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We study complex product structures on quadratic vector spaces and on quadratic Lie algebras analyzing the Lagrangian
and orthogonal splittingsassociated with them. We show that a Manin triple equipped with generalized metric G +B
such that B is an O-operator with extension G of mass -1 can be turned into another Manin triple that admits also an
orthogonal splitting in Lie ideals. Conversely, a quadratic Lie algebra orthogonal direct sum of a pair anti-isomorphic
Lie algebras, following similar steps as in the previous case, can be turned into a Manin triple admitting an orthogonal
splitting into Lie ideals.

I. INTRODUCTION

This work aims to study some algebraic aspects of quadratic
vector spaces that admit a Lagrangian (maximally isotropic)
and an orthogonal direct sum decomposition associated with
complex product structures, mainly when they are endowed
with a Lie algebra structure. In particular, we study a Manin
triple with an orthogonal vector space splitting and use the (al-
most) complex product structure to build a new Manin triple
where the orthogonal subspaces become Lie ideals. Con-
versely, starting from a pair of anti-isomorphic Lie algebras
that are orthogonal relative to a non-degenerate symmetric bi-
linear form on the Lie algebra direct sum, a Manin triple is
obtained that has these Lie algebras as Lie ideals. All of this
is done by resorting to some tools in the realm of the modified
classical Yang-Baxter equation.

Lagrangian and orthogonal splitting of vector spaces inter-
vene as important ingredients in the formulation of Poisson-
Lie T-duality: the Lagrangian decomposition is inherent to
the Manin triple on which the T-dual sigma models are built,
while projections on orthogonal subspaces give rise to the rel-
evant dynamics1,2,3,4. This orthogonal splitting, in subspaces
of the same dimension, can be regarded as the eigenspaces
decomposition of an involutive operator E that encodes the
information of a generalized metric. Also, a linear operator
like E appears in string theory T-duality, through Double Field
Theory approach, disguised by a right multiplication with a
null signature metric analogous to the bilinear form provided
by the Manin triple (see for instance the review in ref.5).

Hence we study the coexistence of Lagrangian and orthog-
onal splitting in quadratic vector spaces and in Manin triples,
when they arise from (almost) complex product structures6

composed of a product structure E and an almost complex
structure J naturally associated with E . These operators
are tied to a generalized metric on a Lagrangian splitting, or
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an anti-isomorphism between the subspaces of an orthogo-
nal splitting. From a given pair {E ,J }, a family of La-
grangian or orthogonal splittings can be obtained by gauge
transformations7. Then, in the framework of Lie bialgebras,
appealing to the formulation by O-operators8 of the modified
classical Yang-Baxter equation, we use quasitriangular fac-
torizable solutions to get a Manin triple where the orthogonal
subspaces become Lie subalgebras, Lie ideals in fact, and to
the twilled extension procedure9 to assemble the Lagrangian
components in a bigger Lie algebra. The construction can
be reversed, allowing the construction of a Manin triple with
the same properties out of a pair of anti-isomorphic Lie al-
gebras. Again, in this procedure, quasitriangular factorizable
solutions of the modified classical Yang-Baxter equation are
used.

We carry out this work in the following steps. In Section
2, we consider a 2n-dimensional real quadratic vector space
with a split bilinear form (,)V : V⊗V−→ R endowed with a
symmetric complex product structure {E ,J } and study the
direct sum decomposition (splittings) V=E+⊕E−=F+⊕F−
with E± an n-dimensional orthogonal subspace, and F± a La-
grangian (maximally isotropic) subspace, arising from the in-
volutive operators E and J E . In Section 3, we briefly de-
scribe the general framework to deal with Lie algebras and
complex product structures. In Section 4, we start with a
Manin triple (g,g+,g−) endowed with a generalized metric
G +B : g+ −→ g−, which gives rise to an orthogonal split-
ting g= E +⊕E −, and we promote it to an O-operator to get a
new Lie algebra structure on g+ by using a quasitriangular fac-
torizable solution of the modified classical Yang-Baxter equa-
tion. Then we built a new Manin triple as a twilled extension
of these Lie subalgebras, which has the notorious property of
admitting the orthogonal subspaces as Lie ideals. In Section
5, we start with a pair of anti-isomorphic n-dimensional Lie
algebras E+ and E− and joint them together in a quadratic Lie
algebra direct sum g, such that E+ and E− are mutually or-
thogonal. From the associated operator J , we construct a
Lagrangian splitting g= F+⊕F−. Again, from a metric G on
F+ and a gauge transformation by a skew-symmetric map B
we get a new orthogonal splitting of g. Following the analo-
gous steps as in the previous section, we finally get a Manin
triple admitting the orthogonal splitting as Lie ideals. Finally,
in Section 6, some conclusion are summarized.
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II. COMPLEX PRODUCT STRUCTURE ON VECTOR
SPACES: ORTHOGONAL AND LAGRANGIAN SPLITTINGS

Let us review some basic facts about real quadratic vector
spaces (see for instance ref.10). A quadratic vector space V
is a vector space endowed with non-degenerate symmetric bi-
linear form (,)V : V⊗V−→R. Given a subspace U⊂V, U⊥

denotes the orthogonal complement of U. A subspace U⊂ V
is isotropic if U ⊆ U⊥. If V is even dimensional, the bilinear
form is called split if the maximally isotropic subspaces are
of dimension 1

2 dimV, in this case these subspaces are named
Lagrangian subspaces.

We study the simultaneous decomposition of a quadratic
vector space in a direct sum of two Lagrangian and a di-
rect sum of two orthogonal subspaces of the same dimension.
Let V be a 2n-dimensional real quadratic vector space with a
split bilinear form (,)V : V⊗V −→ R, and consider the di-
rect sum decompositions V = E+⊕E− = F+⊕F− such that
{E+,E−} are mutually orthogonal n-dimensional subspaces
while {F+,F−} are Lagrangian subspaces. For the sake of
brevity, we refer to this pair of simultaneous direct sum de-
compositions of V as a double splitting.

