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ABSTRACT
New CCD photometry in the Washington system C and T1 passbands down to T1 ∼ 18.5 mag in

the field of the northern open cluster NGC 2236 is presented. T1 magnitudes and C − T1 colours

for a total of 1162 stars within an area of 13.6 × 13.6 arcmin2 were measured. These CCD data

were supplemented with photoelectric CMT1T2 photometry of 13 red giant candidates. The

comparison of the cluster (T1, C − T1) colour–magnitude diagram with theoretical isochrones

computed for the Washington system yields E(C − T1) = 1.10 ± 0.10 and T1 − MT1
=

13.45 ± 0.25 for log t = 8.80 (t = 600+100
−40 Myr) and Z = 0.008. The derived E(C − T1) value

implies E(B − V) = 0.55 ± 0.05. NGC 2236 is then located at 2.5 ± 0.5 kpc from the Sun

beyond the Perseus spiral arm and at ∼10.8 kpc from the Galactic centre. A cluster angular

diameter of 9.4 arcmin, equivalent to 6.8 pc, was estimated from star counts both within and

outside the cluster field. We also derived from the stellar density profile a cluster core radius

of rc = 1.7 arcmin (1.2 pc) and an annular corona of �rc = 1.8rc (2.2 pc). Five independent

Washington abundance indices yield a mean cluster metallicity of [Fe/H] = −0.3 ± 0.2,

which is not only in reasonably good agreement with the one obtained from the isochrone

fit, but also compatible with the existence of a radial abundance gradient in the Galactic disc.

We examined the properties of a sample of 20 known open clusters aligned along the line-

of-sight to NGC 2236. Berkeley 27 appears as the farthest and oldest cluster of the studied

sample.
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and associations: individual: NGC 2236.

1 I N T RO D U C T I O N

Open clusters have a wide range of distances, ages and metallicities.

This is why these objects have long been used to probe the formation,

structure, dynamics and chemical evolution of the Galactic disc

(see e.g. Friel 1995). In particular, open clusters projected towards

the Galactic anticentre direction are especially important to study

the present and past abundance gradients in the Galactic disc (see

e.g. Hou, Chang & Chen 2002, and references therein), while their

distribution provides important information about their origin and

about the star formation history in the outer Galactic disc (Friel

1995).

The present work is part of a current project of photometric ob-

servation in the Washington system of some unstudied or poorly

studied open clusters, located in different regions of the Milky

Way. We have already reported results based on Washington system

�E-mail: claria@mail.oac.uncor.edu (JJC); andres@iafe.uba.ar (AEP);

celeste@mail.oac.uncor.edu (MCP); andrea@mail.oac.uncor.edu (AVA)

CCD photometric observations on the relatively young open clus-

ters NGC 2194 and 2324 (Piatti, Clariá & Ahumada 2003a, 2004b),

on the intermediate-age clusters NGC 2627 and Tombaugh 1

(Piatti, Clariá & Ahumada 2003b, 2004c) and on the old metal-poor

anticentre cluster Trumpler 5 (Piatti, Clariá & Ahumada 2004a). The

present paper is devoted to NGC 2236 (OCL 501, C0627+068),

also designated Cr 94 (Collinder 1931). This is an open cluster pro-

jected close to the Galactic anticentre direction. We chose to use

the Washington system because of its combination of broad-bands,

of its high metallicity sensitivity provided by the C filter and of

its wide colour baseline between C and T1 filters. Geisler, Clariá

& Minniti (1991, hereafter GCM) and Geisler & Sarajedini (1999)

clearly pointed out the advantages offered by this system to derive

accurate abundances in yellow and red cluster giants. In particu-

lar, high-quality Washington system photoelectric photometry of

red giants in several open clusters has recently been used to deter-

mine their metal content (see e.g. Clariá et al. 2005; Parisi et al.

2005).

NGC 2236 is located ∼25◦ from the Galactic anticentre direc-

tion in a rich star field in Monoceros at equatorial coordinates
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α2000 = 6h29m40s, δ2000 = +6◦49.′8 and Galactic coordinates

l = 204.◦37, b = −1.◦69. This is a detached, moderately rich

of intermediate brightness open cluster of Trumpler class II2m

(Archinal & Hynes 2003). Old distance determinations range from

1.6 to 8.3 kpc (Alter, Ruprecht & Vanisek 1970). More recent ev-

idence, however, places this cluster between 2.8 and 3.7 kpc from

the Sun. The first study of NGC 2236 was performed by Rahim

(1970), who obtained photographic photometry of 280 stars using

the RGU system and concluded that this group of stars is a cluster

with a diameter of about 9 arcmin located at d = 3430 pc from the

Sun. He also derived E(G − R) = 0.51 and E(G − U) = 0.36. Ac-

cording to Hawarden (1975), NGC 2236 is at least 400 Myr old. On

the basis of UBV photographic photometry of 1500 stars brighter

than V = 16.5, Barkhatova, Orekhova & Shashkina (1988) derived

E(B − V ) = 0.46, d = 2.8 kpc and estimated the cluster age to

be ∼400 Myr. However, based on photographic and photoelectric

photometry of only 39 stars in the cluster field, Babu (1991) de-

rived d = 3.72 kpc and estimated a much younger age of 76 Myr.

He also reported variable extinction across the cluster field with

E(B − V) ranging between 0.68 and 0.84 mag. Phelps, Janes &

Montgomety (1994, hereafter PJM) defined the morphological age

index δV as the magnitude difference between the main-sequence

turn-off and the clump in the (V, V − I) colour–magnitude dia-

gram (CMD), deriving δV = 0.4 for NGC 2236 from their unpub-

lished photometric data. This value implies an age of about 890 Myr

(Janes & Phelps 1994), which reveals that the cluster is older than

the Hyades. Janes & Phelps (1994) also derived E(B − V) = 0.37

and d = 3.32 kpc. Adopting δV = 0.4 and a solar metal content,

Salaris, Weiss & Percival (2004) derived an age of 0.86 Gyr from

their equation (1). More recently, Loktin, Gerasimenko & Malisheva

(2001) determined the following parameters: E(B − V) = 0.48, d =
2930 pc and t = 345 Myr.

