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Abstract 

On-farm methane (CH4) emissions need to be estimated accurately so that the mitigation 

effect of recommended practices can be accounted for. In the present study prediction 

equations for enteric CH4 have been developed in lieu of expensive animal measurement 

approaches. Our objectives were to: (1) compile a dataset from individual beef cattle data for 

the Latin America and Caribbean (LAC) region; (2) determine main predictors of CH4 

emission variables; (3) develop and cross-validate prediction models according to dietary 

forage content (DFC); and (4) compare the predictive ability of these newly-developed 

models with extant equations reported in literature, including those currently used for CH4 
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inventories in LAC countries. After outlier’s screening, 1100 beef cattle observations from 55 

studies were kept in the final dataset (~ 50% of the original dataset). Mixed-effects models 

were fitted with a random effect of study. The whole dataset was split according to DFC into 

a subset for all-forage (DFC = 100%), high-forage (94% ≥ DFC ≥ 54%), and low-forage 

(50% ≥ DFC) diets. Feed intake and average daily gain (ADG) were the main predictors of 

CH4 emission (g d
−1

), whereas this was feeding level [dry matter intake (DMI) as % of body 

weight] for CH4 yield (g kg
−1

 DMI). The newly-developed models were more accurate than 

IPCC Tier 2 equations for all subsets. Simple and multiple regression models including ADG 

were accurate and a feasible option to predict CH4 emission when data on feed intake are not 

available. Methane yield was not well predicted by any extant equation in contrast to the 

newly-developed models. The present study delivered new models that may be alternatives 

for the IPCC Tier 2 equations to improve CH4 prediction for beef cattle in inventories of LAC 

countries based either on more or less readily available data. 

Keywords: dietary nutrients; greenhouse gas; linear regression; livestock; methane 

conversion factor; model cross-validation 

1. Introduction 

Sixty per cent of all global methane (CH4) emissions are due to human-induced 

activities. Enteric CH4 fermentation and manure management represent 32% of global 

anthropogenic emissions, or 19.2% of total global CH4 emissions including non-

anthropogenic sources (UNEP and CCAC, 2021). Developing countries contribute about 70% 

of livestock anthropogenic CH4 emissions globally of which 25% originates from Latin 

America and Caribbean (LAC) herds (UNEP and CCAC, 2021). The short lifetime of CH4 in 

the atmosphere, and its fast response to emission reduction, denotes that efforts to curb CH4 

emissions will have a prompt global warming mitigation effect (Saunois et al., 2020). 

Therefore, reducing anthropogenic CH4 emissions in LAC countries, especially those from 
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enteric fermentation, may have an important role in the global endeavors to restrain 

temperature rise to 1.5-2.0 °C (Congio et al., 2021; Arndt et al., 2022).  

Prediction equations have been widely developed in lieu of expensive and laborious 

animal CH4 measurement approaches (Hristov et al., 2018). Previous studies, based mainly 

on data from developed countries, already indicated that diet- or region-specific models are 

more accurate than universal equations to predict CH4 emission, which seem to be related in 

particular to differences in animal diets (Niu et al., 2018; Benaouda et al., 2019). When 

accurate, these equations would be convenient to estimate CH4 emissions under a range of 

conditions, and next to optimize the allocation of resources for research programs on enteric 

CH4, which is particularly important for LAC developing countries (Congio et al., 2022a). 

Further, on-farm CH4 emissions need to be estimated accurately so that mitigation of enteric 

CH4 through better management practices is accounted for (Niu et al., 2018). Lastly, more 

accurate equations could aid LAC to improve the accuracy of their CH4 inventories.   

In 2018, beef cattle emitted 449 Mton of carbon dioxide equivalents due to ruminal 

CH4 fermentation in the LAC region, or 39.5% of beef cattle emissions globally (FAOSTAT, 

2020). Recent studies already developed CH4 prediction models from ruminants in the LAC 

region. However, they were either focused only on dairy cattle (Congio et al., 2022a) and 

sheep (Congio et al., 2022b), or they used a limited database (Benaouda et al., 2020). The 

development of models specifically for beef cattle is still necessary due to specifics regarding 

livestock production systems (e.g., type and breed of animals) and diets (e.g., sources and 

levels of forage inclusion). Therefore, the objectives of the present study were to: (1) compile 

a comprehensive LAC dataset for individual beef cattle data; (2) determine main predictors of 

CH4 emission variables; (3) develop and cross-validate prediction models according to 

different dietary inclusion levels of forage (i.e., the dietary forage content; DFC); and (4) 

compare the predictive ability of these newly-developed models with extant equations, 
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including those currently used in CH4 inventories in LAC countries (IPCC 1997, 2006).  

2. Material and methods  

2.1.  Dataset and data handling  

The ‘Latin America Methane Project’ (LAMP) is a research initiative involving animal 

scientists from LAC countries studying in vivo CH4 emission in ruminants and previous work 

was published by Congio et al. (2021, 2022a, 2022b). A comprehensive beef cattle dataset 

was compiled in LAMP which comprised 2194 individual beef cattle records from 67 studies 

(being 35 published and 32 unpublished). Studies performed from 2011 to 2021 by scientists 

from five LAC countries [Brazil, n = 1656 (records) from 39 (studies); Mexico, n = 209 from 

11; Argentina, n = 178 from 7; Colombia, n = 127 from 9; Peru, n = 24 from 1]. The database 

included CH4 emission (g d
−1

) records along with corresponding dry matter intake (DMI; kg 

DM d
-1

), body weight (BW; kg), average daily gain (ADG; kg d
−1

), dietary forage content 

(DFC; % DM), crude protein (CP; % DM), ether extract (EE; % DM), neutral-detergent fiber 

(NDF; % DM), ash (% DM), and gross energy (GE; MJ kg
−1

 DM) concentration. Where not 

available, dietary variables were calculated as follows. Dietary GE (n = 255) according to 

Weiss and Tebbe (2019): {GE = [(CP (% DM) × 0.056) + (EE (% DM) × 0.094)] + [(100 - 

CP - EE - ash (% DM)) × 0.042] × 4.184}. Publications from the LAC region were used to 

derive dietary NDF (n = 7) and EE (n = 369). Methane yield [CH4 yield (g kg
−1

 DMI) = CH4 

emission (g d
−1

) ÷ DMI (kg DM d
−1

)], gross energy intake [GEI (MJ d
−1

) = DMI (kg DM d
−1

) 

× dietary GE (MJ kg
−1 

DM) ),CH4 conversion factor (Ym) [Ym (%) = CH4 emission (g d
−1

) × 

0.05565 ÷ GEI (MJ d
−1

) × 100)], and feeding level (FL) [FL (%) = DMI (kg DM d
−1

) ÷ BW 

(kg) × 100], were computed for all observations. 

Animal observations lacking CH4 emission or DMI data were excluded from the dataset 

(n = 359). Studies in which CH4 emission was negatively correlated with DMI were also 

excluded (12 studies totaling 376 individual animal records) following discussion in a review 
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by Hristov et al. (2018). Additionally, records from treatments including anti-methanogenic 

additives or feed ingredients (e.g., nitrate, tannins, lipid supplementation) were excluded (n = 

163) (Niu et al., 2018). Next, the identification of outliers was performed using the 

interquartile range approach (Zwillinger and Kokoska, 2000) considering a factor of 1.5 for 

extremes (van Lingen et al., 2019). It was performed based on all animal variables (Congio et 

al., 2022a). As a result, 1100 beef cattle observations from 55 studies were kept in the final 

dataset (~ 50% of the original dataset). This exclusion rate resembles that applied in previous 

meta-analyses for globally or regionally assembled databases where eventually also about 

50% of the original records were retained (van Lingen et al., 2019; Congio et al., 2022b). The 

complete list of references of the refined dataset used in the current analysis is included in 

Supplementary Material. 

