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Toward an absolute NMR shielding scale using
the spin-rotation tensor within a relativistic
framework

I. Agustı́n Aucar,a Sergio S. Gomez,a Claudia G. Giribetb and Gustavo A. Aucar*a

One of the most influential articles showing the best way to get the absolute values of NMR magnetic

shieldings, s (non-measurables) from both accurate measurements and theoretical calculations, was

published a long time ago by Flygare. His model was shown to break down when heavy atoms are

involved. This fact motivated the development of new theories of nuclear spin-rotation (SR) tensors,

which consider electronic relativistic effects. One was published recently by some of us. In this article

we take another step further and propose three different models that generalize Flygare’s model. All of

them are written using four-component relativistic expressions, though the two-component relativistic

SO-S term also appears in one. The first clues for these developments were built from the relationship

among s and the SR tensors within the two-component relativistic LRESC model. Besides, we had to

introduce a few other well defined assumptions: (i) relativistic corrections must be included in a way to

best reproduce the relationship among the (e–e) term (called ‘‘paramagnetic’’ within the non-relativistic

domain) of s and its equivalent part of the SR tensor, (ii) as happens in Flygare’s rule, the shielding of

free atoms shall be included to improve accuracy. In the highest accurate model, a new term known as

Spin–orbit due to spin, SO-S (in this mechanism the spin-Zeeman Hamiltonian replaces the orbital-

Zeeman Hamiltonian), is included. We show the results of the application of those models to halogen

containing linear molecules.

1 Introduction

The nuclear magnetic shielding, s, is one of the most important
NMR spectroscopic parameters. It can be related to the modifi-
cation of the nuclear Zeeman effect due to the presence of
electrons that surround the nucleus of interest.

When the isotope Y of a given nucleus with spin 1/2 is
subject to a magnetic field B0, there its interaction energy value
will be split into two. This effect is known as the Zeeman effect.
The difference in energy depends on the gyromagnetic ratio of
the nucleus, gY, and B0. Because nuclei are surrounded by
electrons in atoms and molecules, the actual field B at the
place of each isotope Y is different from B0,

B = B0(1 � rY),

where r is a tensor that describes the electronic shielding. So,
in an isotropic medium the frequency of resonance is

n0 ¼
gB0 1� sYð Þ

2p
:

The absolute shielding constant sY is hardly obtainable by
experiments given the difficulties in getting accurate values
for n0/B0.

The quantity usually reported is the chemical shift, d, which
is defined as

dY = (sref
Y � sY)/(1 � sref

Y ) E sref
Y � sY, (1)

where sref
Y and sY are the shieldings of reference and sample

nuclei. They both refer to the same isotope though belonging
to different molecules. The approximate expression of d is
reasonably accurate for small shielding constants, meaning
sY o 10�3. Each magnetic nucleus Y has its own shielding
scale. To establish this scale one needs to know the theoretical/
experimental absolute shielding of the given isotope in its
reference compound.

The long-standing Flygare’s relation, which was derived
within the non-relativistic, NR, framework, allows one to know
the absolute shielding sY in a molecular system, starting from
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the measured value of the nuclear spin-rotation constant, MY.1–4

A widely known relationship between these properties was first
obtained by Ramsey within a NR picture in the Schrödinger
representation.1 Its expression links the paramagnetic (so called
within the NR domain) contribution to the rY tensor and the
electronic part of the MY tensor according to:

r
NR-para
Y ¼ mpI

gY
MNR-elec

Y ¼ mpI

gY
MNR

Y �Mnuc
Y

� �
: (2)

Atomic units are used in the last expression, where mp is the proton
mass, gY the nuclear g-value of nucleus Y, and I the molecular
moment of the inertia tensor at its equilibrium geometry with
respect to the center of mass.

For molecules in their equilibrium positions, it holds that
the nuclear spin-rotation tensor MNR

Y can be expressed as the
sum of a purely nuclear contribution and an electronic one
related to a second order energy correction,4 MNR

Y = Mnuc
Y +

MNR-elec
Y . This separation is also valid in a relativistic framework.5

It is also known that the MY tensor is independent of the origin
of coordinates (according to both NR and relativistic theories),
because the operators it involves depend on the positions of the
center of mass together with the position of the nucleus Y.5

Eqn (2) is valid only when the gauge origin for the calculation of
shielding constants is taken in the center of mass.

These values, together with the NR free atom shielding tensor
rNR-free

Y (which has only diamagnetic contributions within the
NR domain), provided a way to find experimental values of
absolute shieldings using measured spin-rotation constants,

sY ¼ sNR-para
Y þ sNR-dia

Y

�mpI

gY
MNR

Y þ sNR-free
Y :

(3)

Eqn (3) is the famous Flygare’s relationship broadly used until
now to get absolute NMR shielding scales, and is valid
only when molecules are restricted to be considered as rigid
rotors. In this equation it is also implicitly considered that the
paramagnetic contributions to NR shieldings of free atoms are
zero. It is worth mentioning here that such paramagnetic
contributions are transformed into the (e–e) contributions
within the relativistic domain. The contributions named (e–e)
and (e–p) will be defined in Section 2.1.

There is also another relationship, shown also by Flygare,
from which the free atomic shielding is related to both the
diamagnetic term of the shielding and the nuclear contribution
to the spin-rotation tensor (only when the rigid rotor model
is considered).4,6

Within the relativistic framework both eqn (2) and (3) are
not valid any longer because:

(1) Paramagnetic-like contributions to the r tensor of free
atoms are no longer zero, therefore, it is not valid to consider
that the shielding of a free atom is of purely diamagnetic
nature,

(2) for linear molecules, the M tensor has null elements
corresponding to the symmetry axis of the molecule, while
relativistic r has not,7 and

(3) the equivalence between the perturbative Hamiltonian of
a molecular system in a uniform magnetic field and that
describing rotational effects is now broken.5

In ref. 5 we had considered the fact that the formal expres-
sions of both magnetic properties, e.g. the NMR magnetic
shielding and the spin rotation tensors cannot explicitly be
related to each other within the relativistic regime. This is
contrary to what happens within the non-relativistic frame-
work, where a simple relationship was found. There is no way
to obtain an exact theoretical relation among both properties
that would be valid within the relativistic regime. So one cannot
get a top-down scheme from which eqn (3) would be obtained
starting from a relativistic expression. In other words, if one
wants to obtain a relativistic generalization of Flygare’s rela-
tionship, one should try following a different route that may
resemble a bottom-up scheme. This is what we have done and
its first results are shown in this article.

Being a bottom-up scheme and one that is intrinsically
approximate, our proposal has a weakness that is not present
in Flygare’s scheme: we do not know from the outset which
is the exact formal expression that relates both properties.
Still we will show in this article that we can get theoretical
results for absolute shieldings that are as close as possible to
the best theoretical values we have at hand at the moment,
using a natural generalization of Flygare’s relation.

