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11 Abstract The incidence of epichloid endophytes in popula-
12 tions of wild grasses is usually variable, and the knowledge
13 about distribution patterns and how environmental factors
14 affect such an incidence is limited. Here we performed a broad
15 scale survey data to study whether the distribution patterns
16 and the incidence of vertically-transmitted endophytes in pop-
17 ulations of two native grasses from South-America, Poa lanu-
18 ginosa Poir. and Poa bonariensis (Lam.) Kunth., are
19 associated with environmental characteristics. We also char-
20 acterized the endophytes from different populations to estab-
21 lish if the genotype of the endophytes is also correlated with
22 environmental variables. The incidence of endophytes ranged
23 from 0 to 100 % in both host species. In P. lanuginosa,
24 endophytes were only found in populations on sandy coastal
25 dunes and their incidence was positively associated with
26 winter regime rainfall and soil water availability in the grow-
27 ing season. In P. bonariensis, endophytes were only found in

28populations in xerophytic forests and their incidence was
29highly associated with plant community. The distributions of
30infested populations suggested that the endophytes are not
31found in those areas with the most favorable or most stressing
32growth conditions accordingly to climatic or edaphical char-
33acteristics. Only the vertically transmitted hybrid endophyte
34species Neotyphodium tembladerae was detected in both host
35species. Under the hypothesis of vertical transmission, these
36results suggested that the endophyte should have been lost in
37endophyte free populations but is maintained in populations
38established in environments presenting moderate stress as
39salinity or short drought periods.

40Keywords Neotyphodium . Endophytes . Epichloae . Poa .

41Distribution . Incidence

421 Introduction

43Most if not all plants in natural ecosystems are symbiotic
44with mycorrhizal fungi or fungal endophytes (Petrini 1986;
45Rodriguez et al. 2009). Many grass species, in the subfamily
46Pooideae, establish particular symbiotic associations with
47endophytic fungi in the genus Epichloë Tul. (Hypocreales,
48Clavicipitaceae), and with their evolutionary derivative spe-
49cies of the anamorphic genus Neotyphodium Glenn, Bacon
50and Hanlin.
51Epichloid endophytes systemically and asymptomatically
52colonize the apoplast (Schardl et al. 2004) and the phyllo-
53plane (White et al. 1996; Moy et al. 2000; Christensen et al.
542012) of the aboveground tissues of their hosts. Epichloë
55species produce perithecia on stromata that choke the inflor-
56escences, causing total or partial sterility of the host plants
57(White et al. 1993; Chung and Schardl 1997), and the
58ascospores produced in the perithecia are responsible for
59horizontal transmission of these fungi. All asexual epichloae
60and some sexual species are vertically transmitted within the
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61 caryopses, colonizing the seedling as seeds germinate
62 (Schardl et al. 2004). Although some asexual epichloae
63 appear incapable of horizontal transmission (Latch and
64 Christensen 1985), recently, it has been demonstrated that
65 the asexual (yet stroma-forming) species Epichloë poae
66 Tadych, Ambrose, Belanger and White is capable to be
67 horizontally transmitted via conidia (Tadych et al. 2012).
68 In general, epichloid endophytes have been considered to
69 be strong mutualistic symbionts of their hosts (Schardl
70 1996; Clay and Schardl 2002). They produce a battery of
71 alkaloids detrimental for insect and vertebrate herbivores
72 (Schardl et al. 2004). These endophytes also promote plant
73 growth and confer resistance to different stresses
74 (Malinowski and Belesky 2000; Iannone et al. 2012a).
75 However, in recent years, evidence has indicated endophyte
76 effects ranging from beneficial to detrimental, depending on
77 host genotype and environmental factors (Hesse et al. 2003;
78 Cheplick 2004; Faeth et al. 2004; Faeth et al. 2010).
79 The incidence of epichloid endophyte infections in natural
80 populations of wild grasses is very variable, ranging from 0 to
81 100 % (Lewis et al. 1997; Schulthess and Faeth 1998;
82 Saikkonen et al. 2000; Novas et al. 2007; Rudgers et al.
83 2009; Iannone et al. 2011). In addition, the same host species
84 may be associated with different endophytes and different
85 endophyte genotypes could be found through different envi-
86 ronments (Hamilton et al. 2009; Iannone et al. 2009).
87 In some grass species the incidence of endophyte is asso-
88 ciated with such environmental characteristics as altitude,
89 abundance of herbivores, plant community and soil or climate
90 (Schulthess and Faeth 1998; White et al. 2001; Bazely et al.
91 2007; Granath et al. 2007; Novas et al. 2007; Hamilton et al.
92 2009; Lembicz et al. 2011). However, considering the great
93 diversity of host grass species, the association of endophytes
94 with wild grasses has been poorly studied in terms of geo-
95 graphical distribution patterns of endophyte-infested popula-
96 tions and the incidence of endophytes in wild populations. To
97 better understand the ecology and biology of these symbioses,
98 it is necessary to increase the range of studied host species to
99 determine the distribution pattern and incidence of endophytes
100 in natural populations.
101 In Argentina, only asexual epichloae have been detected
102 infecting many native grass species, covering a wide range
103 of environments with different degrees of incidence on
104 natural populations (0–100 %) (Iannone et al. 2011). The
105 hybrid (Epichloë poae x E. festucae) Neotyphodium tembla-
106 derae Cabral and White is the most common endophyte,
107 infecting more than 10 host species in the genera Briza,
108 Bromus, Festuca, Melica, Phleum and Poa (Iannone et al.
109 2012b). In a preliminary study we reported that the inci-
110 dence of endophytes in Poa bonariensis would be associat-
111 ed with climatic conditions and plant communities (Iannone
112 et al. 2012b) but the identity of the endophyte was not
113 established. In the same way, and in order to establish if