NGC 2236 has a comparatively small angular diameter of about

8 arcmin (Lyngå 1987), quite appropriate for CCD camera analysis.

Although this cluster was included by PJM in their extensive CCD

photometric survey of potentially old open clusters, the photometric

data have not yet been published. NGC 2236 is also particularly in-

teresting for the number of red giant candidates it contains as well as

for the possibilities these stars provide in terms of cluster metal con-

tent derivation. The above-mentioned works prove that there is no

agreement on the parameters for NGC 2236, as it has been derived

in various studies. Note that the reddening E(B − V) values range

from 0.37 (PJM) to 0.84 (Babu 1991), while the ages vary from

76 Myr (Babu 1991) to 890 Myr (Janes & Phelps 1994). We be-

lieve that, in view of these remarkable differences, a redetermination

of such parameters is worth making on the basis of more reliable

data.

In the present study, we report the results obtained from CCD

photometry in the C and T1 passbands of the Washington system up

to T1 ∼ 18.5 mag in the field of NGC 2236. These data are used to

make a new and independent determination of reddening, distance,

age and metallicity. In Section 2, we present the observational ma-

terial and the data reduction, while in Section 3 we examine the

photometric errors and describe the main features of the observed

CMD. In Section 4, we determine the cluster centre and stellar den-

sity radial profile. In Section 5, we determine the cluster fundamental

parameters through the fitting of theoretical isochrones computed

for the Washington system and apply an independent method to es-

timate the cluster metallicity. In Section 6, we compare NGC 2236

with those open clusters with known basic parameters projected in

nearly the same direction. Section 7 contains a summary of our main

conclusions.

2 T H E O B S E RVAT I O NA L M AT E R I A L

2.1 CCD CT1 photometric data

We obtained CCD images of the cluster field with the Washington

C and Kron–Cousins RKC filters and the 0.9-m telescope at Cerro

Tololo Inter-American Observatory (CTIO, Chile) during the night

of 2004 December 19–20. The recommended prescriptions we used

for the C and RKC filters are the ones proposed by Geisler (1996).

As Geisler stated, the RKC filter has significant advantages over the

standard Washington T1 filter. From here onwards, we will use in-

distinctly the words RKC or T1. The telescope – equipped with the

2048 × 2048 pixel Tektronix 2K No. 3 CCD, with a pixel size of

24 μm – yielded a scale on the chip of 0.4 arcsec pixel−1 (focal ratio

f/13.5) and a visual field of 13.6 × 13.6 arcmin2. We controlled

the CCD through the CTIO ARCON 3.3 data acquisition system in

the standard quad amplifier mode, operating at a mean measured

gain (four chips) of 2.00 ± 0.04 e− ADU−1, with a mean readout

noise of 3.60 ± 0.15 e−. Under photometric sky conditions (the typ-

ical seeing was 1.1 arcsec), we obtained one 100-s and one 150-s

exposures for the C band, and two 10-s exposures for the RKC band.

At the beginning of the observing night, we obtained a series of

10 bias and five dome and sky flat-field exposures per filter to cal-

ibrate the CCD instrumental signature. In order to standardize our

photometry, we carried out observations of standard stars of the Se-

lected Areas PG0231+051, 98 and 101 of Landolt (1992), which

cover a wide colour range. In particular, stars in the selected area

PG0231+051 were observed at low and high air masses in order to

properly adjust the extinction coefficients. At the end of the night,

we had collected 34 different measures of magnitude per filter for

the selected standard star sample.

We reduced the C, RKC images at the Instituto de Astronomı́a

y Fı́sica del Espacio (Argentina) with IRAF
1 using the QUADPROC

package. The procedure included the bias subtraction of all the im-

ages and the flat-fielding of both standard and program field im-

ages; weighted combined signal-calibrator frames were employed.

The resulting processed images turned out to be satisfactorily flat.

We then derived the instrumental magnitudes for the standard stars

from aperture photometry using DAOPHOT/IRAF routines (Stetson,

Davis & Crabtree 1990). We obtained the following transformation

equations between instrumental and standard magnitudes through

least-squares fits:

c = (3.727 ± 0.023) + T1 + C − T1 + (0.271 ± 0.010) × XC

− (0.080 ± 0.009) × (C − T1), (1)

r = (3.272 ± 0.008) + T1 + (0.089 ± 0.004) × XT1

− (0.028 ± 0.003) × (C − T1), (2)

where X represents the effective air mass, and capital and lowercase

letters stand for standard and instrumental magnitudes, respectively.

The coefficients were derived through the IRAF routine FITPARAM,

resulting in rms errors of 0.022 for c and 0.009 for r.

The instrumental magnitudes for stars in the NGC 2236 field were

obtained from point-spread function (PSF) fits using stand-alone

versions of the DAOPHOT
2 and ALLSTAR

2 programs, which provided

us with x and y coordinates and instrumental c and r magnitudes for

1
IRAF is distributed by the National Optical Astronomy Observatories, which

is operated by the Association of Universities for Research in Astronomy,

Inc., under contract with the National Science Foundation.
2Program kindly provided by P.B. Stetson.
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all stars identified in each field. The PSFs were generated from two

samples of 35–40 and ∼100 stars interactively selected. For each

frame, a quadratically varying PSF was derived by fitting the stars

in the larger sample, once the neighbours were eliminated by us-

ing a preliminary PSF. The PSF was obtained from the smaller star

sample, which contained the brightest, least-contaminated stars. We

then used ALLSTAR program to apply the resulting PSF to the iden-

tified stellar objects and to create a subtracted image, which was

used to find and measure magnitudes of additional fainter stars.

The PSF magnitudes were determined using the aperture magni-

tudes yielded by PHOT as zero-points. This procedure was re-

peated three times for each frame. Next, we computed aperture

corrections from the comparison of PSF and aperture magnitudes

using the subtracted neighbour PSF star sample. The resulting aper-

ture corrections were −0.01 and 0.00 mag for c and r images,

respectively.