As mentioned above in the present contribution we seek a
relativistic generalization of eqn (3). To get it we decided to work
within two different relativistic frameworks: two-component and
four-component. At the end, results from both should match each
other. From a theoretical point of view four-component expressions
shall be the most reliable when properly derived, though two-
component relativistic expressions highlight electronic mechan-
isms that could be used to better understand the physics that
underlies the likely relationship among those molecular response
properties. We choose to work with the four-component relativistic
polarization propagator8 and one of the two-component form-
alisms available, known as the linear-response within the
elimination of small component (LRESC) model.9 Both have been
shown to be highly accurate in the calculations of NMR spectro-
scopic parameters10–13 and spin-rotation constants, SRCs,14

though the LRESC model gives not quite accurate results for
shieldings when the molecule contains heavy elements belonging
to the 6th row of the Periodic Table. The SRC was calculated using
a formalism developed a few years ago, which actually introduces
four-component relativistic expressions.5 Another formalism was
proposed a little later by Liu and collaborators.15 Then we realized
that it was the time to try to take one step further by proposing
models that could generalize Flygare’s model in an appropriate
way. It should be mentioned here that we have a previous work
published recently in which we study a relation, valid within the
relativistic framework, among magnetizability and the g-tensor.
It was performed using a scheme that is similar to that used
here, to identify the electronic mechanisms which underlie the
relativistic effects of both properties.16

In the last few years some articles were published using
as a recipy eqn (3) though within the relativistic domain.
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Malkin et al. obtained ‘‘quasi-experimental’’ absolute shielding
constants combining experimental nuclear spin-rotation data
with NR free atom diamagnetic shielding constants (and also
comparing this last contribution with diamagnetic shielding
constants of nucleus in molecules).17 Liu et al. have also
proposed a relativistic extension of the NMR absolute shielding
scale,18 which is based on the NR Flygare’s one, with the
addition of three kinds of relativistic effects belonging to MY

and sY constants. These three effects are all naturally included
in our work, though the LRESC model allows us to go one
crucial step further. Furthermore, using the LRESC model one
can be aware of the physical mechanisms that underlie each
contribution to both properties, and also one can identify
contributions that are null as in the case of M(e–p)

Y .
In line with these findings, nuclear SRCs, absolute NMR

shielding constants and shielding spans were calculated using
coupled-cluster singles-and-doubles with a perturbative triples
(CCSD(T)) correction theory, four-component relativistic density
functional theory (relativistic DFT), and non-relativistic DFT.19,20 It
was shown that the straightforward application of the NR formula
which relates the electronic contribution to the nuclear SRC and
the paramagnetic contribution to s does not yield correct results.
In the case of light-atom containing systems, such as water and
hydrogen sulfide, studies that include relativistic effects pro-
vide accurate absolute shielding scales for oxygen and sulfur.21

Another way of getting absolute shieldings of heavy atoms was
recently proposed by Adrjan and coauthors.22

Nowadays 4-component relativistic calculations are carried
out routinely, using for example the DIRAC program package.23 In
this package the actual expressions of the relativistic polarization
propagator formalism at the random phase level of approach,
RPPA-RPA, are implemented.

The main aim of this work is to introduce new models
that generalize the relationship among tensors r and M, and
then apply them to a few molecular systems. The strongest
constraint that must be fulfilled is that their expressions and
results of calculations should fit the well-known NR relation-
ship of eqn (2) and (3) in the NR limit. We shall show that our
models fulfill such a constraint.

In Flygare’s model one has a very useful replacement of
molecular calculations by atomic calculations, to get diamagnetic
terms. Another aim of this work is our search for continuing to
use this kind of replacement, so that this is introduced in the
new relativistic models.

In our development we used two related formalisms, the
LRESC and the RPPA, as the basic theoretical structures. In the
LRESC model, relativistic corrections to the NR expressions of
both response molecular tensors, rY and MY, are well defined.5,9

In addition, its application to calculate them on different
molecules has shown that relativistic effects are quantitatively
well reproduced.13,14 The straightforward separation of those
relativistic corrections, depending on whether they are core- or
ligand-dependent,24 is one of the key points in the assumptions
used as a support to our proposal. Another relevant considera-
tion is related to the fact that all contributions can be divided
into electron–electron (e–e) and electron–positron (e–p) terms,

which are related to positive energy–positive energy and positive
energy–negative energy coupling terms of the linear response
functions, respectively.8 Given that the LRESC formalism can be
related to the RPPA formalism, one can use it to make new
assumptions and so, starting from a relationship among r and
M that is valid within the NR framework, one can go one step
further and find some other relationships that are more general
and valid within the relativistic framework. We show here a few
such relationships and analyze the results of their applications
to linear molecules.

Similar to Flygare’s formulation, where the paramagnetic term
of s is not related to the diamagnetic term (one is related to the
total SRC and the other to the shielding of free atoms), in our
models the (e–e) contributions are not related to the (e–p) ones.

This article is organized as follows. In Section 2 we give a
brief account of the main characteristics of the LRESC model,
together with the actual expressions for both molecular proper-
ties obtained within such a model. This is necessary to expose
what are the considerations and prescriptions that guide us to
propose three different models to generalize Flygare’s relation.
After giving the Computational details in Section 3, in Section 4
we start making an analysis of the core-dependent terms for
perpendicular components of shieldings and spin-rotation
constants of the HX (X = F, Cl, Br, I), XF and IX (X = Cl, Br, I)
family of compounds. Afterwards we give the results of calcula-
tions of the same components applying our three models. The
main characteristics of the new term, the SO–S, are also analyzed.
At the end of Section 4 we give the analysis of the isotropic values
of s. The main results are highlighted in the last Section.

2 Theory and models

As was mentioned above, Ramsey1 and then Flygare4 were able
to introduce a relationship among r and M. Such a relationship
is not valid within the relativistic regime. In order to lift this
restriction we proposed recently a theoretical formalism from
which a relativistic expression of the spin-rotation tensor
was found.5 The application of the LRESC model strengthened
what was found within the more general four-component
relativistic formalism.

In this article we shall go one step forward and concentrate
our focus on the development of models that shall establish
new relations among r and M, these relationships being valid
within the relativistic framework. These different models are
conceived to introduce more relativistic effects from one to the
next one, i.e. to become more and more accurate.

We start this section with the basic definitions of the LRESC
formalism and then we give expressions of both tensors, r and
M. Finally we shall show three different models from which
some new insights can be obtained.

2.1 The LRESC model

The formal expressions of response properties that the LRESC
model provides are obtained after considering some well
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defined assumptions.9 To get a better understanding of what
we shall show in this section we only need to consider that

(1) Within the relativistic regime, the second-order correc-
tion to the energy of a perturbed system can be written as

Eð2Þ ¼
X
na0

c0 Vj jcnðNÞh i cnðNÞ Vj jc0h i
E0 � En

þ
X
na0

c0 Vj jcnðN þ 2Þh i cnðN þ 2Þ Vj jc0h i
E0 � En

�
X
navac

vac Vj jcnð2Þh i cnð2Þ Vj jvach i
Evac � En

(4)

where states |cni are those in the Dirac–Fock space that are
connected with |c0i (or |vaci, in the second term) by the
magnetic perturbation V. The excited states |cn(N)i belong to
the N-particle manifold of states, which are built from Slater
determinants containing N ‘‘electronic’’ solutions, i.e. made up
of positive energy solutions of a starting one-particle Dirac
Hamiltonian; and also |cn(N + 2)i belong to all states of the
N + 2 particles manifold containing an extra electron–positron
pair (see ref. 9 and Section II C of ref. 5).

(2) Starting from four-component relativistic matrix elements, a
two-component model can be obtained by expanding them as a
power series in c�1, up to order c�2 (using cgs gaussian units) for
getting the leading relativistic effects. All other higher-order rela-
tivistic effects require to go further in the expansion of the series.

(3) The rhs of eqn (4) can be divided into two other terms that
are defined according to its NR limit. Eqn (4) is re-expressed as

E(2) = E(e–e) + E(e–p). (5)

The first term E(e–e) contain those terms for which (E0� En)�1 a 0
in the NR limit. On the other hand, E(e–p) contain those terms
for which (E0 � En)�1 = 0 in the same limit.