114endophyte incidence is associated with environmental char-
115acteristics, we expanded our studies to new populations of P.
116bonariensis and extended them to populations of Poa lanu-
117ginosa. These two host species inhabit a wide range of
118environments in Argentina, most of them herein sampled.
119In addition, in order to establish if different endophytes were
120associated with each host species or with a particular envi-
121ronment, we performed phylogenetic analyses of DNA
122sequences of the intron-rich regions of the β-tubulin
123(tubB) and translation elongation factor 1-α (tefA) genes.

1242 Materials and methods

1252.1 Host species

126Poa lanuginosa and Poa bonariensis are perennial, dioe-
127cious and rhizomatous species of the subfamily Pooideae
128(Poaceae). These two species can be differentiated accord-
129ing to the size of the spikelets, leaf blade width and size of
130ligules (Giussani et al. 2012).
131Poa lanuginosa inhabits grasslands and steppes on sandy
132soils in southern Argentina from the Atlantic coast in the
133east to the Andes Mountains in the west, and from parallel
13435°S southward to Tierra del Fuego. Poa bonariensis inhab-
135its grasslands and xeric forests of the Pampean and
136Mesopotamic regions between 30°S and 38°S (Giussani
1372000).

1382.2 Geography and ecology

139The surveyed area extends between 35°S and 42°S, and
140from the Atlantic coast in the east to the Andes in the west,
141in Argentina; the sampled area is shown in Fig. 1. Hence,
142sampling was performed in almost the totality of the distri-
143bution area of both host species in Argentina. This area
144includes the Humid Pampa (a vast plain of temperate sub-
145humid grasslands (Soriano 1991)) (Fig. 1), the phytogeo-
146graphical province of xeric forests known as Espinal
147(Cabrera 1976) which extents as a bow from the north to
148the southwest surrounding the grasslands of the Pampa
149region (these forests are also found on the banks of the
150Paraná and Río de la Plata rivers (Cabrera 1976; Ribichich
1512002)) (Fig. 1), and the Monte phytogeographical province
152in the western and southwestern region of the surveyed area
153characterized by shrubby dry forests and scrubby dry
154steppes in northern Patagonia and the Andes foothills
155(Cabrera 1976) (Fig. 1).

1562.3 Population sampling

157Field collections were performed during spring and summer
158of 2005, 2006, 2007 and 2008. Seventy-four collection sites

L.J. Iannone et al.
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159 were selected to represent most of the diversity of ecosys-
160 tems in the ranges of P. lanuginosa and P. bonariensis.
161 Collection sites were in pasture fields, forests with cattle,
162 or sides and shoulders of country roads usually grazed by
163 domestic cattle. Each collection site was considered as a
164 community, and, if present, the set of individuals of each
165 species was considered as a local population. Forty-six
166 populations of Poa lanuginosa and 28 populations of Poa
167 bonariensis were studied (Table 1) (Fig. 1). Twenty plants—
168 10 male and 10 female—were collected 10 m apart from
169 each population. Plants were stored in nylon bags at 5 °C
170 until endophyte detection and isolation in the laboratory.

171 2.4 Endophytes detection and incidence

172 The frequency of endophyte-infected plants in each popula-
173 tion was established by testing 2–5 culms or 20 seeds of
174 each plant as follows. Parenchymal tissues scraped from
175 culm pith, or seeds previously softened in 10 % NaOH for

1768 h at 20 °C, were stained with aniline blue (0.1 % aqueous)
177(Clark et al. 1983) and observed under a light microscope.
178Plants were considered as endophyte-infected if characteris-
179tic unbranched hyphae were observed in parenchymal tis-
180sues or when a mass of hyphae stained dark blue was
181observed in the aleurone cell layer.