Next, we separately combined all the measures for the shorter

and longer c, r exposure pairs using the stand-alone DAOMATCH
2 and

DAOMASTER
2 programs. We thus obtained two tables which list the

running number of stars, the x and y coordinates, the c and r mag-

nitudes, and the respective observational errors for each measured

star. Note that stars with only c or r magnitudes were excluded

from the tables. The standard magnitudes and colours for all the

measured stars were computed through equations (1) and (2). Once

we obtained the standard magnitudes and colours, we finally built

a master table containing the average of T1 and C − T1, their er-

rors σ (T1) and σ (C − T1), and the number of observations for each

star, respectively. Whenever there was only one measure of T1 and

C − T1, we adopted the corresponding observational error. Table 1

provides the magnitudes and colours for a total of 1162 stars mea-

sured in the field of NGC 2236. Only a fragment of this table is

presented here as a guidance, regarding its form and content. The

complete table, however, is available on the online version of the

journal on Synergy (see Supplementary Material section). Numbers

in the Rahim’s (1970) numbering system are given in parenthesis

in the first column of Table 1 only for those stars which were ob-

served photoelectrically in the Washington system (see Section 2).

Fig. 1 shows a schematic finding chart of the stars observed in the

field of NGC 2236. The sizes of the plotting symbols are propor-

tional to the T1 brightness of the stars. The positions of 12 out of

the 13 red giant candidates that we observed photoelectrically in

the Washington system using Rahim’s (1970) numbering system

are identified in the figure. Star 158 falls outside the CCD field of

view.

Table 1. CCD CT1 data of stars in the field of NGC 2236. The full table is

available in the online version of the article on Synergy.

Star x y T1 σ (T1) C − T1 σ (C − T1) n

(pixel) (pixel) (mag) (mag) (mag) (mag)

194 667.442 460.639 13.935 0.001 3.021 0.023 2

195 1577.740 465.036 15.992 0.005 1.934 0.001 2

196 155.951 467.211 16.300 0.038 1.004 0.020 2

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Note. (x, y) coordinates correspond to the reference system of Fig. 1.

Magnitude and colour errors are the standard deviations of the mean, or the

observed photometric errors for stars with only one measurement. Only

for those stars photoelectrically observed, numbers in the Rahim’s (1970)

numbering system are given in parentheses in the first column.

Figure 1. Schematic finding chart of the stars observed in the field of

NGC 2236. North is up and east is to the left. The sizes of the plotting

symbols are proportional to the T1 brightness of the stars. Two concentric

circles 250 and 700 pixel wide around the cluster centre (cross) are shown.

12 of the 13 red giant candidates observed photoelectrically are identified

using star numbers from Rahim (1970). Star 158 falls outside the CCD field

of view.

2.2 CMT1T2 photoelectric data

13 stars brighter than T1 = 13.8 and redder than C − T1 = 2.30 in

the cluster field were selected as red giant candidates of NGC 2236.

All 13 stars were observed with the C, M, T1 and T2 filters of

the Washington system (Canterna 1976). The CMT1T2 measure-

ments were performed with the CTIO 1.0-m telescope in 1993

January, using a single-channel pulse-counting photometer and a

dry-ice cooled Hamamatsu R943-02 GaAs photomultiplier. Only

one photoelectric measurement was made for each star. Mean ex-

tinction coefficients for CTIO were used, and between 13 and 18

standard stars from the lists of Canterna (1976) and Canterna &

Harris (1979) were employed to transform the photoelectric ob-

servations into the standard Washington system. A few stars with

several precise measurements carried out by Clariá & Lapasset

(1985) in the open cluster NGC 5822 were also used as Washington

standard stars. The colour transformation slopes show good agree-

ment with those found by Canterna (1976) for CTIO, the resulting

mean internal errors of a single observation being 0.009, 0.008,

0.007 for the C − M, M − T1 and T1 − T2 colours, respectively.

Table 2 displays the new CMT1T2 data for the stars observed. A com-

parison between the CCD and photoelectric (pe) data obtained for

these stars shows excellent agreement, the mean differences being:

�(C−T1)CCD−pe = −0.002 ± 0.081 and �(T1)CCD−pe =
0.002 ± 0.027.

3 DATA OV E RV I E W

In Table 1, we find that 76 per cent of the total number of measured

stars have two measures of their C − T1 colours and T1 magnitudes

and range from the brightest magnitude reached – which occurs at

T1 ≈ 12 mag (confirmed as unsaturated) – down to T1 ∼ 18 mag.

The remaining measured stars, i.e. 24 per cent of the whole sample,
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Table 2. Washington photoelectric photometry of red giant candidates in

the field of NGC 2236. Star numbers are from Rahim (1970).

Star C − M M − T1 T1 − T2 T1

4 1.668 1.181 0.849 12.831

5 1.330 1.040 0.742 12.626

6 1.344 1.102 0.783 12.706

33 1.548 1.113 0.796 12.993

42 1.278 1.021 0.748 13.168

158 1.534 1.069 0.800 13.683

191 1.491 1.119 0.779 13.236

204 1.445 1.116 0.794 13.399

208 1.574 1.222 0.855 13.203

209 1.599 1.244 0.874 13.747

246 1.446 1.141 0.825 13.718

250 1.458 1.103 0.807 13.619

254 1.499 1.148 0.810 13.216

Figure 2. Magnitude and colour photometric errors as a function of T1.

have only been measured once and most of them have T1 magnitudes

between ∼18.0 and 18.5. Clearly, the ∼6 mag along which our

photometry extends in T1 is mostly covered by stars measured twice.

This means that the additional 50 s in the long c exposure did not

allow us to detect fainter stars. As the long c exposure is 50 per cent

longer than the short c one, we realize that we took good advantage

of the whole reachable dynamical magnitude range produced by the

combination of the telescope aperture and CCD gain.