The leading relativistic corrections of E(e–e) and E(e–p) do appear
at order c�2. In the language of relativistic polarization propaga-
tors, E(e–e) is related to contributions from positive energy–positive
energy coupling terms of the linear response functions. It yields
the so called ‘‘electron–electron’’ (e–e) corrections. The expansion
of E(e–e) will lead to the paramagnetic term (NR) and its (relativistic)
corrections. E(e–p) is related to contributions from positive energy–
negative energy coupling terms of the linear response functions,
yielding the so called ‘‘electron–positron’’ (e–p) corrections.
The E(e–p) will give the diamagnetic terms at the NR limit in
addition to its relativistic corrections.

The electronic mechanisms that arise within the LRESC
model, from the (e–e) terms, are obtained expanding the matrix
elements of two given four-component operators V and W between
positive energy four-component spinors |fj

(4)i; and afterwards
applying the elimination of small components (ESC) approach.
As a result they are expressed as matrix elements of new
operators acting in the space spanned by Pauli spinors |fP

j i,

hfi
(4)|V|fj

(4)i E hfP
i |O(V)|fP

j i. (6)

Every static second-order molecular property, i.e. those arising
from a second-order correction to the energy and depending on

two external static fields like the NMR spectroscopic para-
meters or the spin-rotation constants, can be calculated by
using polarization propagators. This is apparent from the
following equation

EVW
(2) = Re(hhV;WiiE=0), (7)

where V and W are the interaction Hamiltonians that consider
external perturbations acting on the unperturbed system. EVW

(2)

stands for the second-order correction to the atomic or mole-
cular electronic energy. The response properties are obtained
from these expressions.8 Besides, they have an equivalent form
to eqn (7) within the LRESC model

EO(V)O(W)
(2) = Re(hhO(V);O(W)iiE=0), (8)

where O(V) and O(W) are the operators V and W written in the
framework of the two-component LRESC model.

The derivation of the actual expressions of the LRESC model
is based on the perturbation theory technique. The particular
technique used is not relevant in order to identify the operators
involved in first and second order perturbation theory. Further-
more we want to stress here the fact that perturbation theory
was applied in such a way that the likely problems related to the
mixing of positive energy and negative energy states that may
arise in many-electron systems (mentioned in ref. 25) do not
appear. For the (e–p) contribution to the second-order correc-
tion to the energy, actual expressions use a projector onto
negative-energy states that, at the end, is written in terms of
positive-energy orbitals. So that final expressions are always
expressed in terms of positive-energy orbitals.

2.2 Spin-rotation and shielding tensors within the LRESC
model

The nuclear spin-rotation tensor can be expressed as the sum of
nuclear and electronic contributions. In a relativistic frame-
work, the latter includes a term originating in the Breit elec-
tron–nucleus interaction. This contribution is negligible,5,26 so
it is not considered hereafter.

We adopt Gaussian atomic units throughout this work
because an easier track of relativistic effects can be kept in this
system of units, in which the fine structure constant is directly
given as 1/c. Within the relativistic polarization propagator
approach, the electronic contribution to the nuclear spin-
rotation tensor can be calculated as the sum of two different
terms which considers excitations to positive- and negative-
energy orbitals.25,27 The former is expressed as:

M
ðe�eÞ
Y ¼ gY

mpc

��� r� rY

r� rYj j3
� a

�
; J e

��ðe�eÞI�1; (9)

with the usual interpretation that (e–e) refers to excitations
to positive-energy orbitals. The operator a refers to the Dirac
matrices, whereas the relativistic electronic total angular
momentum operator is Je = r � p + 1

2R, where the position
operator must be defined with respect to the molecular
center of mass, and R is the four-component extension of the
Pauli matrices.
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On the other hand, (e–e) contribution to the r tensor is
defined as:

r
ðe�eÞ
Y ¼ 1

2

��� r� rY

r� rYj j3
� a

�
; r� rGð Þ � a

��ðe�eÞ; (10)

where rG stands for the vector position of the (arbitrary) gauge
origin of the magnetic potential.

Within the LRESC model, relativistic corrections are expressed
as a series power expansion in terms of 1/c. At its lowest order, the
operators involved in the expression of r are the paramagnetic
(nuclear) spin–orbit HPSO (PSO), Fermi-contact HFC (FC) and spin-
dipolar HSD (SD), together with the orbital-Zeeman HOZ (OZ)
and spin-Zeeman HSZ (SZ) operators.9,28

In the case of the M tensor the nuclear spin operator is also
involved, so PSO, FC and SD operators shall be considered in
the LRESC expansion of this property.5

When the LRESC procedure is applied to the matrix elements
of the 4-component total angular momentum operator Je

(4) of
eqn (9), the following expansion is obtained:29

O(�x�Je
(4)) = HBO-J = HBO-L + HBO-S, (11)

where

HBO-J = �x�Je
(2), (12)

HBO-L = �x�Le, (13)

HBO-S = �x�Se, (14)

with no contributions of order 1/c2, as pointed out in previous
works.5,14 In eqn (11)–(14), BO stands for ‘‘Born-Oppenheimer’’.
In the previous equations, x corresponds to the molecular
angular velocity, which is related to the molecular angular
momentum according to x = I�1L.

At the next order in 1/c, relativistic corrections to operators
mentioned above should be considered.5,9,30 They are the following:
kinetic-paramagnetic spin–orbit HPSO-K (PSO-K), kinetic-Fermi
contact HFC-K (FC-K), kinetic-spin dipolar HSD-K (SD-K), kinetic-
orbital Zeeman HOZ-K (OZ-K), kinetic-spin Zeeman HSZ-K (SZ-K)
and magnetic induced spin–orbit HB-SO (B-SO) operators. The
perturbative Hamiltonian HFC/SD = HFC + HSD where FC/SD means
FC + SD is used throughout the present work.

For all operators derived from the external magnetic field,
the gauge origin is placed in the molecular center of mass in
such a way that the so-called paramagnetic contribution to the
NR absolute shielding tensor is equivalent to the electronic
contribution to the NR spin-rotation tensor.

Taking into account that up to order 1/c2 there are no (e–p)
contributions to Melec

Y tensors5 (M(e–p)-LRESC
Y = 0) we have

MLRESC
Y = M(e–e)-LRESC

Y . (15)

As a consequence, the leading order relativistic corrections
to Melec

Y that appear from (e–e) excitations are

MLRESC
Y = MNR-elec

Y + MPSO-K
Y + Mpara-Mv/Dw

Y + MSO-L
Y + MSO-S

Y ,
(16)

with

MPSO-K
Y ¼ � @2

@IY@L
HPSO-K;HBO-L� �� �

(17)

M
para-Mv=Dw
Y ¼ � @2

@IY@L

��
HPSO;HMv=Dw;HBO-L�� (18)

MSO-L
Y ¼ � @2

@IY@L

��
HFC=SD;HSO;HBO-L�� (19)

MSO-S
Y ¼ � @2

@IY@L

��
HFC=SD;HSO;HBO-S��; (20)

where MNR-elec
Y is the non-relativistic electronic contribution

to the MY tensor. The operators HPSO, HFC/SD, HPSO-K, HBO-L and
HBO-S were mentioned above, while the operators HMv, HDw and
HSO correspond to the usual mass-velocity, Darwin and spin–orbit
(only the one-body part is considered in our actual model) operators,
respectively. IY is the nuclear spin of nucleus Y and L is the angular
momentum due to the rotation of the nuclei.