2.2. Model development  

Mixed-effects models were fitted using the lme4 procedure (Bates et al., 2015) of R 

statistical package (R Core Team 2020; version 4.0.2) according to:  

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑋𝑖𝑗1 + 𝛽2𝑋𝑖𝑗2 +  … + 𝛽𝑘𝑋𝑖𝑗𝑘  + 𝑆𝑖 + 𝜀𝑖𝑗  

where 𝑌𝑖𝑗 denotes the 𝑗𝑡ℎ response variable of CH4 emission (g d
−1

) or CH4 yield (g kg
−1 

DMI) from the 𝑖𝑡ℎ study; 𝛽0 denotes the fixed effect of intercept; 𝑋𝑖𝑗1 to 𝑋𝑖𝑗𝑘 denote the fixed 

effects of predictor variables and 𝛽1 to 𝛽𝑘 are the corresponding slopes; 𝑆𝑖 and 𝜀𝑖𝑗 are the 

random effect of study and residual error, respectively.  

Models were developed following a sequential approach with predictor variables being 

incrementally added (van Lingen et al., 2019). Simple CH4 emission models were based on 

DMI, GEI, or ADG. Then, multiple regression models assessed combinations of the above 

variables with NDF, EE, or CP separately. Finally, models were tested with a selection of 

dietary variables, a selection of DMI or GEI together with dietary variables, and a selection 

of all available variables, as well as a selection of all available variables except DMI or GEI 
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(Congio et al., 2022a). Methane yield models were developed considering ADG, FL, BW, 

GE, CP, EE, and NDF individually. Then, multiple CH4 yield models were evaluated using a 

selection of dietary variables, and a selection of all available variables except DMI or GEI (as 

CH4 yield is mathematically dependent on the latter variables). The backward multistep 

selection approach was used to select the most important variables to predict CH4 emission 

and yield as described previously by van Lingen et al. (2019) and Congio et al. (2022a). The 

Bayesian information criterion was calculated for all fitted models, and those with the 

smallest values were chosen (James et al., 2014). The multi-collinearity among covariates in 

multiple regression models was verified considering the variance inflation factor (Zuur et al., 

2010), and models were chosen when all covariates had a variance inflation factor lower than 

3 (van Lingen et al., 2019). 

2.3. Evaluation of developed models and extant equations 

A leave-one-out cross-validation was performed to evaluate the predictive ability of 

fitted prediction models at different levels (James et al., 2014). Studies were sequentially 

taken as the testing set for model evaluation, whereas those remained were considered as the 

training set for model fitting (van Lingen et al., 2019). Also, thirteen extant equations, 

including those from IPCC (1997, 2006) were evaluated (but not cross-validated). The most 

accurate equations from Ellis et al. (2007, 2009), Yan et al. (2009), Hristov et al. (2013), 

Ramin and Huhtanen (2013), Moraes et al. (2014), Charmley et al. (2016), Patra (2017), van 

Lingen et al. (2019), Benaouda et al. (2020), and Ribeiro et al. (2020) were selected to be 

evaluated considering the availability of predictor variables in the present dataset (equations 

are detailed in Table S4). To ensure independent evaluation, studies used to develop the 

extant equations that overlapped the current dataset were not included in the evaluations of 

those extant equations corresponding to the method adopted by van Lingen et al. (2019) and 

Congio et al. (2022a). Next to the use of the complete dataset, the dataset was split into 
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subsets according to DFC delivering subsets for data obtained with all-forage (DFC = 100%), 

high-forage (94% ≥ DFC ≥ 54%), and low-forage (50% ≥ DFC) diets, in order to derive 

separate prediction models for these subsets. These boundaries were defined to accommodate 

the wide range of beef cattle production systems from LAC region. A large proportion of beef 

cattle are raised in grazing systems with no supplement (i.e., all-forage subset). The high-

forage subset accommodates grazing animals receiving some level of concentrate and 

confined animals fed higher-forage diets, whereas the low-forage subset represents those are 

confined and fed higher levels of concentrate.    

The all-forage subset comprised of mostly Angus (56%), Nellore (16%), and Brahman 

(10%) breeds. On the other hand, Nellore (35%), crosses including Zebu cattle (32%), 

Holstein (7%), Canchim (7%), Gyr (7%), Brahman (5%), and Brangus (5%) majorly 

composed the high-forage subset. Cattle fed low-forage diets were predominantly Nellore 

(72%), Holstein × Charolais (7%), Canchim (7%), Holstein × Zebu (7%). The main forage 

types for the all-forage subset were Avena spp. (33%), Megathyrsus maximus (32%), 

Cynodon spp. (9%), Urochloa spp. (9%), and Pennisetum spp. (6%), whereas corn silage 

(47%), Urochloa spp. (24%), and M. maximus (16%) were mostly represented in the high-

forage subset. Corn silage (55%), fresh-cut sugar cane (16%), and Urochloa spp. (15%) were 

the main forages for the low-forage subset. Respiration chambers, GreenFeed
TM 

(C-Lock Inc., 

Rapid City, SD), and the tracer gas sulfur hexafluoride (SF6) were used as CH4 measurement 

techniques representing 8, 0 and 83%, 41, 10 and 44%, and 16, 41, and 44% of the data in the 

all-forage, high-forage and low-forage subsets, respectively. Further, DMI was mostly 

estimated using markers (81%) in the all-forage subset, whereas for the high-forage (80%) 

and low-forage (100%) subsets, the gravimetric technique was predominant. 

Model performance was evaluated using a combination of statistic metrics including 

mean square prediction error (MSPE; Bibby and Toutenburg, 1977), mean bias (MB), slope 
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bias (SB), root MSPE (RMSPE), ratio between RMSPE and standard deviation of observed 

values (RSR; Moriasi et al., 2007), and concordance correlation coefficient (CCC; Lin, 

1989). In the present analysis, we considered unsuitable models with RSR ≥ 1.00 (van Lingen 

et al., 2019). Equations used to calculate all above metrics are detailed in Supplementary 

Material.    

3. Results and discussion 

Several models to predict enteric CH4 emissions from beef cattle have been published 

already (e.g., Ellis et al., 2009; Charmley et al., 2016; van Lingen et al., 2019). However, 

these models were developed from small datasets, some used published treatment means data 

(vs. individual animal observations in the current study), and/or based on a restricted 

geographic region, which did not comprise data from LAC [e.g., Ellis et al. (2007, 2009); 

Yan et al. (2009); Moraes et al. (2014); Charmley et al. (2016)]. Some studies included LAC 

data, but they either used limited databases (Benaouda et al., 2020) or included few data from 

LAC region (Escobar-Bahamondes et al., 2017). The ‘Global Network’ studies by Benaouda 

et al. (2019) and van Lingen et al. (2019) reported that regional equations are more accurate 

to predict CH4 emissions, and that data from important beef-producing regions were 

essentially lacking. The current study is based on the largest database of individual animal 

data for beef cattle from the LAC region specifically including CH4 measurements, and it 

therefore represents the greatest endeavour to date to establish accurate models for predicting 

CH4 in beef cattle for this region. 