In Fig. 2, we plotted the photometric errors provided by the stan-

dard deviation of the mean for the T1 magnitude and C − T1 colours

against their corresponding T1 magnitudes. We used all the stars with

two measures taken, since those observed only once have practically

no statistical weight. As can be seen, it would seem that a generic

dispersion prevails over the expected tendency of increasing the er-

rors as the magnitude grows. However, we can conclude from Fig. 2

that the photometric errors of a randomly selected star are probably

smaller than 0.1 mag or, what is more, even smaller than 0.05 mag.

Bearing in mind the behaviour of the photometric errors with the

magnitude for the observed stars in Fig. 2, we rely on the accuracy

Figure 3. (T1,C − T1) CMD for stars observed in the field of NGC 2236.

of the morphology and position of the main cluster features in the

CMD.

The (T1, C − T1) CMD obtained using all the measured stars is

depicted in Fig. 3. By inspecting this figure, the main cluster fea-

tures can be identified. What first calls our attention is the cluster

main sequence (MS), which looks well populated, has clear signs

of evolution and develops along ∼4.5 mag. It is relatively broad,

especially in its lower envelope, partly due to field star contamina-

tion. The evident hook at the MS turn-off suggests a cluster age of

several hundred million years old. On the other hand, a group of

stars seems to form the cluster red giant clump (RGC) centred at

T1 ∼ 13.5 and C − T1 ∼ 2.5 mag. This feature increases our suspi-

cion that we are dealing with an intermediate-age open cluster. The

width of the cluster’s MS does not appear to be the result of photo-

metric errors, since these ones hardly reach a tenth of magnitude at

any T1 level (see above). Therefore, such width could be caused by

intrinsic effects (evolution, binarity, etc.) by differential reddening

and/or by field star contamination. It must be remembered that field

stars also have magnitudes and colours different from those of the

cluster’s MS.

4 S T RU C T U R A L C L U S T E R F E AT U R E S

The cluster centre can be estimated by examining Fig. 1 with an

accuracy varying between 100 and 200 pixels. However, in order to

determine such a centre on a more objective and precise basis, we

applied a statistical method consisting in tracing the stellar density

profiles projected on to the directions of the x- and y-axes. By fitting

those profiles, we obtained the coordinates associated to the geo-

metrical centre. We counted the number of stars distributed along a

fixed width band oriented in the direction of the y-axis in order to

build the x projected density profile. Then, we used another band

placed along the x-axis to construct the y projected density profile.

The widths of the bands for both directions were chosen to avoid

star counts which might include a large number of field stars. For the

spatial intervals along the axes, we experimented with bins of 50,

100, 120 and 150 pixel wide. Thus, we could check if there were any
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spurious effects caused by the presence of localized groups, rows

or columns of stars, and we could select the bin which most appro-

priately fitted the intrinsic spatial resolution of the observed cluster

field. Taking into account the mean-free path between two stars, we

looked for neither noisy nor smooth stellar density profiles. Finally,

we adopted a bin size of 100 pixel in the subsequent analysis.

The NGAUSSFIT routine of the STSDAS IRAF package was used to fit

the projected stellar density profiles, adopting a single Gaussian as

the fitting option. We decided to fix the constant and the linear terms

to the corresponding background level and to zero, respectively. We

used the centre of the Gaussian, its amplitude and its full-width at

half-maximum (FWHM) as variables. After eliminating a couple of

scattered points, the fitting procedure converged after one iteration

on average. The resulting coordinates for the cluster centre turned

out to be (xc, yc) = (1200 ± 50, 1000 ± 100) pixel, which were

adopted for the following analysis. The cluster centre is marked by

a cross in Fig. 1.

The above-mentioned cluster centre was used as an entry, and

then we built the cluster stellar density radial profile by counting

the stars located in boxes of 100 pixel a side. By following this

method, the number of stars per unit area at a given radius r can be

directly calculated through the expression:

(nr+50 − nr−50)/[(mr+50 − mr−50) × 1002],

where nj and mj, respectively, represent the number of counted stars

and centres of boxes of 100 pixels a side included in a circle of

radius j. Thus, we profited from the whole area of the observed field

and moved further away from the cluster centre instead of building

the radial profile by counting stars within as many complete circles

as could be drawn in the observed field. In fact, Fig. 4 shows that the

resulting stellar density radial profile reaches up to 1400 pixels away

from its centre, whereas the radius of the largest complete circle

that can be traced in the observed field is of ∼800 pixel (see Fig. 1).

The error bars in the figure represent the estimated uncertainties

at various distances from the centre. Each error bar was fixed by

comparing two additional radial profiles – constructed following

Figure 4. Stellar density radial profile centred at (xc, yc) = (1200, 1000)

pixel for stars observed in the field of NGC 2236. The horizontal line repre-

sents the background level measured for r > 700 pixel.

the steps described above but with boxes of 50 and 150 pixel a side,

respectively – to the radial profile shown in Fig. 4. It can be seen

that the more inwards a radius is, the longer the error bars are due

to the non-uniform distribution of cluster stars.

Fig. 4 becomes a valuable tool to estimate the cluster radius,

generally used as an indicator of the cluster size, to examine the ex-

tension of the cluster core and corona and to establish the area out of

which field stars prevail. On using the error bars as a secondary ref-

erence, we drew a horizontal line at 0.00021 pixel−1, which resulted

from assuming a uniform field star density and from averaging the

seven measured outermost points in the figure. From Fig. 4, we also

estimated a cluster radius of 700 ± 50 pixel, equivalent to 4.7 ±
0.3 arcmin, and adopted the region for r > 700 pixel as the ‘star

field area’. The derived background level proves to be almost four

times lower than the central cluster density. This means that the field

star contamination is on average 20 per cent at the cluster centre and

grows up to 60 per cent towards the cluster’s boundaries. We finally

derived a radius of rc = 250 pixel (1.7 arcmin) at half the maximum

of the cluster density profile. Therefore, the cluster corona results

in an annulus of �r = 1.8rc. This value does not compare well with

the average ratio between the annular width of the corona and the

core radius (= 4.3 ± 1.9) found by Nilakshi et al. (2002) for 38

open clusters. However, a larger sample of star clusters is required

to understand the cause of this disagreement.