As was previously shown, the expansion of the (e–e) contribu-
tion to rY within the LRESC model is written as:9,28

r(e–e)-LRESC
Y = rpara-NR

Y + rPSO-K
Y + rpara-Mv/Dw

Y + rSO-L
Y + rSO-S

Y

+ rOZ-K
Y + rSZ-K

Y + rB-SO
Y (21)

where a similar definition as in the case of the M tensor was
applied. In particular, rSO-L

Y and rSO-S
Y can be expressed as:

sSO-LY ¼ @2

@lY@B

��
HFC=SD;HSO;HOZ

��
; (22)

sSO-SY ¼ @2

@lY@B

��
HFC=SD;HSO;HSZ

��
; (23)

with lY and B being the magnetic moment of nucleus Y and the
external uniform magnetic field, respectively. It is important to
note that HOZ þHSZ ¼ 1

2c
Le þ 2Seð Þ � B.

2.3 Relationships among r and M within the LRESC model

In addition to the well-known NR Flygare’s relation of eqn (2),
there is a close relation between some contributions to
M(e–e)-LRESC

Y and r(e–e)-LRESC
Y in eqn (16) and (21) given by:

ra
Y ¼

mpI

gY
Ma

Y; (24)

where the superscript a stands for the PSO-K, para-Mv/Dw and
SO-L mechanisms. Although the SO-S term fulfills a similar
relation, a difference of a factor of 2 appears:

rSO-S
Y ¼ 2

mpI

gY
MSO-S

Y : (25)

Following these expressions, it is possible to state a
new relationship that links both tensors, r and M, in a
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two-component relativistic domain according to the LRESC
model:

r
ðe�eÞ-LRESC
Y ¼ mpI

gY
M
ðe�eÞ-LRESC
Y þ 1

2
rSO-S
Y þ rOZ-K

Y

þ rSZ-K
Y þ rB-SO

Y :

(26)

This eqn shows that there are several mechanisms which avoid
the full equivalence between such properties. In addition, two
important remarks shall be made:
� The usual Spin–orbit mechanism (SO-L), which is the

main responsible for the so called HALA (heavy-atom effect
on light atoms) effect,31–33 follows Flygare’s relation; therefore,
one should expect that for light elements in a heavy-atom
environment (where all other contributions are close to zero)
this relation will still be fulfilled.14

� The OZ-K, SZ-K and B-SO mechanisms are core-dependent
and belong to what was coined as HAHA (heavy-atom effect
on heavy atom) effects.31–33 They are not influenced by the
environment. As a result, these contributions may be introduced
by means of atomic calculations. This prescription is taken in
the present work.

Due to the spherical symmetry of isolated atoms, there can
be only a few non-zero contributions to the (e–e) component of
shieldings within the LRESC model. They are

ratom(e–e)-LRESC
Y = ratom-OZ-K

Y + ratom-SZ-K
Y + ratom-B-SO

Y . (27)

Given that the OZ-K, SZ-K and B-SO mechanisms are core-
dependent, their contributions are almost equal to their corres-
ponding atomic counterparts. So eqn (26) can be rewritten as

r
ðe�eÞ-LRESC
Y ffimpI

gY
M
ðe�eÞ-LRESC
Y

þ r
atomðe�eÞ-LRESC
Y þ 1

2
rSO-S
Y :

(28)

As was mentioned in Section 1, one of the aims of this work is to
replace the core-dependent molecular contributions by atomic
calculations. The last equation is in line with such a proposal.

2.4 Relativistic generalization of previous relationships

We are interested in obtaining a relationship among both
tensors, r and M that must be valid within the relativistic
domain. As observed in eqn (28) there is a two-component
relativistic relationship among both tensors though there only
the (e–e) part is involved. The inclusion of the (e–p) part on
both tensors within the relativistic domain is straightforward.

Still, Flygare’s relationship includes the atomic contribution
because such a part is purely diamagnetic, within the NR
domain, plus the Mnuc component of M, and some other terms
that are neglected.6

So, we shall propose a relativistic generalization of Flygare’s
relationship starting from eqn (28). We assume that the LRESC
model adequately reproduces the leading relativistic correc-
tions of molecular properties in both terms, (e–e) and (e–p).
Then we consider that the diamagnetic-like terms of the atomic
shielding in the molecule are approximately equal to those

terms though in the free atom in addition to the nuclear part of

the SRC. In other words, r
ðe�pÞ
Y ffi r

atomðe�pÞ
Y þmpI

gY
Mnuc

Y .

With those considerations the last equation can be generalized
to get a new one, valid within the relativistic domain:

rY ffi
mpI

gY
MY þ ratom

Y þ 1

2
rSO-S
Y : (29)

This new relationship is the natural relativistic generaliza-
tion of Flygare’s model. From it Flygare’s model is recovered in
the NR limit. One important point to highlight is the appear-
ance of the last term, SO-S, that arises from the two-component
relativistic LRESC model.

What one usually do in the treatment of NMR spectroscopic
parameters is to consider isotropic values. They are involved in
the measurable quantities, the chemical shifts. From eqn (29)
such isotropic values are obtained.

In the special case of linear molecules, the two usual compo-
nents of the r tensor (perpendicular and parallel to the mole-
cular axis) are expressed as:

sðe�eÞ?;Y ffi
mpI

gY
M

elecðe�eÞ
?;Y þ satomðe�eÞY þ 1

2
sSO-S?;Y

sðe�pÞ?;Y ffimpI

gY
Mnuc
?;Y þ satomðe�pÞY ;

(30)

and

sðe�eÞk;Y ffi satomðe�eÞY þ 1

2
sSO-Sk;Y

sðe�pÞk;Y ffi satomðe�pÞY :

(31)

As it was shown in a previous work authored by some of
us, the isotropic SO-S contribution is zero.34 Therefore, the
isotropic shielding constant can be expressed as:

sisoY ffi
2

3

mpI

gY
MY þ siso-atomY ; (32)

where M>,Y was replaced by the ‘‘spin-rotation constant’’ MY, as
they are equal when linear molecules are considered.

One of our main concern is the accuracy of the relationships
given in eqn (28) for the (e–e) parts, and eqn (29) for both parts.
We shall compare results of our models with that of four-
component relativistic calculations. The relationship given
in the first row of eqn (30) is the most complete concerning
the dependence of (e–e) terms of the shielding on the SRC, the
atomic contribution to the shielding and the SO-S electronic
mechanism. Then we will give an exhaustive analysis of perpendi-
cular components of s(e–e) for the whole set of molecules
studied here.

With this in mind we shall propose now three models that
consider differently the (e–e) and (e–p) parts. They are given
from the lowest to highest level. The first approach is to
consider that eqn (28) is still valid though taking the relativistic
values of the tensor M (as considered in eqn (29)). Given that
within the NR regime the atomic contributions to the shieldings
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are purely diamagnetic (see eqn (3)) the first model will
consider only the relation among the (e–e) parts of r and the
M tensors.

The next step is obtained adding to the model I a corrective
term associated with atomic contributions. They are non zero
within the relativistic regime. Lastly, eqn (29) shows that an
additional SO-S contribution should be made to the last
approach in order to get a still more accurate relationship
among s and the SRC.

All three models are explicitly shown in Table 1. Their
names were coined as a recognition of the work of the late
Martı́n Ruiz de Azúa.

It may be useful to stress that, in addition to the sSO-S term
which considers an electronic mechanism derived from the
LRESC model, all other terms of eqn (29) correspond to their
four-component relativistic definitions.

Our proposal can be compared with the one of Liu et al.15,18

In their relativistic mapping, the total shielding is obtained
from the experimental SRC and the calculated value of the NR
diamagnetic shielding. They consider three terms, namely: DA,
which is close to the relativistic effect on the paramagnetic-like
mapping; DB, the relativistic effect on the (e–p) diamagnetic-
like shielding; and DC, which gives the relativistic effects on the
nuclear contribution to the SRC, when molecules in their
equilibrium position are considered. It is important to state
that DC is negligibly small, and corresponds to the slight
difference in the molecular geometry due to the inclusion of
relativistic considerations.