1822.5 Environmental metadata

183At each collection site, the geographical coordinates and the
184elevation above sea level (m) were registered with a global
185positioning system (GPS). Populations were characterized
186according to plant community (dominant plant species), eco-
187logical characteristics of the environment and following char-
188acterizations performed by Parodi (1940), Cabrera (1976) and
189Soriano (1991). The communities identified were: a)
190Grasslands in the inland Pampa, on sandy fertile soils and
191dominated by Poa ligularis and Stipa spp.; b) Grasslands in
192the humid Pampa, on soils rich in humus andmainly composed
193by Bromus catharticus and the introduced species Lolium spp.
194andFestuca arundinacea; c) Grasslands in the flooding Pampa
195(a region with flood periods) dominated by Stipa spp.,
196Paspalum sp. and Distichlis spp.; d) Grasslands in hills be-
197tween 200 and 600 m, in Tandilia and Ventania hills systems
198where rocky soils predominate and the dominant species are
199Stipa spp., Bromus auleticus, Briza subaristata and Eringyum
200sp. (Soriano 1991); three communities of xerophytic forests: e)
201Xerophytic forest with Prosopis spp. as dominant species on
202sandy or clayey soils in the north and west of the grasslands
203region in the phytogeographical “Espinal” province (Fig. 1), f)
204Xerophytic forest of Prosopis spp. and Celtis tala which are
205located on neutral or acidic soils along the Paraná river and g)
206Xerophytic forests with Celtis tala, Prosopis sp. and Scutia
207buxifolia on alkaline soils (pH08) in ridges of shell debris rich
208in CaCO3 along the banks of Río de la Plata River also
209considered in the “Espinal” phytogeographical province; h)
210Shrub steppes with Larrea spp., Chuquiraga sp. and Stipa
211sp. as dominant species in Northern Patagonia and Andes
212foothill in the “Monte” phytogeographical province; i) Salt
213flats mainly with Atriplex lampa, Psila spartioides, Suaeda
214divaricata andDistichlis sp.; and j) Coastal dunes communities
215dominated by Panicum racemosum and Poa lanuginosa or
216Poa bergii depending on the latitude and proximity to the sea,
217and also in some places Pinus sp. and Acacia sp. that were
218introduced to fix the dunes.
219Eight climatic variables were recorded or recalculated from
220De Fina (1992), a publication that consists of the average
221values of a 10–30 years compilation of climatic data obtained
222from the meteorological stations nearest the sampled locali-
223ties. The recorded variables were: (1) the warmest month
224average temperature (wmat) (°C), (2) the coldest month aver-
225age temperature (cmat) (°C), (3) the annual average rainfall
226(aar) (mm), (4) the summer average rainfall (sar) (mm), (5) the
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Fig. 1 Map of the surveyed area showing the populations of Poa
lanuginosa (squares) and Poa bonariensis (circles). Symbols are col-
ored differently according to the incidence of endophytes in the pop-
ulation, ranging from white (0 %) to black (100 %). Shaded areas in the
map represent different ecological regions (phytogeographical provin-
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t1:1 Table 1 Surveyed populations of Poa lanuginosa and Poa bonariensis, other hosts of Neotyphodium tembladerae living in sympatry, environ-
mental and floristic characteristics of the community, endophyte incidence in the population (%) and identification number of the isolates studiedQ5

t1:2 Poa lanuginosa Population Sympatric hosts Environment Incidence Isolates

t1:3 San Clemente (BA) 1 Bau 100 2471

t1:4 Pta. Medanos (BA) 2 100 2474

t1:5 Pinamar (BA) 3 Bau 100 2589

t1:6 V. Gessell (BA) 4 Bau 100 2516-2517

t1:7 Mar Azul (BA) 5 Bau 100 2476-2775-2776-2777

t1:8 Mar Chiquita (BA) 6 Bau 10 2515

t1:9 Mar del Sur (BA) 7 Coastal dunes 0

t1:10 Reta (BA) 8 Pbe 30 2518

t1:11 Claromecó (BA) 9 Pbe 0

t1:12 Monte Hermoso (BA) 10 0

t1:13 El Condor (RN) 11 Pbe 0

t1:14 S.A.Oeste (RN) 12 Pbe 0

t1:15 Las Grutas (RN) 13 Pbe 0

t1:16 Caleta Valdez (CH) 14 50 2477

t1:17 Puerto Pirámides (CH) 15 0

t1:18 Bahia Blanca (BA) 16 0

t1:19 Salitral Vidriera (BA) 17 0

t1:20 Buratovich (BA) 18 Salt flats 0

t1:21 S.Colorada Grande (RN) 19 0

t1:22 RN251-(RN) 20 0

t1:23 Península Valdez (CH) 21 0

t1:24 Florentino Ameghino (CH) 22 0

t1:25 Maquinchao (RN) 23 Far Shrub steppes in North Patagonia 0

t1:26 RN251 & RN 22 (RN) 24 0

t1:27 RN 251 Km160 (RN) 25 0

t1:28 RN 251 Km192 (RN) 26 0

t1:29 R3 km1025 (RN) 27 0

t1:30 Arizona-Road 47 (SL) 28 0

t1:31 Gonzales Moreno (BA) 29 0

t1:32 Trenque Lauquen (BA) 30 Grasslands on dunes in inland
Pampa or delta of Paraná river