A complex product structure on the vector space V (see
ref.6) is a pair of linear operators {E ,J } : V−→V such that

E 2 = I , J 2 =−I , E J +J E = 0 (1)

where I is the identity on V. The involutive operator E
is called product structure on the vector space V and the
linear operator J is a complex structure on V. Since E
and J anticommute, J is a linear bijection between the
eigenspaces E ±, associated with the eigenvalues ±1 of E , so
the eigenspaces E ± are n-dimensional and E is called a para-
complex structures11. There is a third linear operator, namely
F = J E , which is involutive and anticommutes with E and
J . Thus {E ,J ,F} spans the algebra of linear homoge-
neous polynomials on these operators.

Let V be a real quadratic vector space, then we call {E ,J }
a symmetric complex product structure when E and J are
symmetric relative to the bilinear form (,)V, implying that F
is skew-symmetric. In this case, J is anti-compatible with
(,)V so ((,)V ,J ) is an anti-Hermitian structure on V. How-
ever, from the complex product structure we may define a sec-
ond quadratic bilinear form on V, namely (,)E : V⊗V−→ R
as (X ,Y )E := (X ,EY )V so that ((,)V ,J ) is an Hermitian
structure.

A symmetric complex product structure {E ,J } on a
quadratic vector space V has associated a double splitting V=
E+⊕E− = F+⊕F− defined by the eigenspaces E+ and E− of
the involutive symmetric operator E and the eigenspaces F+

and F− of the involutive skew-symmetric operator F =J E .
This implies the existence of a linear bijections ϕ : E+−→E−,
with ϕ> = −ϕ−1, such that the matrix block form of the op-

erators {E ,J ,F} in a basis of eigenvectors of E are

E =

(
I 0
0 −I

)
, F =

(
0 ϕ−1

ϕ 0

)

J = FE =

(
0 −ϕ−1

ϕ 0

) , (2)

and, on the other hand, of a linear bijection G : F+ −→ F−,
with G> = G , such that the matrix block form of the operators
{E ,J ,F} in a basis of eigenvectors of F are

E =

(
0 G−1

G 0

)
, F =

(
I 0
0 −I

)

J = FE =

(
0 G−1

−G 0

) .

In the first case the eigenspace F± can be identified as the
graph of ϕ

F± =
{

X+±ϕ
(
X+
)
/X+ ∈ E+

}
= graph(±ϕ)

and the linear map G : F+ −→ F− is realized as

G
(
X++ϕ

(
X+
))

= X+−ϕ
(
X+
)
.

In the second case, the eigenspace E± coincides with the
graph of G

E± = {X+±G (X+)/X+ ∈ F+}= graph(±G ) .

and the linear map ϕ : E+ −→ E− turn to be

ϕ (X++G (X+)) = X+−G (X+) (3)

Thus, double splittings induced by complex product struc-
tures can be equivalently obtained from an orthogonal split-
ting supplied with a linear bijection ϕ : E+ −→ E− with
ϕ> =−ϕ−1 or, alternatively, from a Lagrangian splitting sup-
plied with a linear bijection G : F+−→ F− with G>=G . Note
that G can be regarded as a metric on the Lagrangian compo-
nent F+.

In the next sections we shall exploit these alternative ways
of building double splittings from a complex product structure
to obtain a direct sum Lie algebra from an special Manin triple
and, reciprocally, to obtain a Manin triple from a particular Lie
algebra direct sum.

Starting from a Lagrangian splitting V = F+ ⊕ F− and a
linear map G : F+ −→ F− we can obtain a wide family of or-
thogonal splittings through a class of isometries named gauge
transformations7. A twisting or gauge transformation on
the vector space V is implemented on the Lagrangian de-
composition V = F+⊕ F− by a skew-symmetric linear map
B : F+ −→ F− such that

B · (X++X−) = X++X−+B (X+) . (4)

So, we get the family of subspaces parametrized by B ∈
Skew(F+,F−)

E±B = {X+± (B±G )X+/X+ ∈ F+}= graph(B±G ) , (5)
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such that V = E+
B⊕E−B is an orthogonal splitting of V. Note

that if G is positive definite, G ±B is invertible and can be
regarded as a generalized metric on F+. However, we will
abuse the language and keep this name even in the case where
G ±B is non-invertible.

Gauge transformations led us to a broader framework
in which the vector space V admit simultaneously the La-
grangian splitting V = F+ ⊕ F− and the orthogonal one
V = E+

B ⊕ E−B , for arbitrary skew-symmetric linear map
B : F+ −→ F−. So we must review the above block ma-
trix realization of the associated complex product structure
{EB,JB}.

Proposition: The complex product structure {EB,JB} as-
sociated with the decompositions V=E+

B⊕E−B = F+⊕
F− is represented in the Lagrangian splitting as

EB =

(
−G−1B G−1

G −BG −1B BG−1

)
,

JB =

(
−G−1B G−1

−G −BG −1B BG−1

) (6)

while in the orthogonal splitting is represented as

EB =

(
I 0
0 −I

)
, JB =

(
0 −ϕ

−1
B

ϕB 0

)
where ϕB : E +

B −→ E −B defined as

ϕB (X++(B+G )X+) = X++(B−G )X+. (7)

Proof: The proof is straightforward, it is easy to check that
(EB)2 =−(JB)2 = I , and EBJB +JBEB = I, and that
the eigenspaces of EB are E+

B and E−B in both direct sum de-
compositions. �

The operators EB and JB introduced in eq. (6) are
uniquely defined up to a conformal factor steaming from the
metric change G −→ eφ G .

The operator FB in V = F+⊕F− is

FB =

(
I 0

2B −I

)
with the eigenspaces FB− = F− and FB+ = B ·F+, provid-
ing a family of Lagrangian splittings parametrized by skew-
symmetric maps from F+ to F−.

The operators (6) can be written as

E = B>GBA , J = B>JBA

where

B =

(
I −B
0 −I

)
, G =

(
G−1 0

0 G

)
,

J =
(

G−1 0
0 −G

)
, A =

(
0 I
I 0

)
.