We compared the stellar density radial profile of NGC 2236 with

those of other open clusters we observed using both the same CCD

and telescope: NGC 2194 (Piatti et al. 2003a); Tr 5 (Piatti et al.

2004a); NGC 2324 (Piatti et al. 2004b); Tombaugh 1 (Piatti et al.

2004c); NGC 6318 (Piatti, Clariá & Ahumada 2005); Lyngå 11

(Piatti, Clariá & Ahumada 2006a); NGC 5288 (Piatti, Clariá &

Ahumada 2006b) and NGC 2489 (Piatti et al. 2007). We previously

normalized these cluster profiles to the distance and field star density

of NGC 2236, and expressed the stellar densities in units of number

of stars per square parsec. When the central cluster densities were

compared, we found that NGC 2236 does have the highest stellar

density, which is 1.8 times larger than those of NGC 6318 (age =
160 Myr) and Trumpler 5 (age = 5 Gyr), and three times larger

than those of the remaining clusters. The cluster core radius corre-

sponding to half the maximum of the stellar density radial profile is

1.2 pc, well in the range of the other cluster core radii (1–2 pc), ex-

cept for NGC 5288 and 2194, whose half maximum density radii are

0.5 and 2.5 pc, respectively. NGC 2236 is as extended as NGC 2194

and 6318 (r ∼ 3.5 pc). Only NGC 2324 and Trumpler 5 are more

extended clusters (r ∼ 5.5–6.0 pc) than NGC 2236, while the re-

maining ones are clearly smaller. Regarding its shape, extension and

stellar population, we can therefore conclude from the above results

that NGC 2236 is a relatively crowded and compact open cluster.

5 C L U S T E R F U N DA M E N TA L PA R A M E T E R
E S T I M AT E S

Although we cannot identify with absolute certainty which of the

photoelectrically observed late-type stars are indeed cluster mem-

bers, we applied the iterative method described by GCM to deter-

mine the cluster metal content.

Our first step was to assume that all the red giant candidates are

cluster members and we adopted for these stars a wide range of

E(B − V) colour excesses from 0.30 to 0.60, varying every E(B −
V) 0.05 mag. E(B − V) colour excesses larger than 0.60 mag lead

to unreddened (T1 − T2) and (M − T2) indices for all the red giant

candidates outside the range of GCM’s calibrations. On the other

hand, E(B − V) values smaller than 0.30 mag imply [Fe/H] values
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Table 3. Cluster metallicity as a function of

reddening. [Fe/H] values in parentheses have

been extrapolated.

E(B − V) [Fe/H]

0.30 −1.40

0.35 −1.19

0.40 −0.97

0.45 −0.74

0.50 −0.52

0.55 −0.30

0.60 −0.08

0.65 (0.14)

0.70 (0.36)

which are unacceptably low for an open cluster. Stars 5 and 42 have

been omitted in the analysis for E(B − V) = 0.60, because in this

case both stars fall outside the range of the calibrations given by

GCM.

The second step taken to derive metallicity from the Washing-

ton colours was to correct the observed Washington indices for

reddening, using the reddening ratios given by GCM. Accord-

ing to GCM, the abundance-sensitive index � is the difference

between the observed colour and the solar abundance colour at

the observed (T1 − T2) (or M − T2), where all colours refer to

unreddened values. GCM described a procedure to correct the de-

crease in abundance sensitivity as temperature decreases. They

also established empirical calibrations of the abundance indices

2

1.5

1

0.5

0

0.4 0.5 0.6 0.7

3

2

1

0.4 0.5 0.6 0.7

1

0.8

0.6

1 1.2 1.4 1.6 1.8

Figure 5. Colour–colour diagrams for the red giant candidates of NGC 2236 corrected by E(B − V) = 0.55. Isoabundance relations from GCM for 0.5 dex

intervals from [Fe/H] = −3.0 to +0.5 are shown, except for the (M − T1)0/(T1 − T2)0 diagram wherein isoabundance relations for 0.4 dex intervals from

[Fe/H] = −0.8 to +0.4 are given. Stars assumed to be red cluster giants are represented with filled circles.

�′
1 − �′

5 with [Fe/H], where �′
1 − �′

5 refer, respectively, to

�′(C−M)T1−T2
, �′(M−T1)T1−T2

, �′(C−T1)T1−T2
, �′(C−M)M−T2

and �′(C − T1)M−T2
. These �′

i indices can be calculated from the

�i indices using GCM’s equation (2). Note, however, that �′
i = �i

for all the stars of NGC 2236, provided that the E(B − V) colour

excess is larger than 0.40 mag.

Once an E(B − V) value was established, the third step taken

consisted in obtaining five different values of the iron-to-hydrogen

ratio from the expression:

[Fe/H] = [ − bi + (
b2

i − 4ai

(
ci − �′

i

))1/2]
/2ai , (3)

where the constants ai, bi and ci are given in GCM’s table 10. The

five metallicity estimates resulting from each adopted reddening

were directly averaged to obtain the cluster metal content. This

procedure was repeated for different reddening values in order to

examine how the metallicity varies as a function of E(B − V).

The results are shown in Table 3, wherein the [Fe/H] values for

E(B − V) � 0.60 have been extrapolated. Note in Table 3 that the

cluster metallicity strongly depends on the adopted E(B − V) value.

In fact, a variation of 0.05 mag in E(B − V) implies a variation of

∼0.2 dex in [Fe/H].

Fig. 5 displays the (C − M)0 versus (T1 − T2)0, (M − T1)0 versus

(T1 − T2)0, (C − T1)0 versus (T1 − T2)0, (C − M)0 versus (M −
T2)0 and (C − T1)0 versus (M − T2)0 colour–colour diagrams for

the assumed NGC 2236 cluster giants. These were built using the

reddening finally adopted for the cluster, i.e. E(B − V) = 0.55 ±
0.05 (see below). The isoabundance relations in Fig. 5 range from

[Fe/H] = +0.5 (bottom) to −3.0 (top), in steps of 0.5 dex, except
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Table 4. Washington abundance-sensitive indices.