0

t1:33 Pehuajo (BA) 31 0

t1:34 Bolivar (BA) 32 0

t1:35 Est. Bonifacini (BA) 33 0

t1:36 Carhue (BA) 34 0

t1:37 Ibicuy (ER) 35 0

t1:38 Rivera (BA) 36 0

t1:39 General Hacha (LP) 37 0

t1:40 Valle Utracan (LP) 38 Xerophytic forests. of Prosopis
spp on sandy soils

0

t1:41 Hucal (LP) 39 0

t1:42 Fortuna (SL) 40 0

t1:43 Unión (SL) 41 0

t1:44 Agua del Toro (M) 42 0

t1:45 Diamante (M) 43 Shrub steppes in Andes foothills 0

t1:46 Confluencia (N) 44 0

t1:47 Las Lajas (N) 45 0

t1:48 Pareditas (M) 46 0

L.J. Iannone et al.
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227 winter average rainfall (war) (mm). The recalculated variables
228 were: (6) the ratio between average rainfall in winter and
229 summer (war/sar). Variables of water availability in soil in
230 winter (7) and in summer (8), (wasw) and (wass) respectively,
231 were calculated accordingly to Thornthwaite (1948), a model
232 that considers the rainfall and the potential evapotranspiration
233 of the soil as a variable of the latitude.
234 Poa bonariensis populations were additionally character-
235 ized according to soil properties. Soil samples of the upper
236 horizon (10–30 cm) were taken in 16 populations representa-
237 tive of the different environments from all ecological areas
238 (populations: 47–49, 52, 54, 57, 59, 62–63, 65–68, 70, 72,
239 74). Soil samples were subjected to the following analyses,

240according to Jackson (1982): pH in water solution 1:25; elec-
241tric conductivity (E.C.); total Carbon (C) (Walkley-Black);
242total Nitrogen (N) (Kjeldahl); cation exchange capacity
243(C.E.C.) in ammonium acetate, 1 N, pH7; and the macronu-
244trients: P, Ca, Mg, Na and K by the Laboratory of Geological
245and Edaphological Chemistry, CONICET, Argentina.

2462.6 Numerical analyses

247Principal Component Analysis (PCA) was used to characterize
248sampling sites according to climatic variables or soil variables.
249The PCA was performed on a standardized character matrix.
250Variables were standardized accordingly to Matteucci and

t1:49 Poa bonariensis Population Sympatric hosts Environment Incidence Isolates

t1:50 Punta Indio (BA) 47* Bau 100 2468-2469-2495-2498-2780

t1:51 Punta Piedras (BA) 48* Bau Xerophytic forest of Celtis tala, Scutia
sp. and Prosopis sp. on ridges of
shell debris

50 2497

t1:52 Est. San Jerónimo (BA) 49* 0

t1:53 Magdalena (BA) 50 100 2470

t1:54 Esquina de Croto (BA) 51 100 2563-2564

t1:55 Sevigne (BA) 52* Grasslands in the flooding Pampa 0

t1:56 Coronel Vidal (BA) 53 Bau 0

t1:57 Mar Azul (BA) 54* Bau 0

t1:58 Sierra de los Padres (BA) 55 0

t1:59 Laguna Brava (BA) 56 Grasslands in hills between 200
and 600 masl

0

t1:60 Balcarce (BA) 57* 0

t1:61 Tandil (BA) 58 Bau 0

t1:62 Saladillo (BA) 59* Grasslands on humus-rich soils 0

t1:63 Junín (BA) 60 0

t1:64 Ibicuy (ER) 61 Grasslands in delta of Paraná river 0

t1:65 Médanos (ER) 62* 0

t1:66 Gualeguay (ER) 63* Xerophytic forests of Prosopis spp.
on clayey soils

0

t1:67 Arroyo Obispo (SF) 64 0

t1:68 Progreso (SF) 65* 0

t1:69 Villaguay (ER) 66* 75

t1:70 Paso La Laguna (ER) 67* 90 2590

t1:71 Arroyo Feliciano (ER) 68* Xerophytic forests of Prosopis spp.
and Celtis tala on neutral or slightly
acidic soils

62 2591-2779

t1:72 Arroyo Feliciano (ER) 69 77

t1:73 Cayastacito (SF) 70* 76 2592-2696

t1:74 Cayastá (SF) 71 89 2697

t1:75 South of Cayastá (SF) 72* 82 2593-2698

t1:76 Coronda (SF) 73 100 2699

t1:77 Arroyo Monje (SF) 74* 28

Letters between parentheses are the abbreviations of the provinces as in Fig. 1. BA Buenos Aires; CH Chubut; ER Entre Ríos; LP La Pampa; M
Mendoza; N Neuquén; RN Rio Negro; SF Santa Fe; SL San Luis. Asterisks indicate populations that were selected for soil parameters analyses. Bau:
Bromus auleticus, Far: Festuca argentina, Pbe: Poa bergii

Table 1 (continued)
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251 Colma (1982), Crisci and LopezArmengol (1983). Correlation
252 matrices derived from the standardized matrix were then used
253 to obtain the principal components. To study the association
254 between the environmental data of the population (collection
255 site) and endophyte incidence, an external validationwas made
256 by means of the Pearson correlation coefficient to correlate the
257 site scores of the first axis of the PCA with the scores of
258 incidence in each population. Statistical analyses were per-
259 formed as described by Novas et al. (2007) with the statistical
260 package PC-Ord (McCune 1991).