It is interesting to note that linear operators like to E , dis-
guised as (

G−1 −G−1B
BG −1 G −BG −1B

)

=

(
−G−1B G−1

G −BG −1B BG−1

)(
0 I
I 0

)
,

is pervasive in string theory T-duality. There its occurrence
can be traced back to references12,13 where it appears as a
metric on a 2D-dimensional manifold, then in early studies
on T-duality as a generalized metric and, more recently, it be-
comes in the central object in the so called Double Field The-
ory approach to T-duality14,15. It also plays a relevant role
in generalized Kähler geometry16. Hence, all these problems
can be endowed with an (almost) complex structure {E ,J }
like that given in eq. (6).

A. Dual construction

An analogue of the above construction can be achieved us-
ing the inverse map ϕ−1 : E− −→ E+ in place of ϕ : E+ −→
E−, in such a way that the eigenspaces of F are now defined
as

F± =
{

X−±ϕ
−1 (X−)/X− ∈ E−

}
This construction comes to be dual of the former, relative to
the bilinear form (,)V in the following sense(

X−±ϕ
−1 (X−) ,Y+

)
V =

(
X−,Y+∓ϕ

(
Y+
))

V ,

for X− ∈ E−,Y+ ∈ E+. The analogous of the map G is now
the linear bijection G̃ : F− −→ F+ defined as

G̃
(
X−−ϕ

−1 (X−))= X−+ϕ
−1 (X−)

and from it we get

E∓ =
{

X−± G̃ (X−)/X− ∈ F−
}
= graph

(
±G̃
)
.

By writting X− =−ϕ (X+) one may see that G̃ = G−1. In the
Lagrangian decomposition V = F+⊕F− the operators Ẽ and
J̃ are represented by the block matrices

Ẽ =

(
0 G̃

G̃−1 0

)
, J̃ =

(
0 G̃

−G̃−1 0

)
.

Things become more interesting after applying the gauge
transformation isometry

B̃ · (X++X−) =
(
X++ B̃ (X−)+X−

)
with B̃ : F− −→ F+ a skew-symmetric linear map, which al-
lows to get the family of orthogonal subspaces

E±
B̃
=
{

X−±
(
B̃± G̃

)
X−/X− ∈ F−

}
= graph

(
B̃± G̃

)
,
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parametrized by B̃ ∈ Skew(F−,F+). Hence, the Lagrangian
and orthogonal splitting V = F+⊕F− = E+

B̃
⊕E−

B̃
have asso-

ciated the complex product structure
{
ẼB,J̃B

}
EB̃ =

(
I 0
0 −I

)
, JB̃ =

(
0 −ϕ̃−1

ϕ̃ 0

)
,

refered to V = E+
B̃
⊕E−

B̃
, where ϕ̃ : E +

B −→ E −B now defined
as

ϕ̃
(
X−+

(
B̃+ G̃

)
X−
)
= X−+

(
B̃−G

)
X−.

In the Lagrangian splitting V = F+⊕F− they are represented
by block matrices3

EB̃ =

(
B̃G̃

−1
G̃ − B̃G̃

−1
B̃

G̃−1 −G̃−1B̃

)
,

J̃B̃ =

(
B̃G̃

−1 −G̃ − B̃G̃
−1

B̃
G̃−1 −G̃−1B̃

)
.

The eigenspace E±
B̃

of ẼB̃ coincides with E±B (5) if and
only if

(B±G )
(
B̃± G̃

)
= I and

(
B̃± G̃

)
(B±G ) = I ,

which in turn implies the relations

G̃ =
(
G −BG −1B

)−1

B̃ =−G−1B
(
G −BG −1B

)−1

=−
(
G −BG −1B

)−1
BG −1

making EB̃ = EB . These relations also hold after interchang-
ing (G ,B) ←→

(
G̃ ,B̃

)
. Note that both descriptions lead

to the same double splitting provided the generalized metric
G ±B provided it is invertible which, for instance, is war-
ranted if G gives rise to a positive definite metric on F+, or G̃
on F−.

III. COMPLEX PRODUCT STRUCTURE ON LIE
ALGEBRAS

A quadratic Lie algebra is a Lie algebra g equipped with an
invariant, non-degenerate symmetric bilinear form (,)g. Let
g be a quadratic Lie algebra with a split bilinear form (,)g,
and assume that the underlying vector space is supplied with
a double decomposition so it has associated a pair of oper-
ators E ,J : g −→ g such that E 2 = I , J 2 = −I and
E J +J E = 0. In presence of a Lie algebra structure, it
is important to pay attention to integrability issues: on a Lie
algebra g a linear operator E : g −→ g satisfying E 2 = I is
called an almost product structure, and it is said integrable if
the Nijehuis condition is satisfied, namely

[E X ,EY ]−E ([E X ,Y ]+ [X ,EY ])+ [X ,Y ] = 0

for all X ,Y ∈ g. Equivalently, the linear operator E is inte-
grable iff its eigenspaces E+ and E− are Lie subalgebras of
g. An integrable almost product structure is called a product
structure. If the eigenspaces E+ and E−, associated with the
eigenvalues +1 and −1, respectively, have the same dimen-
sion, the product structure is called a paracomplex structure.11

A linear operator J : g −→ g satisfying J 2 = −I is
called an almost complex structure and it is integrable if the
Nijenhuis condition

[J X ,JY ]−J ([J X ,Y ]+ [X ,JY ])− [X ,Y ] = 0

is satisfied. In this case, it is called a complex structure.
A complex product structure on a Lie algebra g is given by

a product structure E and a complex structure J such that
E J +J E = 0. Complex product structures on Lie algebras
are exhaustively studied in ref.6. In this work we are involved
with almost complex structures, and the product structures be-
come integrable only in some particular case.