3.1. Dataset 

Summary variable statistics for the complete dataset, and the all-forage, high-forage, 

and low-forage subsets are shown in Table 1. The complete dataset mainly constituted data 

for high-forage (47%) rather than all-forage (29.5%) and low-forage (23.5%) diets. The high- 

and low-forage subsets were composed only by data for growing cattle (100%), whereas all-
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forage also included a small proportion of data for lactating beef cows (4%). Feed intake and 

BW increased as the dietary forage content of subsets decreased.   

Table 1 

Methane emission ranged from 38.2 from 364 g d
−1

 in the current study, whereas 

Escobar-Bahamondes et al. (2017) and van Lingen et al. (2019) reported mean values ranging 

from 37.0 to 372 g d
−1 

and from 37.4 to 322 g d
−1

. Methane yield ranged from 19.3 (low-

forage) to 27.3 (all-forage) g kg
−1 

DMI, whereas the Ym varied from 5.97 (low-forage) to 

8.79% (all-forage) in the current study. van Lingen et al. (2019) and Escobar-Bahamondes et 

al. (2017), both using data predominantly from the EU and North America, reported CH4 

yield and Ym ranging from 20.0 to 22.1 g kg
−1 

DMI, and from 6.0 to 6.3%, respectively. 

Further, Benaouda et al. (2020), using a smaller dataset from LAC, reported mean values of 

CH4 yield and Ym of 20.3 g kg
−1 

DMI
 
and 6.2%, respectively.  

3.2. Methane emission 

Developed CH4 emission equations and metrics of model performance are shown in 

Table 2. Average daily gain (Eqs. 1, 8, and 10), DMI (Eqs. 2 and 3), GEI (Eqs. 4, 5, 9, and 

11), and dietary GE content (Eq. 11) had a positive relationship with CH4 emission, whereas 

FL (Eq. 11) and dietary contents of EE (Eqs. 3, 5, and 11) and CP (Eqs. 9, 10, and 11) had a 

negative relationship. A negative relationship between CH4 emission and dietary EE 

concentration is in line with studies by Moraes et al. (2014) and Escobar-Bahamondes et al. 

(2017). Increased dietary lipid supplies non-fermentable energy to the rumen, whereas 

suppresses archaeal activity, and may cause a shift in the rumen fermentation profile as well 

decrease NDF digestibility at higher inclusion levels (Hristov et al., 2013). Finally, dietary 

CP being negatively related with CH4 emission agrees with Blaxter et al. (1971), which 

showed a decrease in CH4 emission when diet CP increases. 

Feed intake variables were the main predictors of CH4 emission in line with previous 
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meta-analyses for beef cattle (van Lingen et al., 2019), dairy cattle (Niu et al., 2018), sheep 

(Congio et al., 2022b), and goats (Patra and Lalhriatpuii, 2016). In the present meta-analysis, 

DMI was significantly and positively related to CH4 emission with slopes varying from 19.2 

to 19.6 g CH4 kg
−1

 DMI. This demonstrates that the greater the availability of substrate in the 

rumen, the greater the rate of formation CH4 to be expected (Congio et al., 2022a). 

Furthermore, feed intake is a key covariate predicting CH4 emissions because it is the 

consequence of certain dietary characteristics and animal nutritional requirements, both 

affecting the fermentative and digestive process (Charmley et al., 2016). Models based 

exclusively on feed chemical composition parameters did not perform well for the complete 

dataset as well as all subsets (results not shown), which is in line with Niu et al. (2018), 

reasserting also the key importance of DMI in determining CH4 emission (Congio et al., 

2022a).  

Average daily gain (ADG) was positively related with CH4 emission that agrees with 

previous results from Benaouda et al. (2020). This is probably due to the general positive 

relationship between feed intake and animal production variables (Hristov et al., 2005). Also, 

BW and CH4 emission were positively corresponding to results of Moraes et al. (2014) and 

Benaouda et al. (2020). This is due to the proportionality between rumen volume and BW 

(Demment and Van Soest, 1985) as well as DMI. Heavier ruminants with higher 

requirements for maintenance energy are prone to consume extra feed and emit more CH4 

(Hristov et al., 2013).  

Models including DMI, GEI, or ADG and dietary parameters (results not shown) were 

not more accurate than the one-variable models in the complete dataset and the high-forage 

subset. Nonetheless, the addition of EE (Eqs. 3 and 5) and CP (Eqs. 9 and 10) improved the 

model precision compared to those simple regressions in the all-forage and low-forage 

subsets, respectively. Models that included only dietary parameters were the least accurate 
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considering developed models in all subsets (results not shown). 

Table 2 

The ADG simple regression model (Eq. 1) was unique with a RSR < 1.00 (Table 2 and 

Fig. 1) in the complete dataset. For all-forage diets, the GEI model (Eq. 4) was slightly more 

accurate than the DMI model (Eq. 2), presenting smaller RSR (0.92 vs. 0.93) and RMSPE 

(31.8 vs. 32.2%), but both had low precision (MB ~ 15.0%). Inclusion of dietary EE content 

(Eqs. 3 and 5) improved the precision of these simple regression models (Table 2 and Fig. 2). 

The MB of those simple regressions including DMI (Eq. 2) or GEI (Eq. 4) averaged 15.92%, 

whereas the correction for dietary EE decreased the MB to an average of 6.97% (Eqs. 3 and 

5). Both multiple regression models that allowed all variables (Eq. 6) and all variables except 

DMI (Eq. 7) for selection had the smallest RSR and RMSPE (Table 2), and included FL as 

well. 

Figs. 1 and 2 

Similar to the complete dataset, the ADG simple regression (Eq. 8) was the unique 

model that had RSR < 1.00 in the high-forage subset; however, it had low accuracy (SB = 

11.67%) (Table 2 and Fig. 3). There were no simple regression models with RSR < 1.00 

(results not shown) in the low-forage subset. Models including dietary CP content with GEI 

(Eq. 9) or ADG (Eq. 10) were associated with low RMSPE and good precision. The multiple 

regression model 11 selected GEI, FL, and dietary contents of GE, CP, and EE and had the 

best predictive accuracy (RMSPE = 18.9%) with negligible bias (MB = 0.13% and SB = 

1.79%) (Table 2 and Fig. 4). 

Figs. 3 and 4 

Increasing complexity improved the predictive performance of CH4 emission models 

only for the all-forage and low-forage subsets, but not for complete dataset and the high-

forage subset. Usually, including dietary variables to feed intake simple models results in 
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more accurate models (Niu et al., 2018; Congio et al., 2022b). However, Ribeiro et al. (2020) 

and Congio et al. (2022a) also did not report more accurate equations comprising dietary 

variables using datasets containing LAC studies. The authors attributed those outcomes to a 

low variability of diets in terms of ingredients and nutrient contents (Ribeiro et al., 2020). 

Besides prediction potential, models with greater complexity might only be feasible in 

intensive beef cattle production systems. Extensive pasture-based systems are more common 

in LAC, however, and therefore simpler models based on easily available on-farm variables, 

such as ADG, probably are more practical to apply as discussed before by Congio et al. 

(2022a). 

3.2.1. Performance of extant prediction equations 

Prediction performances of extant equations using the complete dataset, and the all-

forage, high-forage, and low-forage subsets are presented in Table 3. In the complete subset, 

the equation from van Lingen et al. (2019), including corrections for dietary forage content 

and BW, was ranked first with a RMSPE of 29.4%, good precision (MB = 0.02%), and 

reasonable accuracy (SB = 4.46%) (Table 3 and Fig. 1). This model was originally developed 

from a comprehensive global dataset. All remaining extant equations evaluated using the 

complete dataset had RSR > 1.00 (Table S1 and Fig. S1, Supplementary Material). In the all-

forage subset, the equation from Ramin and Huhtanen (2013) was the best-performing (Table 

3 and Fig. 2). The second-ranked equation was that of van Lingen et al. (2019), but it had low 

precision (MB = 12.18%). The linear equation by Yan et al. (2009) was ranked third but had 

low accuracy (SB = 20.0%). The equation from Ribeiro et al. (2020) was the ranked fourth, 

but it presented a large MB of 31.7% (Table 3 and Fig. S2). All remaining extant equations 

were not suitable to predict CH4 emission considering the all-forage subset including the 

IPCC (1997, 2006) Tier 2 equations (Table S2 and Fig. S2). The equation from Ellis et al. 