261 2.7 Endophyte isolation and morphologic characterization

262 Endophytes were isolated from surface-disinfested leaf
263 pieces accordingly to previously published methods (Clark
264 et al. 1983). One to five isolates from each population were
265 morphologically characterized accordingly to colony and
266 growth rate on PDA at 23 °C (Iannone et al. 2009).
267 Microscopic characteristics of conidia and conidiogenous
268 cells were also studied accordingly to Iannone et al. (2011).

269 2.8 Endophyte characterization—tubB and tefA phylogenies

270 Nine isolates from P. bonariensis and four from P. lanugi-
271 nosa, collected from different populations representing dif-
272 ferent environments, were chosen for gene sequencing.
273 Total genomic DNA isolation, PCR of tubB and tefA seg-
274 ments, and DNA sequencing were performed as described
275 by Iannone et al. (2009; 2012b). Gene sequences were
276 deposited in GenBank under the following accession numb-
277 ers: JX470369-JX470394 for tubB gene and JX470395 -
278 JX470420 for tefA gene. Sequences were aligned using
279 ClustalW for multiple alignment of the BioEdit v7.0.5 pro-
280 gram as described in Iannone et al. (2009). Sequences of
281 Neotyphodium species isolated from different host species
282 from Argentina, and sequences from sexual and asexual
283 endophytes from the Southern and Northern Hemispheres
284 were included in the analyses. Phylogenetic analyses using
285 Maximum parsimony (MP) and Bayesian algorithms were
286 performed using WINCLADA ver. 0.9.9 (Nixon 1999) and
287 Mr. Bayes ver. 3.2 (Ronquist et al. 2012) respectively, as
288 described in Iannone et al. (2009).

289 3 Results

290 3.1 Endophyte incidence and distribution pattern

291 3.1.1 Poa lanuginosa

292 Endophyte-infected plants were found only in 8 of 46 pop-
293 ulations (Fig. 1, Table 1). These populations are located on
294 coastal dunes in the north of the Atlantic coast in Buenos

295Aires province between 36°18′S and 37°42′S and at the
296eastern extreme of Península Valdez in Chubut province.
297No endophytes were found in plants inhabiting grasslands
298on fertile soils in the Humid Pampa, steppes in northern
299Patagonia, Andes foothills or in populations growing on
300coastal dunes south of 37°42′S.
301PCA based on climatic variables (Fig. 2) indicated that the
302first three components accounted for the 93.2 % of the total
303variability. Principal Component I explained 57.5 % of the
304total variance and was mainly associated negatively with
305annual average rainfall, the average rainfall in summer and
306the available water in the soil in summer. Principal
307Component II explained 23.5 % of the variance and was
308mainly positively associated with the ratio of rainfall between
309winter and summer, water availability in soil in winter and the
310winter average rainfall. The Pearson correlation coefficient
311between the incidence of endophytes and the scores of pop-
312ulations on the Principal Component I was (r0−0.63; r2(%)0
31339.3, P<0.001) and between the scores of the populations on
314Principal Component II and endophyte incidence was (r0
3150.62; r2(%)037.9; P<0.001). These values of correlation are
316important considering the extent of the area studied.
317Pearson correlation analyses between the vector inci-
318dence and variables that more strongly contribute to the first

Fig. 2 Principal Component Analysis (PCA) ordination diagram of 46
populations of Poa lanuginosa according to climatic variables data.
The numbers above the symbols represent the population number as in
Table 1. The colour of the squares differs according to the incidence of
endophytes in each population, ranging from white (0 %) to black
(100 %). Vectors show how each variable contributed to each axis: the
annual average rainfall (aar), the summer average rainfall (sar), the
winter average rainfall (war), the ratio between average rainfall in the
winter and summer (war/sar), water availability in soil in the winter
and in summer, (wasw) and (wass) respectively and the average tem-
perature in the coldest (cmat) and the warmest (wmat) months respec-
tively. Populations inside of the ellipse are established on coastal dunes
that presented the higher incidences of endophytes and are associated
with the higher scores of available water in soil in winter, annual
rainfall level and wintry rainfall regime
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319 and second components showed a highly significant posi-
320 tive correlation with soil water availability in winter (r0
321 0.88, r2(%)077.5) and rainfall in winter (r00.87; r2 (%)0
322 75.9). Accordingly to this ordination, in the plane estab-
323 lished by the first and the second axis of the PCA (Fig. 2),
324 populations with the higher incidence of endophytes (black
325 squares) are mostly clustered in the quadrant defined by the
326 negative semi-axis of Component I and the positive semi-axis
327 of Component II. These results indicate that endophyte-
328 infested populations (black-gray squares) tend to be located
329 in those coastal dune environments with the highest annual
330 rainfall level (except for population 14, see Discussion sec-
331 tion), and that the incidence of endophytes highly correlates
332 positively with a winter rainfall regime and with a higher
333 availability of water in soil during winter. These populations
334 also present the highest temperatures in winter (cmat) and the
335 coldest temperatures in summer (wmat) (Fig. 2).