Next we will apply the study of section II to a Manin triple
endowed with a generalized metric. A Manin triple consists
of a triple of Lie algebras (g,g+,g−) where g is equipped with
an invariant non-degenerate symmetric bilinear form (,)g and
g+,g− are Lagrangian (maximally isotropic) Lie subalgebras
of g such that g = g+⊕ g−. There is one-to-one correspon-
dence between Manin triples on g and Lie bialgebra structures
on the Lie algebra g±17, which in turn are in one-to-one corre-
spondence with Poisson-Lie structures on the connected and
simply-connected Lie group G± associated with g±. The main
idea behind the correspondence between Manin triples on g
and Lie bialgebra structures on the Lie algebra g± is the iden-
tification g± ' g∗∓ through the linear bijection induced by the
bilinear form (,)g, such that g= g+⊕g−' g±⊕g∗±=D (g±),
where D (g±) is called the double Lie algebra of g±, or the
classical double of g±. In fact, a Lie bialgebra on the Lie alge-
bra g± is defined by a Lie cobracket δ : g± −→ g±⊗g± such
that the dual map δ ∗ : g∗±⊗ g∗± −→ g∗± defines a Lie bracket
on g∗±. There is also a compatibility condition between the Lie
cobracket and the Lie bracket on g± which implies that δ is
1-cocycle with values in g±⊗g±. Then, building a cobracket
from a coboundary r ∈ g±⊗g± (the r-matrix) fulfills automat-
ically this requirement. It remains the co-Jacobi condition (or
the Jacobi identity for the induced Lie bracket in g∗±) which
is a hard restriction on the r-matrix that boils down to asking
for the ad-invariance of the objects r12 + r21 ∈ g±⊗ g± and
[r13,r23]+ [r12,r13]+ [r12,r23] ∈ g±⊗g±⊗g±, giving rise to
the classical Yang-Baxter equation and the modified classical
Yang-Baxter equation.

IV. FROM MANIN TRIPLES TO LIE ALGEBRAS
ORTHOGONAL DIRECT SUM

Starting from a Manin triple (g,g+,g−), that is a quadratic
Lie algebra, and a generalized metric G +B : g+ −→ g− we
build a new Manin triple structure admitting an orthogonal di-
rect sum decomposition in terms of Lie algebra ideals associ-
ated with the graphs of G +B and its orthogonal complement,
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namely the graph of B−G . This will be achieved by turning
B into an O-operator with extension G of mass κ =−1.

A. Generalized metrics and almost complex product
structures

Let (g,g+,g−) be a Manin triple with dimg = 2n. We as-
sume that g+ is equipped with a generalized metric realized
through a linear map H : g+ −→ g− such that, relative to
the bilinear form (,)g, it can be decomposed as H = G +B
where G is the symmetric component, assumed to be invert-
ible, and B is the skew-symmetric one.

Let H > : g+ −→ g− be the transpose of H : g+ −→ g−,
(H X+,Y+)g =

(
X+,H >Y+

)
g
, and consider the subspaces

E + and E − of g defined by the graphs of the linear maps H
and −H >,

E ± = {X++(B±G )X+/X+ ∈ g+} . (8)

E + and E − are transversal orthogonal subspaces of dimen-
sion n such that g = E +⊕E −, and the vector space g admits
a double splitting, namely g = g+⊕ g− = E +⊕E −. We de-
scribe these orthogonal subspaces by introducing a the linear
operators E ,J : g−→ g such that

E (X++BX+±G X+) =±(X++BX+±G X+)

J (X++BX+±G X+) =±(X++BX+∓G X+)

implying that E and J are symmetric operators satisfying
the properties

E 2 = I , J 2 =−I , E J +J E = 0 ,

that is, they conform an almost complex product structure on
g. J is anti-compatible with the bilinear form (,)g, turning
g in a complex vector space with an anti-Hermitian metric.

In the direct sum decomposition g = g+ ⊕ g−, the block
matrix form of these operators are

E =

(
−G−1B G−1

G −BG −1B BG−1

)
,

J =

(
−G−1B G−1

−G −BG −1B BG−1

)
while in the orthogonal decomposition they take the form
given in eq. (2). They span a tridimensional algebra with
basis {E ,J ,F}, where F = J E is an involutive skew-
symmetric operator. In the present framework, the linear op-
erators {E ,J } are not integrable in general.

B. Generalized metrics and O-operators

The next step is to bring the generalized metric H =G +B
on g+ into the context of the r-matrix method18,19. We con-
sider the generalization of the r-matrix method introduced

in9,20 and the further extensions of ref.8-21, by regarding the
r-matrices as linear maps from a representation space of a Lie
algebra to the Lie algebra itself. In the last references, the
method is extended to the case in which the representation
space is also a Lie algebra and the action is a derivation. Al-
though the setting of refs.9,20 would be enough for the cur-
rent developments, we will use the more general and versa-
tile method of O-operators of reference8, combined with the
twilled extension of Lie algebras of ref.9.

Let’s make a brief review of some basic definitions of the
O-operators limited to what is needed in this work. Let k be
a finite dimensional Lie algebra and V a representation space
of k, and denote by σ : k −→ End(V) the linear map such
that X 7−→ σX for X ∈ k. A linear map β : V −→ k is said
antisymmetric if

σβ (V )W +σβ (W )V = 0

for V,W ∈ V, and it is said k-invariant if

β (σXV ) = [X ,β (V )]

for X ∈ k,Y ∈ V. Then, if β : V −→ k be a linear map, an-
tisymmetric, k-invariant, a linear map r : V −→ k is called an
extended O-operator with extension β of mass (−1) if it ful-
fills the equation

[r (V ) ,r (W )]− r
(
σr(V )W −σr(W )V

)
=− [β (V ) ,β (W )] (9)

for V,W ∈ V.
The main result for our purpose is established in the follow-

ing theorem (Theorem 2.18 in ref.20, and a restricted version
of Theorem 2.13 in ref.8).

