇒ dz

dt
=

√
− ḡ00

ḡzz

.

When the effective metric (39) is evaluated for a magnetic back-
ground it results

(41)ḡ00 = 1

b2 +B2
, ḡzz = −1

b2 + B2
L

.

Instead, for an electric background it is

(42)ḡ00 = 1

b2
, ḡzz = −1

b2 − E2
B − E2

L

.

Thus the speeds of propagation (18) and (34) are reobtained.
This already known consequence of the Born–Infeld theory on
the wave propagation in background fields is here added with
the knowledge of the exact solutions. These solutions reveal
that the background fields not only affect the speed of propa-
gation of the Born–Infeld waves but also they can produce an
angle between the ray direction and the propagation direction.
This is the case for magnetic backgrounds. Of course, all these
effects would be very weak (if they exist), since up to now the
Maxwell equations properly describe all of the known classical
electromagnetic phenomena. Constant b is the key for passing
from the Maxwell theory to the Born–Infeld theory. If the tiny
angle α (30) were measured in the laboratory then a way to ex-
perimental tests of the Born–Infeld electrodynamics would be
opened. The ray deviation is the consequence of the last term in
(11), which is a longitudinal electric field that results from the
coupling with the background magnetic field. The longitudi-
nal electric field together with the speed of propagation smaller
than c are the imprints of the non-linear behavior. At the low-
est order in b−2 the longitudinal component of the electric field
is b−2BEBLE(ξ). A similar longitudinal electric field appears
in an electric background as well. In this case, however, there is
no contribution to the averaged Poynting vector, so the ray does
not deviate.
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