336 3.1.2 Poa bonariensis

337 Thirteen out of 28 Poa bonariensis populations surveyed
338 were endophyte-infested. These populations were found in
339 xerophytic forests with Celtis tala and Prosopis spp., in the
340 northern limit of the distribution area for this species
341 (Fig. 1), and in populations in communities with C. tala
342 forests on shell debris banks of the Río de la Plata coast of
343 Buenos Aires province (Fig. 1) (Table 1). These forests are
344 included in the “Espinal” phytogeographical province

345(Cabrera 1976; Ribichich 2002), (Fig. 1). Endophyte-
346infected plants were not found in plains or hills of the
347Humid Pampa, in the Paraná river delta or in the xerophytic
348forest of Prosopis spp. on sandy or clayed soils (Fig. 1).
349PCA based on climatic variables (Fig. 3a) indicated that
350the first three components accounted for the 95 % of the
351total variance. Component I (70.9 % of the total variance),
352was negatively associated with the ratio between average
353rainfall in winter and summer, the availability of water in
354winter and winter average rainfall, and it was positively
355associated with rainfall in summer and the average temper-
356ature in the coldest and warmest month. Component II
357(17.5 % of the total variability), was mainly negatively
358associated with the water availability in soil in summer
359and positively associated with the annual average rainfall.
360Thus, in the PCA on climatic variables (Fig. 3a) infested
361populations of the northern region (pops. 66–74) were dis-
362tributed on the positive extreme of Principal Component I,
363being characterized mainly by the below one ratio in aver-
364age rainfall between winter and summer (summer rainfall
365regime) and low availability of water in winter. Populations
366from shell debris banks on the coast of Río de la Plata (pops.
36747–51) characterized mainly by the homogeneous distribu-
368tion of rainfall over the year (rainfall in summer / rainfall in
369winter≈1), its higher availability of water in soil in winter,
370the highest average rainfall in the winter, and high average
371annual rainfall were grouped in the negative extreme of
372Component I and positive semi-axis of Component II.

Fig. 3 Principal Component Analysis (PCA) ordination diagram of 28
populations of Poa bonariensis based on climatic variables (a), and
PCA ordination diagram of 16 populations of Poa bonariensis based
on soil variables data (b). The numbers above the symbols represent
the population number as in Table 1. The colour of the circles differs
according to the incidence of endophytes in each population, ranging
from white (0 %) to black (100 %). In panel (a) vectors show how each
variable contributed to each component: the annual average rainfall

(aar), the summer average rainfall (sar), the winter average rain-
fall (war), the ratio between average rainfall in winter and sum-
mer (war/sar), water availability in soil in winter and in summer,
(wasw) and (wass) respectively. In panel (b) only the most im-
portant variables are shown: total Carbon (C), total Nitrogen (N),
Magnesium (Mg), Calcium (Ca), Phosphorous (P) and pH. Pop-
ulations inside of the ellipses are those established in xerophytic
forests with Celtis tala

Geographic distribution patterns of vertically transmitted
Q1

JrnlID 13199_ArtID 214_Proof# 1 - 14/12/2012



AUTHOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

373 The first three components of the PCA based on soil
374 parameters (Fig. 3b), accounted for 72.9 % of the total
375 variability. However, the endophyte-infested populations
376 were dispersed in the planes defined by the Principal
377 Components I and II (Fig. 3b); I and III (not shown), or II
378 and III (not shown), indicating no clear association between
379 endophyte incidence and those soil parameters analyzed.
380 Populations in soils poor in Nitrogen (N) and Carbon (C)
381 are distributed in the positive extreme of Component I,
382 among them, populations from Celtis tala forests on ridges
383 of shell debris (pops. 47–49) are distributed along the vector
384 pH since they also presented alkaline soils (pH08).
385 Populations on soils rich in N and C (pops. 59, 63, 65–67,
386 70) are placed in the negative extreme of Component I.
387 Pearson correlation analyses between the vector incidence
388 and variables that more strongly contribute to the first and
389 second components of both PCA (Fig. 3a, b) did not show
390 significant correlation.
391 These results indicate that endophyte incidence is not
392 clearly associated with climatic or soil characteristics, but
393 infested populations are associated with those xerophytic
394 forests characterized by the presence of Celtis tala (pops.
395 47–51 and pops. 66–74) (Table 1).