Theorem: Let k be a finite dimensional Lie algebra, V be a a
representation space of k, r,β : V→ k be linear maps.

i. If r : V→ k is an extended O-operator with exten-
sion β of mass κ , then the bracket

[V,W ]r = σr(V )W −σr(W )V

defines a Lie algebra on V. We denote this Lie
algebra (V, [, ]r) as Vr.

ii. If β : V→ k is k-invariant of mass κ =-1, then r
satisfies

[r (V ) ,r (W )]− r
(
σr(V )W −σr(W )V

)
=− [β (V ) ,β (W )]

if and only if (r±β ) : Vr −→ k is a Lie algebra
homomorphism, namely

(r±β ) [V,W ]r = [(r±β )V,(r±β )W ]

∀V,W ∈ Vr.

Equation (9) comes to play the role of the modified clas-
sical Yang-Baxter equation. Under these conditions, the new
Lie bracket on V defines the coboundary cobracket on δr on k.

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I:1
0.1

06
3/5

.01
27

96
0



6

C. B as an extended O-operator with extension G

Let’s start with a Manin triple (g,g+,g−) with dimg = 2n
equipped with an almost product structure E and an almost
complex structure J such that E J +J E = 0 so, besides
the Lagrangian splitting g= g+⊕g−, it admits a vector space
orthogonal splitting g = E +⊕E −. Now, we will use the lin-
ear operators G ,B : g+ −→ g− to build a new Lie bialgebra
structure on g+ by asking for B to be an extended O-operator
with extension G of mass κ = −1. In doing so, we consider
the vector space g+ as a representation space of g− by the map
σ : g− −→ End(g+)/X− 7−→ σX− defined as

σX−Y+ = Πg+ [X−,Y+] (10)

where Πg± : g −→ g± is the projector. It is just the dress-
ing action of g− on g+. In addition we assume that G is g−-
invariant which means that

G
(
σX−Y+

)
= [X−,GY+] (11)

for X− ∈ g− and Y+ ∈ g+. It also implies that G is antisym-
metric

σG X+Y++σGY+X+ = 0.

Then we take B as an extended O-operator with extension G
of mass κ =−1, therefore B and G fulfill the condition

[BX+,BY+]−B
(
σBX+Y+−σBY+X+

)
=− [G X+,GY+]

(12)
for X+,Y+ ∈ g+. In turn, this implies that the bracket

[X+,Y+]B = σBX+Y+−σBY+X+ (13)

defines a new Lie algebra structure (g+, [, ]B) and eq. (12) is
equivalent to stating that (B±G ) : gB

+ −→ g− is a Lie algebra
homomorphism

(B±G ) [X+,Y+]B = [(B±G )X+,(B±G )Y+] (14)

for X+,Y+ ∈ (g+, [, ]B). We denote the Lie algebra (g+, [, ]B)

as gB
+ .

D. Twilled extensions

We shall use a twilled extension of Lie algebras, introduced
in reference9, to obtain a new Lie algebra structure from g−
and gB

+ , so let’s have a brief review of how it works. Con-
sider a couple of Lie algebras g− and g+, equipped with lin-
ear maps σ : g− −→ End(g+)/X− 7−→ σX− and ρ : g+ −→
End(g−)/X+ 7−→ ρX− turning g+ into a representation space
of g− and g− into a representation space of g+, respectively.
With this input, the twilled extension g of g− and g+ is
the vector space g+⊕ g− endowed with the skew-symmetric
bracket

[X++X−,Y++Y−]gB

= [X+,Y+]+σX−Y+−σY−X++[X−,Y−]+ρX+Y−−ρY+X−

which is a Lie algebra structure on g+⊕g− iff ρ and σ satisfy
a pair of constraints in order to ensure the validity of the Jacobi
identity. These constraints are most conveniently expressed
in terms of so called orbit maps defined as the assignments
Y− ∈ g− 7−→ ρY− ∈ Homlin (g+,g−) and Y+ ∈ g+ 7−→ σY+ ∈
Homlin (g−,g+) defined as

ρY−X+ := ρX+Y− , σY+X− := σX−Y+ .

Thus the constraints take the form

ρ[X−,Y−] = adX− ◦ρY− −ρY− ◦σX− +ρX− ◦σY− −adY− ◦ρX−

σ[X+,Y+] = adX+ ◦σY+ −σY+ ◦ρX+ +σX+ ◦ρY+ −adY+ ◦σX+

(15)
As shown in ref.9, these relations mean that ρ is 1-cocycles
on g− with values in Homlin (g+,g−), and σ is a 1-cocycle on
g+ with values in Homlin (g−,g+).

1. The twilled extension of gB
+ ,g−

Now we specialize this method to the setting of subsection
IV C where g+ is a representation space of g− by the map
σ : g− −→ End(g+)/X− 7−→ σX− defined in (10), and g+ is
endowed with the Lie bracket [, ]B of eq. (13). So, we need to
define a map ρ : g+−→End(g−)/X+ 7−→ ρX− turning g− into
a representation space of g+. Since σ is given, we focus on
finding a linear map ρ fulfilling the constraints (15) following
path of exact twilled extension which ensures the constraints
are satisfied9. Regarding Homlin (g+,g−) as a g−-module un-
der the left action g−×Homlin (g+,g−) −→ Homlin (g+,g−)
defined as(

X−,ρY−
)
7−→ X− ·ρY− = ρY− ◦σX− −adX− ◦ρY−

for
(
X−,ρY−

)
∈ g−×Homlin (g+,g−), a 1-form ρ on g− with

values in the g−-module Homlin (g+,g−) is a 1-cocycle if

dρ (X−,Y−) = X− ·ρY− − Y− ·ρX− −ρ[X−,Y−] = 0

which is equivalent to the first constraint in eq. (15). An
obvious solution to the first constraint is to choose a map ρ as
a coboundary, i.e., we take ρ = dB with B ∈Homlin (g+,g−)
regarded as a 0-form, then

ρX− = dB (X−) = B ◦σX− −adX− ◦B. (16)

and it produces the linear action

ρY+X− = BσX−Y+− [X−,BY+]