On the other hand, the addition of our terms, satom(e–e)

(which is of pure relativistic nature) and 1
2s

SO-S can be related
to the DA term. This is because the (e–p) diamagnetic-like
contribution to the SRC (which is included formally in DA) is
completely negligible, as shown theoretically and in a few
applications by some of us,5,14 and later also by Liu et al.18

Under this consideration, DA is related to our DsII, which will be
defined in eqn (35).

Finally, DB can be approximated as satom(e–p) � sNR-free, in
the same spirit as the original Flygare’s relation, where the
diamagnetic shielding of a free atom serves as an approxi-
mation for the diamagnetic component of the shielding of a
nucleus in its molecular environment.

Even though Liu and coauthor’s proposal introduces
relativistic corrections by means of the four-component defini-
tions of both properties, shielding and SRC, our model goes
one important step further. It resembles as much as possible

Flygare’s criteria of getting an absolute scale from accurate
experimental measurements together with the state-of-the-art
atomic calculations.

3 Computational details

Relativistic four-component calculations of r and M tensors
were carried out in model molecular systems HX (X = F, Cl,
Br, I), XF (X = Cl, Br, I) and IX (X = Cl, Br, I) following
expressions of eqn (9) and (10).

Due to the molecular symmetry, the M tensor (in both
relativistic and NR cases) has only two equal diagonal non-
zero components, which are those perpendicular to the mole-
cular axis of symmetry, referred to as the ‘‘M constant’’. On the
other hand, for the relativistic r tensor, both components
(parallel and perpendicular to the molecular axis) are non-
zero in the relativistic domain. However, in its NR limit it has
a zero parallel component.

In addition, calculations corresponding to the LRESC ana-
lysis of relativistic corrections of both properties were carried
out following eqn (16) and (21).

Relativistic calculations of M constants, and perpendicular
and parallel components of the r tensor were performed at the
RPA level of approach of the polarization propagator formalism
with Dirac-Hartree–Fock wave functions as implemented in the
DIRAC code.23 NR calculations were performed using the DALTON
program package,35,36 also at the RPA level of approach for
molecular properties.

Although quadratic response calculations involving three
triplet operators cannot be performed with the DALTON code,
the SO-S mechanism can be obtained using another response
calculations implemented in it, following the arguments
developed in ref. 34. They were previously used in the calcula-
tion of LRESC contributions to nuclear SRC.14 It is important to
highlight here that the arguments discussed in ref. 34 are valid
only for linear molecules.

The molecular center of mass was taken as the gauge origin
of magnetic potentials in all calculations. Furthermore, an
electron was added to each halogen free atom in order to be
able to perform relativistic shielding calculations of closed
shell atoms using the DIRAC code.

Experimental geometric distances in gaseous phase compounds
were used for HX (X = F, Cl, Br, I),37 XF (X = Cl,37 Br,37 I38) and
IX (X = Cl, Br, I)37 series. The same geometries were used both
in the NR and relativistic calculations. The HX, XF and IX bond
distances in Å are: 0.9170 (HF), 1.2746 (HCl), 1.6283 (ClF),
2.3210 (ICl), 1.4145 (HBr), 1.7590 (BrF), 2.4691 (IBr), 1.6090 (HI),
1.9098 (IF) and 2.6663 (I2).

In relativistic and NR calculations we employed the non-
relativistic Dunning’s augmented correlation-consistent aug-cc-
pCV5Z basis set for H, F and Cl atoms.39 For Br and I we used the
relativistic acv4z basis sets of Dyall, dyall.acv4z.40 In relativistic
calculations, the small component basis sets were obtained by
applying restricted kinetic balance (RKB) prescription as imple-
mented in the DIRAC package.

Table 1 New models for the relationship between r and M tensors,
according to eqn (29)

Approximation rY

M-I mpI

gY
MY

M-II mpI

gY
MY þ ratom

Y

M-III mpI

gY
MY þ ratom

Y þ 1

2
rSO-S
Y
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Unless otherwise indicated, uncontracted gaussian basis
sets were used with the common gauge-origin (CGO) approach
in all calculations. The rate of convergence of shielding values
was studied comparing results that use conventional orbitals
with those obtained using London atomic orbitals in both NR
and relativistic regimes. Results of relativistic isotropic shielding
calculations with and without London atomic orbitals are dis-
played for comparison in the last column of Table 3.

To describe the coulombic electron–nucleus interaction, a
point nuclear model was employed in all calculations. This
nuclear model was used in the derivation of the LRESC opera-
tors of eqn (16) and (21). In line with this, nuclear size effects
were not considered in the present work. They are small or very
small and do not affect the main conclusions of this work.
Nevertheless, in the last column of Table 3 we include the
results of isotropic shieldings using finite nuclei in the electro-
static electron-nucleus interaction, modeled by Gaussian
charge distributions as implemented in the DIRAC package.

Relativistic Dirac–Coulomb Hartree–Fock wave functions
and linear response calculations were performed excluding
bi-electronic (SS|SS) and Gaunt (SL|SL) integrals in all cases
(L and S denote large and small component basis functions,
respectively). The value of the speed of light used throughout all
four-component calculations was 137.0359998 a.u.

We have performed different kinds of relativistic linear
response calculations, considering: (i) both (e–e) and (e–p)
coupling terms, i.e. terms arising from transitions between
occupied and unoccupied positive-energy orbitals, and between
the occupied positive-energy and the unoccupied negative-
energy orbitals, respectively; (ii) only the (e–e) coupling terms;
and (iii) only the (e–p) coupling terms.41 These different calcu-
lating schemes were applied for the calculation of shieldings
and also of the spin-rotation constants.

All the results displayed in the tables and figures of this
article correspond to the scheme of calculations named above
as (i). Only after the full calculation was performed, the (e–e)
and (e–p) parts of the linear response were split.

We have also solved the linear response equations consider-
ing separately the (e–e) and the (e–p) coupling terms. They give
values which are very close to those corresponding to the
coupled equations (scheme (i)); meaning that the error is very
small when ignoring the coupling of the two kinds of coupling
terms in the Hessian.41 These results are in agreement with
previous studies of shieldings.42

Quantitatively, the differences in the (e–e) part of s> are of
1.6% (in 36.34 ppm) for Br in HBr and less than 0.1% for
all other nuclei in the whole set of compounds. For all calculations
of s(e–p)

> the differences are less than 0.1%. For M(e–e)
> the

differences are also negligible, whereas its (e–p) part are vanishingly
small in both cases.

4 Results and discussion

In order to show the accuracy of the results of calculations
using the three models that are specified in Table 1, we start

with the analysis of how atomic are the electronic OZ-K, SZ-K
and B-SO electronic mechanisms. In other words, the validity of
replacing eqn (26) by eqn (28). Then we shall show the results of
calculations of s(e–e)

> vs. different models, e.g. M-I, M-II and
M-III as they are given in Table 1. We shall also show a
comparison with NR values. M(e–e)

Y and s(e–e)
Y were calculated by

applying eqn (9) and (10). As highlighted above one interesting
point is related to the importance of the contribution of the new
SO-S mechanism. This will be addressed in Section 4.3.

The isotropic contributions are analyzed at the end of
this general section. They are used by experimentalists.
Furthermore, we emphasize that our analysis is performed for
linear molecules.

4.1 Core-dependent electronic contributions

In eqn (26) Melec-LRESC
Y and r(e–e)-LRESC

Y are related to each other
by the appearance of four electronic mechanisms. It shows that
some mechanisms that appear in a relativistic framework do
not appear in Flygare’s relation. Most of those mechanisms are
core-dependent.