(2009) was the most accurate among extant equations for the high-forage subset (Table 3 and 
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Fig. 3). The equation from Benaouda et al. (2020) that included both DMI and NDF, was 

ranked second by RSR, but it had a large MB of 25.7%. The equation by van Lingen et al. 

(2019) also had RSR < 1.00 but also had larger systematic biases (MB = 12.54% and SB = 

12.63%) (Table 3 and Fig. S3). All remaining extant equations evaluated using the high-

forage subset had RSR > 1.00 (Table S3 and Fig. S3). No extant equations were suitable for 

predicting CH4 emission in the low-forage subset with RSR > 1.00 (Table S4 and Fig. S4). 

Table 3 

3.2.2. Comparison against extant prediction equations  

Compared to the best extant equations, the most accurate CH4 emission models derived 

in the present study had a comparable accuracy with the all-forage subset, were outperformed 

with the high-forage, and outperformed with the low-forage subset. The equation from van 

Lingen et al. (2019) performed better than our ADG simple model (Eq. 1) for the complete 

dataset. For all-forage diets, the developed model 7 including both BW and FL had similar 

overall performance compared with those from Ramin and Huhtanen (2013) and van Lingen 

et al. (2019). The equation by Ellis et al. (2009) was the first-ranked extant equation and it 

outperformed our ADG model (Eq. 8) in the high-forage subset. Considering the low-forage 

subset, all extant equations were outperformed by models developed in the current analysis 

(Eqs. 9-11). Tier 2 equations from IPCC (1997, 2006) appeared unsuitable for predicting CH4 

emission from beef cattle in the LAC region (Tables S1-S4). They had RSR > 1.00 and were 

outperformed by the models developed in the present study for all subsets, highlighting an 

opportunity to improve CH4 inventories from LAC countries. Considering the fact that feed 

intake is barely obtainable in LAC beef ranches, the ADG simple or multiple regression 

models (Eqs. 1, 8, and 10) are good alternatives to predict CH4 emission from beef cattle 

under different dietary regimes with respect to forage inclusion level. 

3.3. Methane yield 
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Table 4 shows CH4 yield equations and model performance metrics. Increasing model 

complexity did not result in more accurate models for the complete dataset and high-forage 

subset. The FL simple models (Eqs. 12 and 14) were best predicting CH4 yield. There were 

no simple regression models with RSR < 1.00 for the all-forage and low-forage subsets. The 

multiple regression model including both FL and dietary EE (Eq. 13) was the most accurate 

for the all-forage forage subset, whereas for the low-forage subset Eq. 15, which included 

dietary contents of GE, CP, and EE along with FL, showed the best predictive performance. 

From the extant equations for prediction of CH4 yield, that of van Lingen et al. (2019) had a 

RSR < 1.00 for only the complete dataset and the low-forage subset with a high and low 

RMSPE of 34.4 and 21.9%, respectively (Table 5 and Fig. S5).  

Tables 4 and 5 

Similar to the results for CH4 emission, the accuracy of newly-developed CH4 yield 

models increased with model complexity for the all-forage and low-forage subsets, but not 

for the complete dataset and the high-forage subset. Most CH4 modeling analyses have been 

focused on CH4 emission rather than CH4 yield (Congio et al., 2022a, 2022b). Our results 

indicate however that CH4 yield of beef cattle fed typical LAC diets can also be predicted 

reasonably well using FL as predictor (Eqs. 12 and 14), combining it with dietary EE (Eq. 

13), or with dietary GE, CP, and EE (Eq. 15). The newly-developed models in the present 

study outperformed the extant equation of van Lingen et al. (2019) for the all-forage, high-

forage, and low-forage subsets. 

3.4. Research implications 

Research on CH4 emissions from ruminants is relatively novel in the LAC region as 

reviewed by Congio et al. (2021). The dataset used in the present study reflected diets 

typically used for feeding beef cattle in LAC production systems but adding further research 

could improve accuracy of the current models. A more complete dietary nutrient 
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characterization in future research would eliminate the necessity to adopt table values from 

the literature to fill missing variables in dataset (Congio et al., 2022a).  

Recently, meta-analysis studies also reported more accurate CH4 prediction models 

when using digestibility variables as predictors (Benaouda et al., 2019, 2020; Ribeiro et al., 

2020). We could not explore this kind of model in our study due to the absence of such data. 

Moreover, this poses a limitation to the applicability of such models in assisting CH4 

inventories in LAC countries is limited because such observations are very scarce in livestock 

operations. For these reasons the newly-derived models in the present study may be more 

useful and feasible options to follow. 

Ideally, the comparison of developed models and extant equations in this kind of meta-

analysis should be based on equal number of observations. However, in the present study, the 

use of ADG as predictor variable, that was included in only 75% of observations, as well as 

the evaluation of some equations, which presented overlapping of studies with our dataset, 

did not allow this ideal comparison scenario. As previously mentioned, these overlapped 

studies were removed from the evaluation of those extant equations in order to ensure 

independent evaluation. Moreover, we imagined that would be valuable to explore models 

including ADG because it is readily available on-farm. In cases of unequal amount of 

observations to compare model performances, the RSR is the most recommended statistic 

metric because it considers the data variability. This same approach was adopted by ‘Global 

Network’ studies by Benaouda et al. (2019) and van Lingen et al. (2019) in an attempt to 

maximize the number of observations to evaluate each model.   

4. Conclusions 

The current study is based on the largest dataset of individual animal data including 

CH4 measurements for beef cattle from the LAC region, and thus represents the greatest 

endeavour to date to establish accurate models for predicting CH4 emissions for beef cattle in 
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this region. Feed intake and ADG were the main predictors of CH4 emission, whereas this 

was FL for CH4 yield. Our most accurate CH4 emission models outperformed IPCC Tier 2 

equations (1997, 2006), whereas the CH4 yield models outperformed extant equations, for all 

subsets. Simple and multiple regression models including ADG were accurate and probably a 

more feasible option to predict CH4 emission when feed intake data are not available. 

Different individual extant equations were evaluated to be good options as well to predict 

CH4 emission from beef cattle for the complete dataset, and the all-forage and high-forage 

subsets, but not for low-forage subset. The current developed models can replace IPCC Tier 2 

equations thus allowing LAC countries to estimate CH4 more accurately in their inventories. 

Ethical approval 

Not applicable. 

Funding 

The ‘Latin America Methane Project’ (LAMP) was funded by the New Zealand 

Government through AgResearch/New Zealand Agricultural Greenhouse Gas Research 

Centre (NZAGRC; grant S7-SOW21-Feed/Methane). The LAMP was a flagship in the ‘Feed 

and Nutrition Network’ of the ‘Livestock Research Group’ within the ‘Global Research 

Alliance for Agricultural Greenhouse Gases’. The funder had no role in study design, data 

collection, decision to publish, or preparation of the manuscript. The funding sources that 

allowed the collaborators to carry out their projects are described in the Supplementary 

Material. 