Moreover, the second constraint in eq. (15) reduce to a trivial
identity. Thus, we get a right exact twilled extension gB of
gB
+ and g−, namely the vector space g+⊕ g− endowed with

the Lie bracket

[X++X−,Y++Y−]gB

= [X+,Y+]B +σX−Y+−σY−X+

+[X−,Y−]+BσX−Y+− [X−,BY+]
−BσY−X+− [Y−,BX+] .
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2. The twilled extension of
(
gB
+

)op
,g− and the orthogonal

subspace E ± as Lie ideals

There is a second twilled construction in the framework of
the previous subsection steaming from the following observa-
tion: if (σ ,ρ) fulfill the conditions (15) for the Lie algebras
g− and gB

+ , then (σ ,−ρ) fulfills the Jacobi conditions for the
Lie algebras g− and (g+)

op. Thus we get a right exact twilled
extension g̃B of

(
gB
+

)op and g−, namely g̃B =
(
gB
+

)op⊕ g−
with Lie bracket

[X++X−,Y++Y−]g̃B

=− [X+,Y+]B +σX−Y+−σY−X+

+[X−,Y−]+BσX−Y+− [X−,BY+]
−BσY−X++[Y−,BX+] .

Recalling that σ : g− −→ End(g+) was given in eq. (10), the
map ρ :

(
gB
+

)op⊗g− −→ g− turns in

ρ (X+,Y−) = BΠg+ [X+,Y−]− [BX+,Y−]

and the Lie bracket in g̃B =
(
gB
+

)op ⊕ g− gets the explicit
form

[X++X−,Y++Y−]g̃B
(17)

=− [X+,Y+]B +Πg+ [X−,Y+]−Πg+ [Y−,X+]

+[X−,Y−]+BΠg+ [X+,Y−]− [BX+,Y−]
−BΠg+ [Y+,X−]+ [BY+,X−] .

This double Lie algebra has a remarkable property, which is
expressed in the following theorem.

Theorem:: The orthogonal subspaces E + and E −de f ined in
eq. (8) are Lie ideals in g̃B , and they are (anti) isomor-
phic to g−.

Proof: To prove that E ± is a Lie subalgebra of g̃B , we
note that the g−-component of the Lie bracket on E ± can be
written as

Πg− [X++(B±G )X+,Y++(B±G )Y+]g̃B

=− [(B±G )X+,(B±G )Y+]
+Bσ(B±G )X+

Y+−Bσ(B±G )Y+X+

± [(B±G )X+,GY+]∓ [(B±G )Y+,G X+]

and, by virtue of the g−-symmetry (11) applied in the last line
and because of the relation (14), it reduces to

Πg− [X++(B±G )X+,Y++(B±G )Y+]g̃B

= (B±G )
(

Πg+ [X++(B±G )X+,Y++(B±G )Y+]g̃B

)
Therefore, the full Lie bracket between elements of E ± can
be written as

[(I+B±G )X+,(I+B±G )Y+]g̃B

= (I+B±G )
(

Πg+ [(I+B±G )X+,(I+B±G )Y+]g̃B

)

proving that E ± is a Lie subalgebra. After the evaluation of
the g+-component of the Lie bracket we get

[(I+B±G )X+,(I+B±G )Y+]g̃B

=±2(I+B±G )G−1 [G X+,GY+] . (18)

To prove that E ± is an ideal we evaluate the crossed Lie
bracket between elements of E +and E −, where we use again
the g−-invariance of G so that after some handling we arrive
to

[X++(B+G )X+,Y++(B−G )Y+]g̃B

=− [BX+,BY+]− [G X+,GY+]+B [X+,Y+]B

which vanishes because of the O-operator relation (12), show-
ing that E ± is a Lie algebra ideal.

Note that each X+ ∈ g+ can be written as X+ = G−1X− for
some X− ∈ g−, then eq. (18) can be written as[

1
2
(I +B±G )G−1X−,

1
2
(I +B±G )G−1Y−

]
g̃B

=±1
2
(I +B±G )G−1 [X−,Y−]

therefore (I +B±G )G−1/2 : g− −→ E ± is a Lie algebra
(anti) homomorphism with a trivial kernel and, because g−
and E ± have the same dimension, it is a bijection.�

Corollary: The Lie algebra g̃B admits the double splitting

g̃B = (g+)
op⊕g− = E +⊕E −.

This Lie bracket leaves invariant the bilinear form (,)g(
[X++X−,Y++Y−]g̃B

,Z++Z−
)
g̃

=−
(

Y++Y−, [X++X−,Y++Y−]g̃B

)
g

so we get the following result.

Proposition:
(
g̃B,

(
gB
+

)op
,g−
)

equipped with the bilinear
form (,)g is a Manin triple.

It is worth highlighting that the above results imply that
the product structure E is integrable, so it is a para-complex
structure on g̃B . On the other hand, the non-abelian character
of the ideals E + and E − prevents the integrability of the linear
operator J , other wise E + and E − would be abelian ideals
(see ref.6).

In reference to the operator J , we can recover the antiiso-
morphism ϕB : E + −→ E −, see eq. (7), as the composition

ϕB =
1
2
(I +B∓G )G−1 ◦

(
1
2
(I +B±G )G−1

)−1

,

with

ϕB (X++(B+G )X+) = X++(B−G )X+.
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It is interesting to note the relation between the Lie bracket
(18) and the integrability of the complex structure JB . In
fact, since in the E +⊕E − splitting, JB takes the form

JB =

(
0 −ϕ

−1
B

ϕB 0

)
then, the Nijenhuis tensor reduce to6,

Nϕ

(
X+,Y+

)
= ϕB

[
X+,Y+

]
g̃B

+ϕ
−1
B

[
ϕB

(
X+
)
,ϕB

(
Y+
)]

g̃B

−
[
ϕB

(
X+
)
,Y+

]
g̃B
−
[
X+,ϕB

(
Y+
)]

g̃B
,

for X+ = (I+B±G )X+,Y+ = (I+B±G )Y+ ∈ E +. Then,
after some computations, we get

Nϕ ((I+B±G )X+,(I+B±G )Y+) =−4 [G X+,GY+]

and the Lie bracket (18) can be written as[
X+,Y+

]
g̃B

=∓1
2
(I +B±G )G−1Nϕ

(
X+,Y+

)
making clear that J is integrable iff E ± is abelian.