Given those new findings, we ask ourselves about the
exactitude of the following relation

satom(e–e)-LRESC
Y D sOZ-K

>,Y + sSZ-K
>,Y + sB-SO

>,Y . (33)

We consider the perpendicular components of the relation
among r and M because the parallel component of M is null.

We remind here that the rhs of eqn (33) refers to the
shielding of the given atom in the molecule of interest, whereas
the lhs refers to the isolated atom. If this eqn is valid within an
error of less than 1% we shall assume that eqn (29) can be used
with confidence. In other words, the assumption we used for
getting eqn (28) from eqn (26) is well justified.

In Fig. 1 we show the addition of these three contributions,
defined as

sLRESC-core
>,Y = sOZ-K

>,Y + sSZ-K
>,Y + sB-SO

>,Y (34)

for different atoms in different environments. Then, how close
are satom(e–e)-LRESC

Y and sLRESC-core
>,Y in the worst case? We found

that, for iodine atoms they are 2161 ppm and 2167 ppm,
respectively. For fluorine they are 8.70 ppm and 8.86 ppm,
respectively. So, they are very close to each other.

We also depict the results of four-component calculations of
the (e–e) part for each atom. As can be seen these four-
component values are close to the LRESC contributions for a
given atom in the whole set of molecules studied. Furthermore
we show, in dashed lines, the behavior of the curves that match
both types of points. In the case of LRESC-core points the
dependence is such that satom(e–e)-LRESC

Y C 8.706 � 10�3 ZY
3.129

ppm. On the other hand the four-component points fit with the
following dependence, satom(e–e)

Y C 7.935 � 10�3 ZY
3.125 ppm,

which shows the agreement of the curves. It means that the
leading terms of the LRESC model give results that are close to
that of the four-component RPPA method. There are higher-
order corrections that should be included in order to get closer
results among these two- and four-component methods. It is
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interesting to see that the Mass Correction effect which
corresponds to the SZ-K mechanism scales approximately as
sSZ-K

Y C 11.3 � 10�3 ZY
3.1 ppm.43

We are now able to replace, with confidence, eqn (26) by eqn (28).
Then, we do the next assumption: we assume the equivalence
among LRESC atomic (e–p) terms and the four-component
atomic terms. This fact will produce eqn (29).

4.2 Analysis of models M-I, M-II and M-III

As was mentioned above the relation among nuclear spin-
rotation and nuclear magnetic shielding constants, proposed
by Ramsey and further developed by Flygare, breaks down within
the relativistic regime.

We analyze here in some detail, the application of the three
M-i models to the whole family of compounds selected for our
studies. In all cases we only analyze the perpendicular compo-
nent. As mentioned above we were searching first for new
models that could relate the absolute values of s(e–e) to M
constants. This takes us to the first model, M-I. It considers
that there is no (e–e) contributions from free atoms, an
assumption that is not valid any longer within the relativistic
domain. Then we added such a contribution and the M-II
model appears. Furthermore we realized that another term

should be included, meaning the SO-S term. It gives the best
model we are presenting here, the M-III one.

As the benchmark numbers of s(e–e)
> we use results of four-

component relativistic calculations.
In Fig. 2 we show the values of s>,H in hydrogen halides, HX

(X = F, Cl, Br, I). They correspond to the NR Flygare’s relation-
ship of eqn (2), our models M-i and the four-component s(e–e)

>,H.
The following comments are noteworthy. As stated previously,

the main relativistic effect in sH of hydrogen halides is due to the
SO-L mechanism.7,30 This is included in both constants M and s
as shown in eqn (16) and (21). Therefore, as was shown in ref. 14,
Flygare’s relation is fulfilled in this particular case.

In addition, the core contributions of satom(e–e)
H arising from

OZ-K, SZ-K and B-SO mechanisms are negligibly small. Then,
the models M-II and M-III are equivalent so that they are able to
describe s(e–e)

>,H with good accuracy. Their values are within 5%
for iodine, which is the heaviest atom in the series.

In Fig. 3 we show the (e–e) values corresponding to the heavy
atom X of hydrogen halides. It is seen that when the nucleus X
becomes heavier, core relativistic effects become more impor-
tant, and therefore the values obtained using the model M-I
fail. It is observed that the values of sM-I

>,X are still close to the NR
values sNR-para

>,X even when the atomic number of the nucleus X
increases.

Fig. 1 Comparative values of sLRESC-core
>,Y , satom(e–e)

Y and satom(e–e)-LRESC
Y for

the family of compounds HX (X = F, Cl, Br, I), XF and IX (X = Cl, Br, I). In
dashed lines approximate estimations for both kind of approximations are
shown. All values are given in ppm.

Fig. 2 Patterns of the dependence of s(e–e)
>,H in HX (X = F, Cl, Br and I), the

ones obtained with different models of Table 1, and Flygare’s relation of
eqn (2). sNR-para

>,H is also given. All values are in ppm.
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On the other hand, by including the atomic value of
satom(e–e)

X we obtain a very good agreement between the results
of four-component relativistic calculations and those of M-II
and M-III models.

Another set of molecules, namely IX (X = H, F, Cl, Br, I), was
studied performing calculations of s and M constants for
both the iodine and the X nuclei. Results corresponding to
the three models M-I to M-III are compared with the values of
reference s(e–e)

>,I . They are shown in Fig. 4 together with the
NR values, sNR-para

>,I .
Since core effects for the shielding of iodine are close to

the values of satom(e–e)
I (I1936 ppm), a large difference between

s(e–e)
>,I and sM-I

>,I is expected. This is what is observed in Fig. 4.
Moreover, the larger the value of ZX, more accurate the model
M-II becomes. This allows us to conclude that also in this case,
both models M-II and M-III improve relativistic Flygare’s
prescription.

Results of calculations for nucleus X in the IX family of
compounds are shown in Fig. 5. Some observations are in place
about what is shown in this figure. As ZX increases, the values of
sNR-para
>,X become closer to sM-I

>,X than to the four-component s(e–e)
>,X .

This fact indicates a huge failure in Flygare’s relation. For iodine,
the difference among the most accurate four-component value

and that of the M-III model is about 50 ppm, while that given
by eqn (2) is larger than 2000 ppm.

The family XF of compounds is a special case. For these
molecules the large electronegativity of the fluorine atom
gives rise to large spin–orbit effects, which include both SO-L
and SO-S. While the SO-L is already accounted for in Flygare’s
relation, the SO-S is neither atomic nor included in the Flygare’s
relation. This mechanism, which is not included in the models
M-I and M-II, will be analyzed in the next subsection.

For the fluorine atoms the value of satom(e–e)
F is approximately

10 ppm. On the other hand, as depicted in Fig. 6, the difference
between sM-I

>,F and sNR-para
>,F in IF is close to 170 ppm, where the

main relativistic effect is the SO-S contribution to the NSR
constant; also higher-order effects play an important role. There
is still a difference of 100 ppm with s(e–e)

>,F which is also associated
with the SO-S mechanism.

4.3 Contributions from the SO-S mechanism

As shown in the previous section, although the model coined
as M-II in Table 1 describes s(e–e)

> adequately, for most of the
molecular systems studied here there are some molecules in
which there exists an appreciable difference between these
values. These systems have large spin–orbit effects in which

Fig. 3 Patterns of the dependence of s(e–e)
>,X in HX (X = F, Cl, Br and I), the

ones obtained with different models of Table 1, and Flygare’s relation of
eqn (2). sNR-para

>,X is also given. All values are in ppm.