References 

Arndt, C., Hristov, A.N., Price, W.J., McClelland, S.C., Pelaez, A.M., Cueva, S.F., Oh, J., 

Dijkstra, J., Bannink, A., Bayat, A.R., Crompton, L.A., Eug`ene, M.A., Enahoro, D., 

Kebreab, E., Kreuzer, M., McGee, M., Martin, C., Newbold, C.J., Reynolds, C.K., 

Schwarm, A., Shingfield, K.J., Veneman, J.B., Y´a˜nez-Ruiz, D.R., Yu, Z., 2022. Full 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



adoption of the most effective strategies to mitigate methane emissions by ruminants can 

help meet the 1.5◦C target by 2030 but not 2050. Proc. Natl. Acad. Sci. U. S. A. 119 (20), 

e2111294119. https://doi.org/10.1073/pnas.2111294119  

Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models 

using lme4. J. Stat. Softw. 67, 1–51. https://dx.doi.org/10.18637/jss.v067.i01  

Benaouda, M., González-Ronquillo, M., Appuhamy, J., Kebreab, E., Molina, L.T., Herrera-

Camacho, J., Ku-Vera, J.C., Ángeles-Hernández, J.C., Castelán-Ortega, O., 2020. 

Development of mathematical models to predict enteric methane emission by cattle in 

Latin America. Livest. Sci. 241, 104177. https://doi.org/10.1016/j.livsci.2020.104177 

Benaouda, M., Martin, C., Li, X., Kebreab, E., Hristov, A.N., Yu, Z., Yáñez-Ruiz, D.R., 

Reynolds, C.K., Crompton, L.A., Dijkstra, J., Bannink, A., Schwarm, A., Kreuzer, M., 

McGee, M., Lund, P., Hellwing, A.L.F., Weisbjerg, M.R., Moate, P.J., Bayat, A.R., 

Shingfield, K.J., Peiren, N., Eugène, M., 2019. Evaluation of the performance of existing 

mathematical models predicting enteric methane emissions from ruminants: animal 

categories and dietary mitigation strategies. Anim. Feed Sci. Technol., 114207. 

https://doi.org/10.1016/J.ANIFEEDSCI.2019.114207 

Bibby, J., Toutenburg, T., 1977. Prediction and Improved Estimation in Linear Models. John 

785 Wiley Sons, Chichester. 

Blaxter, K.L., Wainman, F.W., Dewey, P.J.S., Davidson, J., Denerley, H., Gunn, J.B., 1971. 

The effects of nitrogenous fertilizer on the nutritive value of artificially dried grass. J. 

Agric. Sci. 76, 307–319. https://doi.org/10.1017/S0021859600025685 

Charmley, E., Williams, S.R.O., Moate, P.J., Hegarty, R.S., Herd, R.M., Oddy, V.H., 

Reyenga, P., Staunton, K.M., Anderson, A., Hannah, M.C., 2016. A universal equation to 

predict methane production of forage-fed cattle in Australia. Anim. Prod. Sci. 56, 169–

180. https://doi.org/10.1071/AN1536 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Congio, G.F.S., Bannink, A., Mayorga, O.L., Rodrigues, J.P.P., Bougouin, A., Kebreab, E., 

Silva, R.R., Maurício, R.M., da Silva, S.C., Oliveira, P.P.A., Muñoz, C., Pereira, L.G.R., 

Gómez, C., Ariza-Nieto, C., Ribeiro-Filho, H.M.N., Castelán-Ortega, O.A., Rosero-

Noguera, J.R., Tieri, M.P., Rodrigues, P.H.M., Marcondes, M.I., Astigarraga, L., Abarca, 

S., Hristov, A.N., 2022a. Prediction of enteric methane production and yield in dairy cattle 

using a Latin America and Caribbean database. Sci. Total Environ. 825, 153982. 

https://doi.org/10.1016/j.scitotenv.2022.153982  

Congio, G.F.S., Bannink, A., Mayorga, O.L., Rodrigues, J.P.P., Bougouin, A., Kebreab, E., 

Carvalho, P.C.F., Abdalla, A.L., Monteiro, A.L.G., Ku-Vera, J.C., Gere, J.I., Gómez, C., 

Hristov, A.N., 2022b. Prediction of enteric methane production and yield in sheep using a 

Latin America and Caribbean database. Livest. Sci. 264, 105036. 

https://doi.org/10.1016/j.livsci.2022.105036   

Congio, G.F.S., Bannink, A., Mayorga-Mogollón, O.L., Latin America Methane Project 

Collaborators, Hristov, A.N., 2021. Enteric methane mitigation strategies for ruminant 

livestock systems in the Latin America and Caribbean region: A meta-analysis. J. Clean. 

Prod. 312, 127693. https://doi.org/10.1016/j.jclepro.2021.127693 

Demment, M.W., Van Soest, P.J., 1985. A nutritional explanation for body-size patterns of 

ruminant and non-ruminant herbivores. Am. Nat. 125, 641–672. 

https://doi.org/10.1086/284369 

Ellis, J.L., Kebreab, E., Odongo, N.E., Beauchemin, K.A., McGinn, S., Nkrumah, J.D., 

Moore, S.S., Christopherson, R., Murdoch, G.K., McBride, B.W., Okine, E.K., France, J., 

2009. Modeling methane production from beef cattle using linear and nonlinear 

approaches. J. Anim. Sci. 87, 1334–1345. https://doi.org/10.2527/jas.2007-0725  

Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K., France, J., 2007. 

Prediction of methane production from dairy and beef cattle. J. Dairy Sci. 90, 3456–3467. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



https://doi.org/10.3168/jds.2006-675  

Escobar-Bahamondes, P., Oba, M., Beauchemin, K.A., 2017. Universally applicable methane 

prediction equations for beef cattle fed high- or low-forage diets. Can. J. Anim. Sci. 97, 

83–94. https://doi.org/10.1139/cjas-2016-0042 

FAOSTAT, 2020. ‘FAO statistical database.’ (Food and Agricultural Organization of the 

United Nations: Rome). https://www.fao.org/faostat/en/#data (accessed on 20 Sep 2021) 

Hristov, A.N., Kebreab, E., Niu, M., Oh, J., Bannink, A., Bayat, A.R., Boland, T., Brito, A.F., 

Casper, D., Crompton, L.A., Dijkstra, J., Eugène, M.A., Garnsworthy, Ph.C., Haque, 

M.N., Hellwing, A.L.F., Huhtanen, P., Kreuzer, M., Kuhla, B., Lund, P., Madsen, J., 

Martin, C., Moate, P.J., Muetzel, S., Muñoz, C., Peiren, N., Powell, J.M., Reynolds, C.K., 

Schwarm, A., Shingfield, K.J., Storlien, T.M., Weisbjerg, M.R., Yáñez-Ruiz, D.R., Yu, Z., 

2018. Symposium review: Uncertainties in enteric methane inventories, measurement 

techniques, and prediction models. J. Dairy Sci. 101, 6655–6674. 

https://doi.org/10.3168/jds.2017-13536 

Hristov, A.N., Oh, J., Firkins, J., Dijkstra, J., Kebreab, E., Waghorn, G., Makker, M.P.S., 

Adesogan, A.T., Yang, W., Lee, C., Gerber, P.J., Henderson, B., Tricarico, J.M., 2013. 

SPECIAL TOPICS - Mitigation of methane and nitrous oxide emissions from animal 

operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 91, 5045–

5069. https://doi.org/10.2527/jas.2013-6583 

Hristov, A.N., Price, W.J., Shafii, B., 2005. A meta-analysis on the relationship between 

intake of nutrients and body weight with milk volume and milk protein yield in dairy 

cows. J. Dairy Sci. 88, 2860–2869. https://doi.org/10.3168/jds.S0022-0302(05)72967-2  

IPCC, 1997. Revised 1996 IPCC guidelines for national greenhouse gas inventories. 