Lemma: The linear map ϕB : E + −→ E − defining the al-
most complex structure J is a Lie algebra antihomo-
morphism.

Proof: Let X+ = X+ + (B+G )X+ and Y+ = Y+ +
(B+G )Y+ in E +, then

ϕB

([
X+,Y+

]
g̃B

)
= 2

(
G−1 [G X+,GY+]+ (B−G )G−1 [G X+,GY+]

)
=− [X++(B−G )X+,Y++(B−G )Y+]g̃B

then

ϕB

([
X+,Y+

]
g̃B

)
=−

[
ϕB

(
X+
)
,ϕB

(
Y+
)]

g̃B
.

as stated above.�
This property can be also expressed as

E [J X ,JY ]g̃B
= J [X ,Y ]g̃B

.

E. E ± as g−-Lie algebras

It is interesting to note that the Lie algebra g− is a common
component in the Manin triples (g,g+,g−) and

(
g̃B,gB

+ ,g−
)
,

and acts as a derivation on the subalgebras E + and E − of g̃B .

Proposition:: The Lie subalgebra E ± ⊂ g̃B is a g−-Lie alge-
bra under the adjoint action in gB .

Proof: Consider the Lie bracket (17) of g̃B restricted to
g−×E ±, then the adjoint action of g− on E ± is

adg̃B
X− (Y++(B±G )Y+)

= [X−,Y++(B±G )Y+]g̃B

= Πg+ [X−,Y+]+ [X−,(B±G )Y+]
+BΠg+ [X−,Y+]+ [BY+,X−]

and recalling that G : g+ −→ g− is g−-invariant, it reduces to

adg̃B
X− (I +B±G )Y+ = (I +B±G )Πg+ [X−,Y+]

therefore E ± are invariant subspaces under the adjoint action
of g−. Writing it in terms of the dressing action of g− on g+
in the Manin triple (g,g+,g−), it turns in

adg̃B
X− (I +B±G )Y+ = (I +B±G )(Y+)

X−

which means that (I +B±G ) intertwines between the dress-
ing action of g− on g+ and the adjoint action of g− on E ±.

Moreover, because of the Jacobi identity we get

adg̃B
X−

[
X±,Y±

]
g̃B

=
[
adg̃B

X− X±,Y±
]
g̃B

+
[
X±,adg̃B

X−Y±
]
g̃B

therefore E ± are g−-Lie algebras.�
This action adg̃B : g−×E ± 7−→ E ± can be promoted to an

action of the connected simply connected Lie group G−⊂ G̃B

associated with the Lie algebra g− AdG̃B : G−×E ± −→ E ±

/(g−,Y±) 7−→ AdG̃B
g− Y± such that

AdG̃B
g− (I +B±G )Y+ = (I +B±G )Πg+AdG

g−Y+

meaning that the orbit of G− ⊂ G̃B through X± ∈ E ± is the
image of the dressing orbit of G− ⊂ G through X+ ∈ g+ by
the isomorphism (I +B±G ) : g+ −→ E ±.

F. B and G from factorizable quasitriangular r-matrices

Let (g,g+,g−) be a Manin triple whose bilinear form is
(,)g, and let r ∈ g− ⊗ g− be a factorizable quasitriangu-
lar solution of the modified classical Yang-Baxter equation,
with r+and r− the symmetric and skew-symmetric compo-
nents of r. Define the linear operators r̂−, r̂+ : g∗− −→ g−
as r̂± (ξ ) = 〈ξ ⊗ I,r±〉, where r̂+ is invertible, then the g−-
invariance of r+ becomes in

r̂+ ◦ad∗X− +adX− ◦ r̂+ = 0.

Here adX− denotes the adjoint action of g− on itself, and in
the whole work, ad∗ just means the transpose operator, so the
coadjoint action is the −ad∗.

By using the linear bijection ψ : g+ −→ g∗− induced by the
bilinear form (,)g, we introduce the linear operators

B = r̂− ◦ψ : g+ −→ g− , G = r̂+ ◦ψ : g+ −→ g−

then the g−-invariance turns in

G
(
Πg+ [X−,Y+]

)
= [X−,GY+] . (19)

The ad-invariance of the bilinear form means that ψ−1 ◦
adg∗X+

+ adgX+
◦ ψ−1 = 0, therefore the action σ : g− −→

End(g+) introduced in eq. (10) can be written as

σX−Y+ = Πg+ [X−,Y+] =−ψ
−1 (ad∗X−ψ (Y+)

)
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then

σBX+Y+ =−ψ
−1
(

ad∗BX+
ψ (Y+)

)
or, equivalently,

r̂−ad∗BX+
ψ (Y+) =−BΠg+ [BX+,Y+] .

This allows to write the classical Yang-Baxter equation

[r13,r23]+ [r12,r13]+ [r12,r23] = 0

as20

[BX+,BY+]−B (σ (BX+,Y+)−σ (BY+,X+))

=− [G X+,GY+]

so B is an O-operator with extension G of mass −1.
With the help of (19) and writing X+ = G−1X− and Y+ =

G−1Y−, it turns in

[BG −1X−,BG −1Y−]

−BG −1 [BG −1X−,Y−
]
−BG −1 [X−,BG −1Y−

]
=−[X−,Y−]

showing that BG −1 is a solution of the modified classical
Yang-Baxter equation in the form of ref.19.