396 3.2 Endophyte characterization

397 3.2.1 Morphology

398 Twelve isolates were obtained from P. lanuginosa and 18
399 from P. bonariensis (Table 1). Colonies on PDAwere white,
400 felted to velvety, and the rate of growth on PDA ranged
401 from 0.6 to 1.1 mm/day. Conidiogenous cells were solitary,
402 sometimes branched, smooth, 15–45 μm long from base to
403 tip, tapering gently from 1.5 to 2.5 μm at the base to 0.5–
404 1.0 μm at the tip. A basal septum was rarely present.
405 Conidial ontogeny was enteroblastic and two (rarely three)
406 alantoid conidia were produced by each conidiogenous cell.
407 Conidia measures ranged from 6.5 to 10 μm long and from
408 2 to 4 μm wide.

409 3.2.2 Phylogeny of tubB and tefA genes

410 Partial sequences of tubB and tefA genes, mainly compris-
411 ing intron sequences, were obtained from endophytes of
412 Poa lanuginosa and P. bonariensis. Two different alleles
413 from each of tubB and tefA genes, which differed in nucle-
414 otide substitutions and indels, were amplified from all of the
415 isolates. Aligned tubB sequences totaled 433 positions, of
416 which 22 were parsimony-informative sites. The aligned
417 tefA sequences totaled 688 positions, of which 73 were
418 parsimony-informative sites.
419 Aligned sequences of each allele of both gene sequences
420 showed 99.5–100 % identity among all the isolates of both

421host species, respectively, and with previously characterized
422Neotyphodium tembladerae isolates (Gentile et al. 2005;
423Iannone et al. 2009).
424Results from Maximum parsimony and Bayesian phylo-
425genetic analyses for each gene were congruent, and the tree
426obtained for the tefA gene is shown in Fig. 4. One of the
427alleles of all of the isolates, placed in the Epichloë typhina
428clade, was phylogenetically derived from E. poae (Fig. 4,
429lower clade), and sequences from the other allele were
430derived from E. festucae (Fig. 4, upper clade). This result
431indicates a hybrid origin for all the isolates of these hosts.
432The phylogeny inferred from each allele of tefA and tubB
433genes, grouped the endophytes from P. bonariensis and P.
434lanuginosa in a well supported clade that includes N.
435tembladerae.

4364 Discussion

437In this work we show that the incidence of the epichloid
438endophyte Neotyphodium tembladerae is highly variable
439among populations of the two wild grasses Poa lanuginosa
440and P. bonariensis. The geographic distribution of infested
441populations is strongly associated with ecological and envi-
442ronmental characteristics; so that the presence of endophytes
443is largely restricted to particular environments. However we
444have not found any differences among the endophytes as-
445sociated with each host species or with the different
446environments.
447Endophyte-infested populations of Poa lanuginosa, were
448only found on some coastal dunes. This environment is
449characterized by constant winds, salt spray, nutrient defi-
450ciency, sand movements and low water capacity that can
451lead to water and saline stresses (Van der Maarel 1981).
452Sand dunes are very dynamic ecosystems; species compo-
453sition and cover vegetation may change rapidly and be
454drastically driven by changes in environmental factors
455(Van der Maarel 1981). In this environment, endophyte-
456infested populations were located in areas with the highest
457average rainfall in winter. Only one population (pop 14) on
458the coast of Península Valdez, with a low rainfall level, was
459endophyte-infested; however, this population is located in
460the most humid extreme of this dry region. Considering this,
461in these coastal populations the stressing conditions could
462be partially mitigated by the rainfall in winter, the vegetative

Fig. 4 Phylogenetic tree for tefA gene sequences showing the same
hybrid origin for the endophytes of Poa lanuginosa and Poa bonar-
iensis (in bold). Both species are infested with Neotyphodium tembla-
derae. Mr. Bayes posterior probabilities and Maximum parsimony
bootstrap support values are shown above and below of each node,
respectively. The numbers after P. lanuginosa and P. bonariensis
indicate the isolate identification number and the population as in
Table 1