Star �′
1 �′

2 �′
3 �′

4 �′
5

4 −0.11 −0.05 −0.16 −0.03 −0.05

5 −0.04 0.00 −0.07 −0.01 −0.05

6 −0.18 −0.01 −0.20 −0.15 −0.15

33 −0.03 −0.03 −0.05 +0.02 +0.01

42 −0.12 −0.03 −0.19 −0.05 −0.06

158 −0.06 −0.08 −0.13 +0.07 +0.04

191 −0.02 +0.01 −0.01 −0.02 −0.01

204 −0.12 −0.02 −0.14 −0.08 −0.09

208 −0.22 −0.02 −0.27 −0.19 −0.22

209 −0.27 −0.03 −0.30 −0.23 −0.24

246 −0.24 −0.05 −0.29 −0.16 −0.18

250 −0.16 −0.06 −0.21 −0.07 −0.09

254 −0.13 −0.02 −0.15 −0.10 −0.10

for the (M − T1)0 versus (T1 − T2)0 diagram in which they range

from +0.4 to −0.8 in steps of 0.4 dex. The Washington abundance

indices �′
i computed using E(B − V) = 0.55 for the assumed giants

are given in Table 4. The resulting mean values and corresponding

standard deviations of the mean from 13 assumed giant members

are: 〈�′
1〉 = −0.13 ± 0.02, 〈�′

2〉 = −0.03 ± 0.01, 〈�′
3〉 = −0.17 ±

0.02, 〈�′
4〉 = −0.08 ± 0.02 and 〈�′

5〉 = −0.09 ± 0.02. These values

lead to the following [Fe/H] values and corresponding standard de-

viations of the mean: [Fe/H]1 = −0.33 ± 0.06, [Fe/H]2 = −0.24 ±
0.05, [Fe/H]3 = −0.34 ± 0.06, [Fe/H]4 = −0.28 ± 0.09 and

[Fe/H]5 = −0.29 ± 0.08. The difference between the abundances

derived from the iron lines and those obtained from the blue spectral

features contaminated by CN and CH is not overly significant, if we

consider the photometric and calibration errors. This fact allows us

to conclude that the cluster giants are not enriched by elements of

the CNO group. The unweighted average of the five Washington

abundance estimates turned out to be 〈[Fe/H]〉 = −0.30 ± 0.04.

However, since an error of 0.05 mag in E(B − V) translates into

an error of ∼0.2 dex in [Fe/H] (see Table 3), we finally adopted

[Fe/H] = −0.3 ± 0.2 for NGC 2236.

Fig. 6 shows the cluster T1 versus (C − T1) CMD built using all

the measured stars distributed within 700 pixel away from the clus-

ter centre. Although the lower MS is somewhat broad, the relatively

long MS, the well-defined MS turn-off and the position of the popu-

lous RGC helped us to fit theoretical isochrones in order to derive the

E(C − T1) colour excess, the T1 − MT1
apparent distance modulus,

and the age and metallicity of NGC 2236. We used the theoretical

isochrones computed by Girardi et al. (2002) for the Washington

system, which include overshooting effect. We would like to re-

mark that convective overshooting considerably changes the cluster

ages estimated from isochrone fits. According to Maeder & Meynet

(1991) and Bertelli et al. (1994), ages inferred from isochrones with-

out overshooting could be underestimated by 30 per cent for clusters

younger than 1–2 Gyr.

We selected here three different subsets of isochrones – log t
between 8.0 and 9.2 – with Z = 0.008, 0.020 and 0.040, respec-

tively, which cover the metallicity range of most of the Galactic

open clusters studied in detail (Chen, Hou & Wang 2003). We in-

dependently fitted each isochrone and obtained the corresponding

E(C − T1) colour excesses and T1 − MT1
apparent distance moduli.

Next, we filled in a grid with four columns containing the assumed Z
value (= 0.008, 0.020 and 0.040), the log t of the respective selected

isochrone, and the E(C − T1) and the T1 − MT1
values obtained for

each (Z, log t) pair. Then, we obtained the E(B − V) values cor-

responding to Z = 0.008, 0.020 and 0.040 ([Fe/H] = −0.40, 0.0

and 0.30) by interpolation among values in Table 3. After this, we

entered with these E(B − V) values in the grid to derive log t and

T1 − MT1
for each of the three Z values. The expression E(C −

T1) = 1.97 E(B − V) (Geisler 1996) was used to relate both colour

excesses.

Finally, we superimposed the three selected isochrones (one for

each Z value), and adopted one of them in turn – the one which best

reproduced the cluster MS features and RGC locus – as represen-

tative of the cluster age and metal content. Note that isochrones of

various metallicities did not yield negligible differences in the CMD

adjustments. The isochrone of log t = 8.80 (t = 600 Myr) and Z =
0.008 turned out to be the one which most accurately reproduces the

cluster features in the (T1, C − T1) CMD. To match this isochrone,

we used a E(C − T1) colour excess and a T1 − MT1
apparent distance

modulus of 1.10 and 13.45, respectively. The uncertainties of these

parameters were estimated from the cluster features dispersion. We

thus estimated σ (E(C − T1)) = 0.10 mag, σ (T1 − MT1
) = 0.25 mag

and σ (t) = +100
−40 Myr. In Fig. 6, we overlapped the zero-age main

sequence (ZAMS) and the isochrone of log t = 8.80 (solid lines)

for Z = 0.008 on the cluster CMD. The dashed lines in the figure

correspond to the isochrones of log t = 8.70 and 8.90, which were

included for comparison purposes. Filled circles in Fig. 6 represent

the red giant candidates photoelectrically observed in the Washing-

ton system.