Fig. 4 Patterns of the dependence of s(e–e)
>,I in IX (X = H, F, Cl, Br and I), the

ones obtained with different models of Table 1, and Flygare’s relation of
eqn (2). sNR-para

>,I is also given. All values are in ppm.
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case the model M-II does not work properly. In the third
column of Table 2 we show results of the differences between
the perpendicular (e–e) component of the shielding and the
values of sM-II

> . This difference was calculated as

DsII
>,Y = s(e–e)

>,Y � sM-II
>,Y. (35)

The contributions of the SO-S mechanism are given in the
fourth column of Table 2. For the heavier atoms in the family
of HX compounds, the SO-S mechanism accounts for the error
in the model M-II, with an agreement that is within 25% for
chloride, 7% for bromine and 5% for iodine. Although for
Hydrogen the SO-S mechanism does not describe adequately
the difference within the errors defined above, this difference is
always smaller than 5%. On the other hand, for XF compounds
the errors are larger, especially for iodine in IF with a difference
between sSO-S

>,I and DsII
>,I that is close to 500 ppm, as shown

in Fig. 7.
In Fig. 8 we show the importance of the SO-S contribution,

depending on how heavy the atom is the studied molecule. For
light systems DsII is small, but it increases dramatically when
the atoms become heavier. In the case of IX systems one must
include the contributions of the SO-S mechanism in order to
get closer results to the four-component calculations.

Fig. 5 Patterns of the dependence of s(e–e)
>,X in IX (X = H, F, Cl, Br and I), the

ones obtained with different models of Table 1, and Flygare’s relation of
eqn (2). s(NR-para)

>,X . All values are in ppm.

Fig. 6 Patterns of the dependence of s(e–e)
>,F in XF (X = Cl, Br and I), the

ones obtained with different models of Table 1, and Flygare’s relation of
eqn (2). s(NR-para)

>,F . All values are in ppm.

Table 2 Results of calculations using eqn (35) and the contribution of
sSO-S
>,Y from the LRESC formalism for comparison. In the second column

an atomic index is given for each atom. This is the order shown in Fig. 8
in the abscissa

Molecule Y(index) DsII
>,Y

1
2s

SO-S
>Y

HF F (1) 0.1229 0.4047
H (2) 0.0056 �0.007

HCl Cl (3) 1.7835 2.2359
H (4) �0.0002 �0.0162

HBr Br (5) 18.8324 20.2157
H (6) �0.2479 �0.0555

HI I (7) 76.0476 79.7705
H (8) �2.0068 �0.1082

ClF Cl (9) 19.1046 22.8714
F (10) �6.0071 �6.5715

BrF Br (11) 203.1594 262.9432
F (12) �36.8840 �42.3210

IF I (13) 761.1004 1258.1374
F (14) �93.1288 �113.4171

ICl I (15) 405.6070 652.6087
Cl (16) �70.2610 �103.8723

IBr I (17) 289.0529 483.3305
Br (18) �15.7822 �112.1212

I2 I (19) 175.9080 162.9558
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4.4 Isotropic values of r

In this subsection we shall analyze the accuracy of the results of
calculations with our models as compared with the results of
calculations of siso performed with four-component relativistic
polarization propagators. As mentioned at the end of Section 1
we obtain the total value of s through the calculation of two
independent terms, meaning (e–e) and (e–p). Each one of them
does have different accuracies.

Even though the SO-S mechanism is quite important
for heavier systems, it does not contribute to the isotropic
parameters for linear molecules, as shown in eqn (32). It is
worth mentioning that the formal expressions of models M-II
and M-III are the same for linear molecules.

In Table 3 we show the contributions of each different term of
the rhs of eqn (32), their addition and the value of four-component
calculation of isotropic shieldings. We include also the values of
siso using gaussian-type nuclear models as implemented in the
DIRAC code, showing that almost all results are close to those
obtained using a point-type nuclear model. An exception is the
shielding of iodine in all compounds, where a systematic nuclear
size effect contribution of 20 ppm is obtained. This indicates that
this effect is very local and of atomic nature. In addition, we
display values of isotropic shieldings using London atomic orbitals
(with gaussian-type nuclear model), and show that our results are
quite good; meaning that our basis sets are of such a quality that
the total values obtained with them are close (less than 0.4% of
difference in all cases) to that obtained with London orbitals.

Table 3 Isotropic contributions to the nuclear shielding of linear molecules. The last column contains the results of four-component calculations.
Results obtained using the gaussian-type nuclear model (with and without London atomic orbitals), and values taken from other authors are given
between parentheses. Available experimental values of SRC are given between brackets. All values are in ppm

Mol ZY

2

3

mpI

gY
MY satom

Y

2

3

mpI

gY
MY þ satomY siso

Y

HF 9 �57.95 480.38 422.43 415.84
[�57.01] f (415.84)a (415.98)b

(418.36)c (416.2)d

HCl 17 �192.38 1132.22 939.84 934.18
[�189.35]g (934.17)a (934.00)b

(973.9)d

HBr 35 �482.78 3357.02 2874.23 2867.10
[�499.39]h (2865.24)a (2865.51)b

(2945.66)c (2899.4)d

HI 53 �900.50 6424.24 5523.74 5488.83
[�978.12]i (5469.77)a (5469.93)b

(5860.34)c (5716.3)d

ClF 9 210.96 480.38 691.34 683.91
[168.48] j (683.91)a (684.30)b

(640.4)e

BrF 9 291.93 480.38 772.31 756.73
[263.76]k (756.72)a (756.86)b

(666.2)e

IF 9 375.82 480.38 856.20 790.75
[386.64]k (790.75)a (787.28)b

(747.3)e

ClF 17 �1598.31 1132.22 �466.10 �473.76
[�1559.00] j (�473.78)a (�473.88)b

(�617.5)e

BrF 35 �3568.06 3357.02 �211.04 �255.50
[�3638.56]k (�258.18)a (�258.03)b

(�221.7)e

IF 53 �5621.35 6424.24 802.90 531.00
[�6108.51]k (507.57)a (507.74)b

(366.2)e

ICl 53 �2819.73 6424.24 3604.51 3348.58
(3326.03)a (3326.48)b

IBr 53 �2177.63 6424.24 4246.61 4006.37
(3984.55)a (3984.96)b

I2 53 �1234.44 6424.24 5189.80 5132.57
(5112.98)a (5103.90)b

ICl 17 25.75 1132.22 1157.97 1129.35
(1129.32)a (1124.49)b

IBr 35 �388.30 3357.02 2968.72 2984.86
(2983.12)a (2974.95)b

a Calculations using the gaussian nuclear model and conventional orbitals. b Calculations using the gaussian nuclear model and London atomic
orbitals. c Taken from ref. 11. d Taken from ref. 44. e Taken from ref. 45. f Experimental value of MY taken from ref. 46. g Experimental value of MY
taken from ref. 47. h Experimental value of MY taken from ref. 48. i Experimental value of MY taken from ref. 49. j Experimental value of MY taken
from ref. 50. k Experimental value of MY taken from ref. 51.
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In the same table we show the results of previous calcula-
tions, which are close to ours in most compounds.

We also observe that the closeness of the results obtained
with our models, compared with those of four-component
relativistic methods, depends on the type of compounds and
also with the type of atoms. The closest is found for Br in HBr,
where the difference is of 0.25%. In the whole family of
hydrogen halides the largest difference is of 1.58% for sF. For
the other family of compounds, meaning that of the XY type
(X and Y = F, Cl, Br, I), the closeness varies quite a lot, being
among 51% for sI in IF till 0.54% for sBr in IBr. There is a large
difference for Br in BrF (17.4%). All other results are close to or
less than 8%. Calculations with models M-i (i = I, II and III) in
the XF family of compounds give the worst results.