Bracknell, UK: Intergovernmental Panel on Climate Change, IPCC/OECD/IEA. 

https://www.ipcc-nggip.iges.or.jp/public/gl/invs1.html (accessed on 20 Sep 2021)  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



IPCC, 2006. 2006 IPCC guidelines for national greenhouse gas inventories. IGES, 

Kanagawa, Japan: Intergovernmental Panel on Climate Change. https://www.ipcc-

nggip.iges.or.jp/public/2006gl/ (accessed on 20 Sep 2021) 

James, G., Witten, D., Hastie, T., Tibshirani, R., 2014. An Introduction to Statistical 

Learning: With Applications in R. Springer New York, US. 

Lin, L.I., 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics 

45, 255–268. https://doi.org/10.2307/2532051  

Moraes, L.E., Strathe, A.B., Fadel, J.G., Casper, D.P., Kebreab, E., 2014. Prediction of 

enteric methane emissions from cattle. Glob. Change Biol. 20, 2140–2148. 

https://doi.org/10.1111/gcb.12471 

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L., 

2007. Model evaluation guidelines for systematic quantification of accuracy in watershed 

simulations. T. ASABE 50, 885–900. https://doi.org/10.13031/2013.23153  

Niu, M., Kebreab, E., Hristov, A.N., Oh, J., Arndt, C., Bannink, A., Bayat, A.R., Brito, A.F., 

Boland, T., Casper, D., Crompton, L.A., Dijkstra, J., Eugène, M.A., Garnsworthy, P.C., 

Haque, M.N., Hellwing, A.L.F., Huhtanen, P., Kreuzer, M., Kuhla, B., Lund, P., Madsen, 

J., Martin, C., McClelland, S.C., McGee, M., Moate, P.J., Muetzel, S., Muñoz, C., 

O’Kiely, P., Peiren, N., Reynolds, C.K., Schwarm, A., Shingfield, K.J., Storlien, T.M., 

Weisbjerg, M.R., Yáñez-Ruiz, D.R., Yu, Z., 2018. Prediction of enteric methane 

production, yield, and intensity in dairy cattle using an intercontinental database. Glob. 

Change Biol. 24, 3368–3389. https://doi.org/10.1111/gcb.14094 

Patra, A.K., 2017. Prediction of enteric methane emission from cattle using linear and non-

linear statistical models in tropical production systems. Mitig. Adapt. Strateg. Glob. 

Change 22, 629–650. https://doi.org/10.1007/s11027-015-9691-7 

Patra, A.K., Lalhriatpuii, M., 2016. Development of statistical models for prediction of 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



enteric methane emission from goats using nutrient composition and intake variables. 

Agric. Ecosyst. Environ. 215, 89–99. https://doi.org/10.1016/j.agee.2015.09.018 

R Core Team, 2020. R: A language and environment for statistical computing. R Foundation 

for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (accessed on 20 

Sep 2021) 

Ramin, M., Huhtanen, P., 2013. Development of equations for predicting methane emissions 

from ruminants. J. Dairy Sci. 96, 2476–2493. https://dx.doi.org/10.3168/jds.2012-6095 

Ribeiro, R.S., Rodrigues, J.P.P., Mauricio, R.M., Borges, A.L.C.C., Berchielli, T.T., 

Valadares-Filho, S.C., Machado, F.S., Campos, M.M., Tomich, T.R., Pereira, L.G.R., 

2020. Predicting enteric methane production from cattle in the tropics. Animal 14, s438–

s452. https://doi.org/10.1017/S1751731120001743 

Saunois, M., Stavert, A.R., Poulter, B., Bousquet, P., Canadell, J.G., Jackson, R.B., 

Raymond, P.A., Dlugokencky, E.J., Houweling, S., Patra, P.K., Ciais, P., Arora, V.K., 

Bastviken, D., Bergamaschi, P., Blake, D.R., Brailsford, G., Bruhwiler, L., Carlson, K.M., 

Carrol, M., Castaldi, S., Chandra, N., Crevoisier, C., Crill, P.M., Covey, K., Curry, C.L., 

Etiope, G., Frankenberg, C., Gedney, N., Hegglin, M.I., Höglund-Isaksson, L., Hugelius, 

G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., Jensen, K.M., Joos, F., Kleinen, T., 

Krummel, P.B., Langenfelds, R.L., Laruelle, G.G., Liu, L., Machida, T., Maksyutov, S., 

McDonald, K. C., McNorton, J., Miller, P. A., Melton, J. R., Morino, I., Müller, J., 

Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O’Doherty, S., Parker, R.J., Peng, C., 

Peng, S., Peters, G.P., Prigent, C., Prinn, R., Ramonet, M., Regnier, P., Riley, W.J., 

Rosentreter, J.A., Segers, A., Simpson, I.J., Shi, H., Smith, S.J., Steele, L.P., Thornton, 

B.F., Tian, H., Tohjima, Y., Tubiello, F.N., Tsuruta, A., Viovy, N., Voulgarakis, A., 

Weber, T.S., van Weele, M., van der Werf, G.R., Weiss, R.F., Worthy, D., Wunch, D., 

Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., Zhu, Q., 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Zhuang, Q., 2020. The Global Methane Budget 2000–2017. Earth Syst. Sci. Data 12, 

1561–1623. https://doi.org/10.5194/essd-12-1561-2020  

UNEP and CAC, 2021. Global Methane Assessment: Benefits and Costs of Mitigating 

Methane Emissions. Nairobi: United Nations Environment Programme and Clean Air 

Coalition. https://www.unep.org/resources/report/global-methane-assessment-benefits-

and-costs-mitigating-methane-emissions (accessed on 20 Sep 2021)  

van Lingen, H.J., Niu, M., Kebreab, E., Valadares-Filho, S.C., Rooke, J.A., Duthie, C-A, 

Schwarm, A., Kreuzer, M., Hynd, P.I., Caetano, M., Eugène, M., Martin, C., McGee, M., 

O’Kiely, P., Hünerberg, M., McAllister, T.A., Berchielli, T.T., Messana, J.D., Peiren, N., 

Chaves, A.V., Charmley, E., Cole, N.A., Hales, K.E., Lee, S-S, Berndt, A., Reynolds, 

C.K., Crompton, L.A., Bayat, A-R, Yáñez-Ruiz, D.R., Yu, Z., Bannink, A., Dijkstra, J., 

Casper, D.P., Hristov, A.N., 2019. Prediction of enteric methane production, yield and 

intensity of beef cattle using an intercontinental database. Agric. Ecosyst. Environ. 283, 

106575. https://doi.org/10.1016/j.agee.2019.106575 

Weiss, W.P., Tebbe, A.W., 2019. Estimating digestible energy values of feeds and diets and 

integrating those values into net energy systems. TAS 3(3), 953–961. 

https://doi.org/10.1093/tas/txy119 

Yan, T., Porter, M.G., Mayne, C.S., 2009. Prediction of methane emission from beef cattle 

using data measured in indirect open-circuit respiration calorimeters. Animal 3, 1455–

1462. https://doi.org/10.1017/S175173110900473X 

Zuur, A.F., Ieno, E.N., Elphick, C.S., 2010. A protocol for data exploration to avoid common 

statistical problems. Methods Ecol. Evol. 1, 3–14. https://doi.org/10.1111/j.2041-

210X.2009.00001.x 

Zwillinger, D., Kokoska, S., 2000. CRC Standard Probability and Statistics Tables and 

Formulae. CRC Press, Boca Raton, US. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Figure Captions 

 

Fig. 1. Relationship between observed and predicted methane emission (g d
−1

) using the 

complete dataset. The black solid line is the identity line (y = x), and the blue solid line is the 

fitted regression line for the relationship between observed and predicted values. For the 

interpretation of the references, the reader is referred to Table 2 (developed models), and 

Tables 3 and S1 (extant equations). 