Note that the loop in the isochrone corresponding to the bluest

stage during the He-burning core phase is shifted redwards by about

�(C − T1) ≈ 0.2 mag, equivalent to �(B − V) ≈ 0.10 mag, in rela-

tion to the observed position of the cluster RGC. Theoretical RGCs

have also frequently proved to be redder than the observed ones in

previous studies of star clusters whose ages span from 0.3 to 2.3

Gyr (Geisler et al. 2003; Piatti et al. 2003a). Nevertheless, some

Figure 6. r < 700 pixel (T1, C − T1) CMD for stars in NGC 2236. The

ZAMS and the isochrone of log t = 8.80 from Girardi et al. (2002), computed

taking into account overshooting and Z =0.008, are overplotted. We included

in dashed lines the isochrones for log t = 8.70 and 8.90, for comparison

purposes. The filled circles represent the cluster giant candidates observed

with CMT1T2 photoelectric photometry. Stars 5 and 42 fall slightly outside

the range of the GCM’s calibrations.
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other studies found good agreement between theory and observa-

tions regarding the positions of RGCs in intermediate-age clusters

(Clariá, Mermilliod & Piatti 1999; Mermilliod et al. 2001). Based

on the comparison of empirical and Padova isochrones, Piatti, Clariá

& Bica (1998) confirmed the existence of a shift between the posi-

tions of the observed loops and the theoretically predicted ones for

clusters older than 200 Myr.

From the expressions E(C − T1) = 1.97 E(B − V) and MT1
=

T1+0.58E(B−V )−(V −MV ) given by Geisler (1996), we obtained

E(B − V) = 0.55 ± 0.05 and V − MV = 13.8 ± 0.3 mag. Therefore,

the cluster metal content derived from the photoelectric CMT1T2

data turns out to be [Fe/H] = −0.3 ± 0.2 (see Table 3). We would

like to point out that although in this case stars 5 and 42 fall

slightly outside the range of the GCM’s abundance calibrations,

we did include them in the cluster metallicity determination. If the

isoabundance lines in Fig. 5 are barely extrapolated, the positions

of both stars in the five Washington colour–colour diagrams imply

[Fe/H] ≈ −0.3. This fact leads us to believe that both stars are very

likely giant cluster members.

Using the most frequently accepted value for the AV /E(B − V)

ratio (Straizys 1992), we obtain a true distance modulus Vo − MV =
12.0 ± 0.4, which implies a distance from the Sun of 2.5 ± 0.5 kpc

and a height out of the Galactic plane of 74 pc. The distance error was

computed through the expression: σ (d) = 0.46 × [σ (V − MV ) +
3.2 × σ (E(B − V))] × d, where σ (V − MV ) and σ (E(B − V))

represent the estimated errors in V − MV and E(B − V), respec-

tively. By using the cluster Galactic coordinates (l, b) and the cal-

culated cluster distance, we derived (10.78, −1.03, −0.07) kpc and

∼10.8 kpc for the cluster (X, Y, Z) coordinates and Galactocentric

distance, respectively, assuming the Sun’s distance from the centre

of the Galaxy to be 8.5 kpc.

6 A N U P DAT E D P I C T U R E O F N G C 2 2 3 6

The position of NGC 2236, its interstellar extinction, its age and

its here-derived metallicity do seem to be in very good agreement

with the generally accepted picture of the structure and chemical

evolution of the Galactic disc. To confirm such assertion, we first

searched for clusters located at (l, b)cluster = (l, b)NGC 2236 ± 5◦ in

order to examine the interstellar absorption law along the line-of-

sight to NGC 2236. We used the WEBDA Open Cluster Data base

(Mermilliod & Paunzen 2003), because its periodical updates make

it an excellent tool to analyse cluster samples. WEBDA provided us

with 31 identified open clusters in the above-mentioned direction,

even when 20 of them have already known distances from the Sun,

E(B − V) colour excesses and ages (Table 5). Only three out of

those 20 clusters have abundance estimates. The result of the search

shows that further work is required to increase the number of detailed

studies on Galactic open clusters.

The cluster reddening and its distance from the Sun here derived

place NGC 2236 among the relatively most reddened and distant

known open clusters projected towards the direction considered,

a result which is illustrated in Fig. 7. It is also of great value to

learn – whenever possible – how metallicity and age distributions

vary for different Galactic longitude intervals. This is due to the

fact that usually we trace gradients of determined parameters as a

function of Galactocentric distance, which may sometimes hide pe-

culiar behaviours. The upper left hand panel of this figure shows the

distribution of the selected clusters (filled circles) and NGC 2236

(filled triangle) in the Galactic (X, Y) plane. Note that the Sun is as-

sumed to be located at (X, Y) = (8.5, 0). We traced with solid lines

a Sun-centred circle of radius 2 kpc as well as the Perseus spiral

Table 5. Fundamental parameters for clusters projected in the direction

towards NGC 2236.

Cluster l b E(B − V) d Z age RGC

(◦) (◦) (mag) (kpc) (kpc) (Myr) (kpc)

NGC 2259 201.76 2.08 0.59 3.30 0.120 316 11.64

Cr 95 201.81 0.03 0.10 0.56 0.000 229 9.02

Tr 5 202.87 1.05 0.58 3.00 0.060 4075 11.32

NGC 2264 202.94 2.20 0.05 0.67 0.030 10 9.12

NGC 2186 203.55 −6.19 0.27 1.45 −0.160 55 9.84

NGC 2251 203.57 0.11 0.19 1.33 0.000 270 9.73

NGC 2202 203.62 −4.90 0.00 0.90 −0.080 550 9.33

Basel 8 203.78 −0.12 0.37 1.33 0.000 126 9.73

Basel 7 203.82 0.53 0.40 1.68 0.020 110 10.06

NGC 2254 204.33 0.05 0.40 2.36 0.000 204 10.70

Platais 6 205.30 −6.19 0.00 0.35 −0.040 62 8.82

Cr 97 205.37 −1.76 0.00 0.63 −0.020 100 9.07

Cr 106 206.03 −0.41 0.23 1.60 −0.010 5 9.96

NGC 2244 206.31 −2.07 0.46 1.45 −0.050 8 9.82

ASSC 26 206.35 3.06 0.13 0.80 0.040 123 9.22

Cr 107 207.15 −0.89 0.54 1.74 −0.030 10 10.08

Berkeley 27 207.78 2.60 0.05 5.04 0.230 1995 13.17

NGC 2269 207.89 0.30 0.40 1.69 0.010 263 10.02

Cr 96 207.96 −3.39 0.51 0.96 −0.060 11 9.36

vdBergh 1 208.56 −1.81 0.71 1.69 −0.050 107 10.01

arm (Drimmel & Spergel 2001). Note that the distance between the

outermost and the innermost clusters is nearly 4.7 kpc. The upper

right hand panel in Fig. 7 shows the relationship between the visual

interstellar absorption AV and the distance d from the Sun. For the

sake of comparison, we also included the relationship between AV

and d corresponding to the Baade’s Window [(l, b) = (1◦, −3.◦9)]

– not far from the direction considered here – obtained by Ng et al.