Why do we find such a difference in the performance of our
models? In Table 4 we show the results of calculations for both
terms, (e–e) and (e–p), of eqn (32) though considering each
component as given in eqn (30) and (31). Then it is possible to
get an indication about how good are the (e–e) and (e–p) terms of
our models to reproduce the four-component equivalent terms.

It is important to highlight the fact that the (e–e) contribution
to the atomic shielding increase with the nuclear charge. This is
one of the reasons why Flygare’s NR relationship fails within the
relativistic framework because it considers that this contribution

is zero. At the four-component level the atomic shielding, satom
Y ,

arises as the addition of both satom(e–e)
Y and satom(e–p)

Y .
Now we analyze the worst cases: IF and BrF. For sF in the BrF

molecule, the reproduction of the (e–e) part has a 3.53% of

Fig. 8 DsII
>,Y and 1

2s
SO-S
>Y as a function of the atomic index defined on Table 2.

Table 4 Isotropic values of shieldings in ppm. The last two columns show
results of four-component relativistic calculations

Mol ZY
2

3

mpI

gY
M
ðe�eÞ
Y satom(e–e)

Y
2

3

mpI

gY
Mnuc

Y satom(e–p)
Y s(e–e)

Y s(e–p)
Y

HF 9 �67.67 9.04 9.72 471.34 �58.81 474.65
HCl 17 �199.54 58.08 7.16 1074.13 �141.69 1075.87
HBr 35 �489.34 528.71 6.56 2828.31 36.34 2830.76
HI 53 �906.30 1936.39 5.79 4487.86 998.97 4489.86

ClF 9 176.52 9.04 34.43 471.34 185.13 498.78
BrF 9 255.77 9.04 36.16 471.34 255.78 500.95
IF 9 341.95 9.04 33.87 471.34 292.66 498.09

ClF 17 �1631.93 58.08 33.62 1074.13 �1574.86 1101.10
BrF 35 �3606.79 528.71 38.73 2828.31 �3118.05 2862.54
IF 53 �5659.89 1936.39 38.54 4487.86 �3992.59 4523.58

ICl 53 �2873.74 1936.39 54.01 4487.86 �1190.05 4538.63
IBr 53 �2259.83 1936.39 82.21 4487.86 �560.47 4566.84
I2 53 �1327.90 1936.39 93.45 4487.86 557.66 4574.91

ICl 17 �20.60 58.08 46.35 1074.13 16.00 1113.35
IBr 35 �465.62 528.71 77.32 2828.31 86.10 2898.76

Fig. 7 Patterns of the dependence of s(e–e)
>,X in the set of molecules XF

(X = Cl, Br and I), the ones obtained with different models of Table 1, and
Flygare’s relation of eqn (2). s(NR-para)

>,X . All values are in ppm.
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difference with respect to the four-component relativistic
shielding calculation though it is of 1.31% for the (e–p) part.
In the case of sBr in the same molecule the differences in both
(e–e) and (e–p) parts are 1.28% and 0.16%, respectively. For sF

in IF the (e–e) part has a difference of 20% while for the (e–p)
part such a difference is of 1.4%. In the case of sI such
differences are of 6.7% and less than 0.1%, respectively. One
can conclude that the differences among the results using four-
component relativistic methods and our M-II or M-III models
arise from both parts, (e–e) and (e–p). In the case of BrF and IF,
the contributions of both of them are of opposite sign and of
equivalent magnitude. Then, the errors in each of them are
added to give larger values. On the other hand, the errors in the
(e–p) part are smaller than in the other part. So, when the
contributions of the (e–p) part are much larger than the (e–e)
part, the error in the total values is the smallest.

On the other side, our models may be considered the natural
extension of Flygare’s prescription, because they allow us to
obtain absolute shielding values from experimental nuclear
spin-rotation data combined with atomic calculations, which
can be obtained to a high level of accuracy.

5 Conclusions

Absolute NMR magnetic shieldings can usually not be extracted
from experiments. In order to get ‘‘experimental’’ values, what
was broadly applied by experimentalists was a relationship
proposed a long time ago by Ramsey and then extended by
Flygare. It gives quite good values when molecular systems do
not contain heavy atoms. Otherwise it breaks down. For heavy-
atom containing molecules one should look for new ways of
getting a relationship among nuclear spin-rotation and mag-
netic shielding constants, M and s, respectively, that should be
valid within a relativistic framework.

One of the goals of this work is to offer new models that
generalize that of Flygare. We developed three, e.g. M-i (i = I, II
and III) the best one being the M-III. Our models can be used to
obtain ‘‘experimental’’ as well as theoretical values of shield-
ings. They consider the new relativistic relationship among
magnetic shieldings and spin-rotation tensors developed
recently by some of the present authors, and also accurate
four-component calculations of the shielding of free atoms.

To get our new models we first performed a two-component
relativistic analysis of the relationship among M and s. From this
analysis we were able to introduce the following two assumptions:
� There should be an equivalent relationship among M

and s that is valid within both relativistic formalisms, i.e. the
four-component relativistic polarization propagator and the
two-component LRESC model
� The core-dependent part of such a relationship is such that

it can be replaced by summing the contributions (e–e) and (e–p)
to the shielding of free atoms. Its most accurate value is
obtained applying four-component relativistic methods.

Given these two assumptions and the fact that the spin-
rotation tensor does not contain (e–p) contributions within the
LRESC model (meaning that only very small contributions are

likely obtainable for these terms within a relativistic regime),
we took one step further and proposed three models of which
the most accurate is given by eqn (29), or

rY ffi
mpI

gY
MY þ ratom

Y þ 1

2
rSO-S
Y : (36)

It is worth highlighting here that a new term coined as SO-S
must be considered. One should include this term in order to
get results that may match the most accurate ones, i.e. that of
the four-component calculations.

The isotropic shielding for linear molecules is obtained
from the last expression as

sisoY ffi
2

3

mpI

gY
MY þ satomY : (37)

This expression has the same formal appearance as that of
eqn (3). In other words it is the natural relativistic general-
ization of the famous Flygare relationship among NMR shield-
ings and spin-rotation constants.

Another important finding is that reliable (e–e) contributions for
free atoms can be obtained as satom(e–e)

Y C 7.935� 10�3 ZY
3.125 ppm.

The magnetic shieldings of a set of halogen containing
diatomic molecules were calculated applying the three models.
The perpendicular component of the shieldings was analyzed
because such a component is the most sensible to the relation-
ship among tensors M and r.

When the results obtained applying our models were com-
pared with those of the relativistic formalism of polarization
propagators, it was found that for the total shielding constants,
the best agreement was found for hydrogen halides. In this case
the largest difference was less than 0.7%. For the other set of
molecules, e.g. XY (X and Y = F, Cl, Br and I), we also obtained
close results together with some exceptions. The largest errors
appear when the contributions of the two different terms of
eqn (29) have different sign and similar absolute values. This
happens for di-halogen molecules.
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J. K. Lærdahl, Y. S. Lee, H. S. Nataraj, P. Norman, G. Olejniczak,
J. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner,
R. di Remigio, K. Ruud, P. Sałek, B. Schimmelpfennig,
J. Sikkema, A. J. Thorvaldsen, J. Thyssen, J. van Stralen,
S. Villaume, O. Visser, T. Winther, and S. Yamamoto, 2014,
see http://www.diracprogram.org.

24 A. F. Maldonado, J. I. Melo and G. A. Aucar, J. Mol. Model.,
2014, 20, 2417–2432.

25 G. A. Aucar, T. Saue, L. Visscher and H. J. A. Jensen, J. Chem.
Phys., 1999, 110, 6208–6218.

26 I. A. Aucar, S. S. Gomez, C. G. Giribet and M. C. Ruiz de Azúa,
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