 

Fig. 2. Relationship between observed and predicted methane emission (g d
−1

) using the all-
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forage (dietary forage content = 100%) subset. The black solid line is the identity line (y = x), 

and the blue solid line is the fitted regression line for the relationship between observed and 

predicted values. For the interpretation of the references, the reader is referred to Tables 2 

(developed models) and 3 (extant equations). 

 

Fig. 3. Relationship between observed and predicted methane emission (g d
−1

) using the 

high-forage (94% ≥ dietary forage content ≥ 54%) subset. The black solid line is the identity 

line (y = x), and the blue solid line is the fitted regression line for the relationship between 

observed and predicted values. For the interpretation of the references, the reader is referred 

to Tables 2 (developed models) and 3 (extant equations). 

 

Fig. 4. Relationship between observed and predicted methane emission (g d
−1

) using the low-

forage (50% ≥ dietary forage content) subset. The black solid line is the identity line (y = x), 

and the blue solid line is the fitted regression line for the relationship between observed and 

predicted values. For the interpretation of the references, the reader is referred to Table 2 

(developed models). 
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Table 1. Summary statistics for the complete dataset, and the all-forage [dietary forage content (DFC) = 100%], high-forage (94% ≥ DFC ≥ 

54%), and low-forage (50% ≥ DFC) subsets.  

 Complete All-forage High-forage Low-forage 

Item
a
 n

b 
Me

an 

Min

b 

Ma

x
b 

SD
b 

n Me

an 

Min
 

Ma

x 

SD n Me

an 

Min
 

Ma

x 

SD n Me

an 

Min Ma

x 

SD 

Animal variables                     

DMI (kg d
−1

) 110

0 

7.40 1.3

7 

14.

6 

2.4

4 

32

5 

6.57 1.7

7 

14.

6 

2.3

5 

51

6 

7.49 1.3

7 

14.

3 

2.7

4 

25

9 

8.25 4.4

4 

13.

1 

1.3

6 

GEI (MJ d
−1

) 110

0 

130 24.

8 

263 43.

2 

32

5 

113 24.

8 

23

8 

38.

6 

51

6 

131 25.

1 

26

3 

49.

0 

25

9 

148 78.

6 

22

9 

24.

3 

BW (kg) 110

0 

345 106 657 103 32

5 

300 122 53

4 

92.

3 

51

6 

351 106 65

7 

99.

8 

25

9 

389 110 64

3 

101 

FL (DMI as % 

BW) 

110

0 

2.20 0.7

51 

4.4

6 

0.6

00 

32

5 

2.27 0.9

27 

4.1

5 

0.6

97 

51

6 

2.14 0.7

51 

4.1

4 

0.5

60 

25

9 

2.23 1.1

1 

4.4

6 

0.5

39 

ADG (kg d
−1

) 825 1.01 0.0

92 

2.7

9 

0.4

31 

25

4 

1.01 0.3

57 

2.0

0 

0.3

60 

36

8 

0.91

5 

0.0

92 

2.3

1 

0.4

75 

20

3 

1.17 0.3

33 

2.7

9 

0.3

79 
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Diet composition 

(% DM) 

                    

   NDF 110

0 

49.9 17.

2 

85.

7 

14.

2 

32

5 

60.1 41.

1 

85.

7 

11.

0 

51

6 

50.1 28.

3 

73.

4 

12.

1 

25

9 

36.6 17.

2 

63.

4 

10.

2 

   EE 110

0 

2.97 0.6

70 

6.9

9 

1.1

8 

32

5 

2.82 0.6

70 

4.0

0 

1.0

8 

51

6 

2.90 0.7

30 

6.9

9 

1.2

5 

25

9 

3.31 1.2

4 

6.4

6 

1.1

0 

   CP 110

0 

14.3 4.0

9 

25.

1 

3.4

4 

32

5 

15.2 4.0

9 

25.

1 

5.0

8 

51

6 

13.7 7.0

8 

21.

2 

2.4

1 

25

9 

14.2 9.8

5 

20.

0 

2.1

3 

   Ash 110

0 

7.31 3.2

5 

13.

2 

2.3

3 

32

5 

9.17 5.1

9 

13.

2 

1.8

6 

51

6 

7.18 3.5

0 

12.

8 

1.9

6 

25

9 

5.24 3.2

5 

11.

0 

1.5

2 

   Forage 110

0 

72.6 17.

3 

100 23.

7 

32

5 

100 100 10

0 

0 51

6 

72.1 53.

9 

94.

4 

10.

8 

25

9 

39.1 17.

3 

50.

0 

10.

0 

   GE (MJ kg
−1 

DM) 110

0 

17.6 14.

0 

21.

3 

0.9

48 

32

5 

17.3 14.

0 

19.

9 

0.6

55 

51

6 

17.6 14.

5 

20.

0 

1.0

7 

25

9 

18.0 16.

5 

21.

3 

0.8

57 

Methane emissions                      

   CH4 (g d
−1

) 110 153 38. 364 48. 32 171 57. 34 59. 51 139 38. 36 44. 25 156 71. 29 31.
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0 2 7 5 3 7 1 6 2 4 4 9 4 8 6 

   CH4 per DMI (g 

kg
−1

) 

110

0 

22.1 8.7

8 

49.

5 

7.8

0 

32

5 

27.3 13.

0 

48.

1 

8.0

4 

51

6 

20.2 8.7

8 

49.

5 

7.4

1 

25

9 

19.3 9.9

7 

37.

0 

4.5

0 

   Ym (% GEI) 110

0 

7.01 2.6

6 

15.

0 

2.5

0 

32

5 

8.79 4.2

0 

15.

0 

2.6

0 

51

6 

6.42 2.6

6 

15.

0 

2.3

1 

25

9 

5.97 3.1

4 

12.

0 

1.3

2 

a 
DMI = dry matter intake; GEI = gross energy intake; BW = body weight; FL = feeding level; NDF = dietary neutral-detergent fiber content; EE 

= dietary ether extract content; CP = dietary crude protein content; GE = dietary gross energy; ADG = average daily gain; Ym = methane 

conversion factor.  

b 
n = number of observations; Min = minimum; Max = maximum; SD = standard deviation. 

 

Table 2. Methane emission (g d
−1

) prediction equations and model evaluation metrics for the complete dataset, and for the all-forage [dietary 

forage content (DFC) = 100%], high-forage (94% ≥ DFC ≥ 54%), and low-forage (50% ≥ DFC) subsets. 