(1996), which is represented by a solid line. It can be perceived from

both panels that the presence of the Perseus spiral arm – schemati-

cally drawn in the figure – causes a large dispersion in the interstellar

absorption AV values in the direction considered. In fact, the visual

absorption affecting clusters located between 1 and 2 kpc from the

Sun is found to range from practically unreddened up to ∼2.3 mag.

Moreover, most of the selected clusters belong to the Galactic plane

(see bottom left hand panel), while Berkeley 27 – the furthest open

cluster in the sample located at 5 kpc from the Sun and at a height

of 0.23 kpc out of the Galactic plane (Hasegawa et al. 2004) –

is only slightly reddened. According to Hasegawa et al. (2004),

Berkeley 27 is 2.0 Gyr old; it is therefore the oldest cluster of

the present sample (bottom right hand panel). The Hyades-like

age (600 Myr) of NGC 2236, its position in the Galactic disc

(RGC = 10.8 kpc) and its metallicity ([Fe/H] = −0.3) are consis-

tent with both the existence of a radial abundance gradient ranging

from −0.07 to −0.10 dex kpc−1 in the Galactic disc and the age–

metallicity relation so far delineated by Friel (1995).

7 S U M M A RY A N D C O N C L U S I O N S

In this study, we present CCD photometry in the Washington system

C and T1 passbands of 1162 stars in the field of the open cluster

NGC 2236. We also present here CMT1T2 photoelectric photometry

of 13 red giant candidates. The analysis of the photometric data

leads to the following main conclusions:

(i) The (T1, C − T1) CMD reveals a somewhat broad and rel-

atively long cluster MS and a populous clump of He-burning red
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Figure 7. The relationship between the Galactic coordinates X and Y (upper left), between the distance d from the Sun and the visual interstellar absorption

AV (upper right), between the Galactocentric distance RGC and the height |Z| out of the Galactic plane (bottom left), and between |Z| and age (bottom right)

for known open clusters projected in the line-of-sight to NGC 2236. Selected clusters and NGC 2236 are represented by filled circles and by a filled triangle,

respectively. A Sun-centred circle of radius 2 kpc and the Perseus spiral arm are shown in the upper left hand panel. The relationship between d and AV for

Baade’s Window is indicated in the upper right hand panel.

giant stars. Photometric errors do not seem to be responsible for the

observed broadness of the cluster MS. The most probable cause of

the MS blurring seems to be intrinsic effects (evolution, binarity,

etc.), differential reddening and/or star field contamination. We es-

timate that the field star contamination is, on average, 20 per cent

at the cluster centre and increases up to 60 per cent in the cluster

boundaries.

(ii) Star counts carried out in 100 pixel a side boxes distributed

through the whole observed field allowed us to derive an angular

radius of 4.7 arcmin, equivalent to 3.4 pc. From the cluster stellar

density radial profile, we also derived a cluster core radius of rc =
1.7 arcmin (1.2 pc) and an annular corona of �r = 1.8 rc (2.2 pc).

(iii) Estimates of the cluster fundamental parameters were made

from the comparison of the observed (T1, C − T1) CMD with the-

oretical isochrones of the Padova group computed for the Wash-

ington system. The following values were derived for the redden-

ing, apparent distance modulus, age and metallicity: E(C − T1) =
1.10 ± 0.10, T1 − MT1

= 13.45 ± 0.25, t = 600+100
−40 Myr and

Z = 0.008. NGC 2236 is then a Hyades-like age cluster located

at 2.5 ± 0.5 kpc from the Sun beyond the Perseus spiral arm, at

70 pc out of the Galactic plane and at ∼10.8 kpc from the Galactic

centre.

(iv) A metal abundance [Fe/H] = −0.3 ± 0.2 relative to the Sun

was determined from the Washington system photoelectric photom-

etry of 13 probable red giant members, in good agreement with the

value inferred from the best fit of isochrones. This [Fe/H] value

places NGC 2236 in the metal-poor side of the metallicity distribu-

tion of the Galactic open clusters. Spectroscopic observations of the

red cluster giants will be of great importance to confirm the metal-

licity here derived. Therefore, they are strongly recommended. The

cluster Galactocentric position and metallicity appear to be compat-

ible with the existence of a radial abundance in the Galactic disc.

(v) An inspection of the properties of 20 known open clusters

aligned along the line-of-sight to NGC 2236 as seen from the Sun

reveals that Berkeley 27 is the farthest and oldest cluster of the sam-

ple. It can also be seen that the Perseus spiral arm causes a large

dispersion in the visual interstellar absorption values, affecting the

clusters located between 1 and 2 kpc from the Sun.
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Mermilliod J.-C., Clariá J. J., Andersen J., Piatti A. E., Mayor M., 2001,

A&A, 375, 30

Mermilliod J.-C., Paunzen E., 2003, WEBDA Open Cluster Database. A&A,

410, 511

Ng Y. K., Bertelli G., Chiosi C., Bressan A., 1996, A&A, 310, 771

Nilakshi S. R., Pandey A. K., Mohan V., 2002, A&A, 383, 153
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Piatti A. E., Clariá J. J., Ahumada A. V., 2005, PASP, 117, 22
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