�
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463 growing period of these early flowering species and by the
464 modera te tempera tu res in win te r and summer.
465 Zabalgogeazcoa et al. (2006) found high level of infection
466 by Epichloe festucae in Festuca rubra growing in cliffs in
467 Galicia (Spain). Although they did not find beneficial effects
468 of the endophyte on plants growing under saline stress,
469 Gundel et al. (2011a) found that under low water potential
470 E. festucae-infected seedlings presented higher survival than
471 their endophyte-free counterparts. Unfortunately we were
472 unable to get germinated seeds of Poa lanuginosa to study
473 the effect of the endophyte on plant fitness under controlled
474 conditions. However if the incidences of endophytes were
475 only explained by the resistance to salinity we should have
476 found infested populations in other coastal environments as
477 well as in salt flats.
478 In Poa bonariensis, infested populations were clearly lo-
479 cated in two separate regions with different climatic and
480 edaphic conditions. However, these regions are similar due
481 to their short drought periods in part of the year and in their
482 floristic composition, being xerophytic forests with Celtis tala
483 that were considered in the same phytogeographical region by
484 Cabrera (1976) and Ribichich (2002). In Buenos Aires prov-
485 ince, endophytes were found in forests on banks of shell
486 debris characterized by well-drained alkaline soils (pH08)
487 (Ribichich and Protomastro 1998). In the northern area of its
488 distribution, endophytes were found in forests with drought
489 periods in the growing season but with water availability in
490 summer when the temperatures reach the highest values.
491 However, the distribution of infested population was not
492 associated with soil parameters analyzed. This result contrasts
493 with those obtained by Hamilton et al. (2009) who found that
494 in Festuca arizonica the incidence of hybrid endophytes was
495 higher in populations with low nutrients in soil.
496 In both host species, populations located in the most
497 favorable and productive environments from an agronomic
498 point of view (with respect to the soil and climatic condi-
499 tions) (Soriano 1991; De Fina 1992), as those in grasslands
500 of the Humid Pampa, were apparently endophyte-free. The
501 same result was observed in populations located in the most
502 stressing environments of the distribution areas of each host;
503 as dry steppes in Patagonia and in the mountains and salt
504 flats for P. lanuginosa, or some xerophytic forests for Poa
505 lanuginosa and Poa bonariensis. Thus, considering the
506 distribution area of these two hosts, endophyte-infested
507 populations are located in those regions that present moder-
508 ate environmental stress levels and moderate agronomic
509 capacity (De Fina 1992), i.e. poor soils with some saline
510 stress but with mild temperatures and water availability in
511 the growing season (P. lanuginosa) or those environments
512 with xerophytic forest dominated by Celtis tala in the case
513 of P. bonariensis.
514 This pattern of distribution has also been reported for
515 three other host species from South America (Novas et al.

5162007) and, at a first sight these results suggest that endo-
517phytes would be beneficial under moderate stress situations,
518becoming detrimental or unnecessary for the host in very
519stressing or very favorable conditions. Some authors suggest
520that the effect of the endophyte on host fitness is not enough
521to explain distribution patterns, and that the efficiency of the
522transmission of the endophyte via seeds should be consid-
523ered even more important (Ravel et al. 1997; Saikkonen et
524al. 2002; Gundel et al. 2008). Imperfect transmission of the
525endophyte from the mother plant to the seed may occur if
526the endophytes fail to colonize all the tillers, all the flowers
527or if the endophyte dies during seed dormancy. We cannot
528establish if these distribution patterns are explained by the
529benefits that the endophytes confer to these hosts or by
530imperfect endophyte transmission. However, considering
531that the two studied host species are perennial, the persis-
532tence of infected plants and their capability to produce
533infected rhizomes could play a more important role on
534endophyte incidence than endophyte vertical transmission.
535The interaction between the genotypes of the host plant
536and the endophyte alters plant fitness and could also affect
537endophyte vertical transmission by incompatibilities be-
538tween both partners (Gundel et al. 2011b) which could have
539an effect on endophyte incidence (Ravel et al. 1997;
540Saikkonen et al. 2002; Afkhami and Rudgers 2008) and
541distribution patterns. In addition, in some host species, dif-
542ferent genotypes of the endophyte could be found associated
543with particular environmental characteristics (Wäli et al.
5442007; Hamilton et al. 2009). Unfortunately, the molecular
545markers used in this work do not allow detecting intra-
546specific variability in the endophytes, and no molecular
547markers have been developed to identify genetic variability
548in the host species.
549The morphological characteristics and molecular phylog-
550eny of the endophytes of Poa lanuginosa and P. bonariensis
551confirmed that both hosts are associated with Neotyphodium
552tembladerae regardless of the environmental characteristics.
553This result is also contrasting with those obtained by
554Hamilton et al. (2009) and Iannone et al. (2009). These
555authors found that populations of Festuca arizonica and
556Bromus auleticus respectively, were associated with differ-
557ent endophytes accordingly with the environmental charac-
558teristics. The presence of N. tembladerae in two different
559grass species is not surprising, since this endophyte seems to
560be ubiquitous in many grasses from South America (Gentile
561et al. 2005; Iannone et al. 2012b). An explanation for the
562presence of this seed transmitted fungus in these two close
563related species of grasses could be that P. lanuginosa and P.
564bonariensis underwent speciation from a common ancestor
565infected with N. tembladerae. Considering that N. tembla-
566derae is a hybrid between E. festucae and E. poae, and the
567former species has not been detected in the distribution area
568of these hosts, a likely explanation for the existence of
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569 endophyte free populations is loss of the endophytes in
570 some environments. The asexual Epichloë poae may also
571 be horizontally transmitted (Tadych et al. 2012), therefore,
572 we cannot discard the possibility that these two host species
573 acquired the endophytes from other plant species living in
574 sympatry, infected with N. tembladerae.
575 Although our results clearly show a distribution pattern
576 of endophyte-infested populations, more experiments are
577 necessary to study the genetic intra-specific variability of
578 the host and N. tembladerae in the different environments,
579 in order to establish whether the association between envi-
580 ronmental characteristics with distribution patterns is
581 explained by the effect of the endophyte on host fitness or
582 by the effects of environmental conditions on endophyte
583 transmission.
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