Eq. Prediction equation
a 

 Model performance
b 

Complete
 

n
b 

RSR RMSPE, % MB, % SB, % CCC 

(1) 114 (7.02) + 33.0 (4.17) × ADG  825 0.99 32.3 1.57 1.74 0.11 

All-forage       
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(2) 20.0 (12.3) + 19.6 (1.32) × DMI 325 0.93 32.2 15.98 4.87 0.49 

(3) 65.2 (23.7) + 19.2 (1.38) × DMI - 21.2 (8.37) × EE  325 0.92 32.0 7.28 7.33 0.48 

(4) 19.6 (12.3) + 1.15 (0.077) × GEI 325 0.92 31.8 15.86 4.05 0.50 

(5) 65.2 (23.6) + 1.12 (0.080) × GEI - 21.2 (8.36) × EE 325 0.91 31.4 6.65 6.33 0.49 

(6) - 83.9 (30.7) + 0.675 (0.093) × GEI + 0.358 (0.036) × BW + 6.53 (2.29) × 

ash 

254 0.88 28.6 17.86 2.18 0.54 

(7) - 71.0 (20.9) + 0.570 (0.033) × BW + 27.9 (4.26) × FL 254 0.85 27.6 14.09 0.82 0.54 

High-forage       

(8) 80.8 (9.81) + 63.6 (4.66) × ADG 368 0.99 31.8 0.17 11.67 0.35 

Low-forage       

(9) 85.1 (28.3) + 0.655 (0.070) × GEI - 1.73 (1.76) × CP  259 0.99 20.1 0.29 6.01 0.22 

(10

) 

207 (33.8) + 28.7 (5.59) × ADG - 6.21 (2.27) × CP 203 0.96 19.9 0.11 2.39 0.24 

(11

) 

10.3 (68.8) + 0.739 (0.084) × GEI - 17.4 (5.99) × FL + 11.3 (3.73) × GE - 

7.18 (1.97) × CP - 9.37 (2.33) × EE 

203 0.91 18.9 0.13 1.79 0.37 

a 
ADG = average daily gain (kg d

−1
); DMI = dry matter intake (kg d

−1
); EE = dietary ether extract content (% DM); GEI = gross energy intake 
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(MJ d
−1

); BW = body weight (kg); ash = dietary ash content (% DM); FL = feeding level (DMI as % BW); CP = dietary crude protein content 

(% DM); GE = dietary gross energy (MJ kg
−1 

DM). 

b 
n = number of observations used to fit equations and for model evaluation; RSR = RMSPE-observations standard deviation ratio; RMSPE = 

root mean square prediction error (% of observed CH4 production means); MB = mean bias (% of MSPE); SB = slope bias (% of MSPE); CCC = 

concordance correlation coefficient. 

 

Table 3. Performance evaluation of extant equations to predict enteric CH4 emission (g d
−1

) using the complete dataset, and the all-forage 

[dietary forage content (DFC) = 100%], and high-forage (94% ≥ DFC ≥ 54%) subsets. 

Ran

k 

Reference Equation
a 

n
b 

RSR
b
 RMSPE, %

b 
MB, 

%
b 

SB, 

%
b 

CCC

b 

Complete        

1 van Lingen et al. (2019) - 6.41 + 11.3 × DMI + 0.557 × For + 0.0996 × BW 975 0.88 29.4 0.02 4.46 0.47 

All-forage        

1 Ramin and Huhtanen 

(2013) 

(62 + 25 × DMI) × 0.714 

325 0.83 28.7 3.51 2.03 0.55 

2 van Lingen et al. (2019) - 6.41 + 11.3 × DMI + 0.557 × For + 0.0996 × BW 325 0.84 29.0 12.18 0.57 0.49 
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3 Yan et al. (2009) (14.7 + 35.1 × DMI) × 0.714 325 0.90 31.3 0.70 20.04 0.59 

4 Ribeiro et al. (2020) (0.734 + 0.041 × GEI + 0.009 × BW - 0.04 × EE) ÷ 

0.05565 289 0.95 31.7 31.75 0.30 0.49 

High-forage        

1 Ellis et al. (2009) (2.29 + 0.67 × DMI) ÷ 0.05565 516 0.92 29.4 3.59 7.48 0.46 

2 Benaouda et al. (2020) 17.0 × DMI + 0.03 × NDF 301 0.96 32.9 25.69 9.97 0.56 

3 van Lingen et al. (2019) - 6.41 + 11.3 × DMI + 0.557 × For + 0.0996 × BW 484 0.98 31.9 12.54 12.63 0.49 

a 
DMI = dry matter intake (kg d

−1
); BW = body weight (kg); GEI = gross energy intake (MJ d

−1
); EE = dietary ether extract content (% DM); 

NDF = dietary neutral-detergent fiber content (% DM); For = dietary forage content (% DM). 

b 
n = number of observations used for model evaluation; RSR = RMSPE-observations standard deviation ratio; RMSPE = root mean square 

prediction error (% observed CH4 production means); MB = mean bias (% MSPE); SB = slope bias (% MSPE); CCC = concordance correlation 

coefficient. 

 

Table 4. Methane yield (g kg
−1

 DMI) prediction equations and model evaluation metrics for the complete dataset, and the all-forage [dietary 

forage content (DFC) = 100%], high-forage (94% ≥ DFC ≥ 54%), and low-forage (50% ≥ DFC) subsets. 

Eq. Prediction equation
a
  Model performance

b
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Complete
 

n
b 

RSR RMSPE, 

% 

MB, % SB, % CCC 

(12) 30.7 (1.04) - 4.35 (0.262) × FL 1100 0.97 34.2 1.65 0.21 0.16 

All-forage
 

      

(13) 29.8 (2.64) - 6.31 (0.565) × FL + 4.03 (1.20) × EE 325 0.88 26.0 3.14 0.15 0.40 

High-forage
 

      

(14) 27.4 (1.22) - 3.28 (0.324) × FL 516 0.92 33.5 0.08 5.54 0.21 

Low-forage       

(15) 1.19 (10.2) - 3.20 (0.676) × FL + 2.27 (0.547) × GE - 0.855 (0.269) × CP - 1.16 (0.292) × EE 203 0.90 19.9 1.24 0.58 0.37 

a 
FL = feeding level (DMI as % BW); EE = dietary ether extract content (% DM); GE = dietary gross energy (MJ kg

−1 
DM); CP = dietary crude 

protein content (% DM). 

b 
n = number of observations used to fit equations and for model evaluation; RSR = RMSPE-observations standard deviation ratio; RMSPE = 

root mean square prediction error (% observed CH4 production means); MB = mean bias (% MSPE); SB = slope bias (% MSPE); CCC = 

concordance correlation coefficient. 

 

Table 5. Performance evaluation of van Lingen et al. (2019) equation
a
 to predict enteric CH4 yield (g kg

−1
 DMI) using complete dataset, and the 
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all-forage [dietary forage content (DFC) = 100%], high-forage (94% ≥ DFC ≥ 54%), and low-forage (50% ≥ DFC) subsets. 

Dataset or Subset n
b 

RSR
b
 RMSPE, %

b 
MB, %

b 
SB, %

b 
CCC

b 

Complete 975 0.96 34.4 1.14 5.49 0.11 

All-forage 325 1.13 33.4 22.51 2.28 0.01 

High-forage 484 1.00 37.7 2.72 0.84 0.03 

Low-forage 166 0.99 21.9 0.01 0.09 0.03 

a 
CH4 yield (g kg

−1
 DMI) = 17.3 + 0.0565 × For; where For = dietary forage content (% DM). 

b 
n = number of observations used for model evaluation; RSR = RMSPE-observations standard deviation ratio; RMSPE = root mean square 

prediction error (% observed CH4 production means); MB = mean bias (% MSPE); SB = slope bias (% MSPE); CCC = concordance correlation 

coefficient. 
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HIGHLIGHTS 

 Intake and ADG were the key predictors of beef cattle CH4 production 

 Separate models according to dietary forage content improved predictive ability 

 Developed models were more accurate than IPCC Tier 2 equations for all subsets 

 Developed models can allow LAC countries to improve the accuracy of their GHG 

inventories 
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