G. Orthogonal splitting of a factorizable quasitriangular Lie
bialgebra

Here we set aside the original Manin triple and apply the
latter results on a factorizable quasitriangular Lie bialgebra k,
providing a rather simple nontrivial example of the construc-
tion of this section. Thus, the Lie bialgebra is defined by a
quasitriangular factorizable r-matrix which also plays the role
of generalized metric and provides the orthogonal splitting of
the underlying vector space. In fact, if k is of coboundary
type with quasitriangular factorizable r-matrix defining the
Lie bracket on k∗ through the cobracket in k, δr : k −→ k⊗ k,
as

〈[ξ ,λ ]r ,X〉= 〈ξ ⊗λ ,δrX〉

then

[ξ ,λ ]r = ad∗r̂−(λ )ξ −ad∗r̂−(ξ )λ ,

and the classical double of k, namely k⊕ k∗, is defined by the
Lie bracket

[X +ξ ,Y +λ ]

= [X ,Y ]−adr∗
ξ

Y +adr∗
λ

X +[ξ ,λ ]r−ad∗X λ +ad∗Y ξ

As twilled extension, it corresponds to σX λ = −ad∗X λ and
ρξY =−adr∗

ξ
Y , where adr∗ means the transpose of the adjoint

action by the Lie structure [, ]r on k∗. Also we have that

adr∗
λ

X = r̂− (ad∗X λ )+adX r̂− (λ )

that has the form of the 1-cocycle introduced en (16), so it is
an exact twilled extension. Then the Lie bracket in k⊕k∗ turns
in

[X +ξ ,Y +λ ]

= [X ,Y ]+
[
r̂−ξ ,Y

]
− r̂−ad∗Y ξ −

[
r̂−λ ,X

]
+ r̂−ad∗X λ

+[ξ ,λ ]r−ad∗X λ +ad∗Y ξ . (20)

Note that together with the natural bilinear form

〈(X ,ξ ) ,(Y,λ )〉= 〈ξ ,Y 〉+ 〈X ,λ 〉 ,

(k⊕ k∗,k,k∗) is a Manin triple.
On the other side, the twilled extension of k and (k∗)op is

defined by the Lie bracket

[X +ξ ,Y +λ ]′

= [X ,Y ]−
[
r̂−ξ ,Y

]
+ r̂−ad∗Y ξ +

[
r̂−λ ,X

]
− r̂−ad∗X λ

− [ξ ,λ ]r−ad∗X λ +ad∗Y ξ

The orthogonal subspaces E +,E − of decomposition (8) are
defined as

E ± =
{

X +
(
r̂−± r̂+

)
ξ/ξ ∈ k∗

}
and the crossed Lie bracket is[(

ξ ,
(
r̂−± r̂+

)
ξ
)
,
(
λ ,
(
r̂−± r̂+

)
λ
)]′

=±2
(
ad∗r̂+λ

ξ ,
(
r̂−± r̂+

)
ad∗r̂+λ

ξ
)
.

while [(
ξ ,
(
r̂−+ r̂+

)
ξ
)
,
(
λ ,
(
r̂−− r̂+

)
λ
)]

= 0.

Next we apply these results to a concrete example.

1. Example: sl2

Let us consider the Lie algebra sl2 spanned by the basis
{H,X+,X−} with the Lie brackets (Example 8.1.10 in22)

[H,X+] = 2X+ , [H,X−] =−2X− , [X+,X−] = H .

Here we have the quasitriangular factorizable solution of the
classical Yang-Baxter equation r ∈ sl2⊗ sl2

r = X+⊗X−+
1
4

H⊗H (21)

whose symmetric and skew-symmetric parts are

r+ =
1
2

X+⊗X−+
1
2

X−⊗X++
1
4

H⊗H

r− =
1
2

X+⊗X−−
1
2

X−⊗X+

The Lie cobracket δr : sl2 −→ sl2⊗sl2 is δZ = adZr = adZr−,
giving

δH = 0

δX+ = 1
2 (X+⊗H−H⊗X+)

δX− = 1
2 (X−⊗H−H⊗X−)

.
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Let sl∗2 be the dual vector space of sl2, then it turns into a
Lie algebra with the Lie bracket defined as

〈[η ,ξ ]r ,Z〉= 〈η⊗ξ ,δrZ〉

therefore, if {h,x+,x−} ⊂ sl∗2 is the dual basis, we have that

[h,x+]r =− 1
2 x+ , [h,x−]r =− 1

2 x− , [x+,x−]r = 0 .
(22)

This Lie algebra sl∗2 is also a bialgebra with the cobracket δ :
sl∗2 −→ sl∗2⊗ sl∗2 giving rise to the Lie algebra in sl2, then

δh = x+⊗ x−− x−⊗ x+

δx+ = 2(h⊗ x+− x+⊗h)

δx− = 2(x−⊗h−h⊗ x−)

A nondegenerate symmetric bilinear form on sl2 ⊕ sl∗2,
making the summands maximally isotropic subalgebras, is de-
fined by the pairing

〈H,h〉= 1 , 〈X+,x+〉= 1 , 〈X−,x−〉= 1

with all the other bracket vanishing.
The twilled extension giving rise to the classical double Lie

algebra on sl2⊕ sl∗2 is defined by the Lie bracket (20), which
we write in terms of the cobracket δr for ease of calculation

[(X ,ξ ) ,(Y,λ )] = [X ,Y ]− (ξ ⊗ I)δY +(λ ⊗ I)δX
+[ξ ,λ ]r− (X⊗ I)δλ +(Y ⊗ I)δξ

From here we get the non-vanishing crossed Lie brackets

[X+,h] =− 1
2 X+− x−, [X−,h] =− 1

2 X−+ x+

[H,x+] =−2x+, [X+,x+] = 1
2 H +2h

[H,x−] = 2x−, [X−,x−] = 1
2 H−2h

Let us now to build the generalized metric G ±B : sl∗2 −→
sl2 on sl∗2 with

G ξ = 〈ξ ⊗ Id,r+〉 and Bξ = 〈ξ ⊗ Id,r−〉

Thus we get

G h = 1
4 H , G x+ = 1

2 X− , G x− = 1
2 X+ .

The skew-symmetric part B is

Bh = 0 , Bx+ = 1
2 X− , Bx− =− 1

2 X+ .

From these results we obtain (B±G ), which has nontrivial
unidimensional kernel. Of course, it verifies that

(B±G ) [x,y]B = [(B±G )x,(B±G )y] .

or, equivalently, one may check that B is an O-operator of
extension G with mass −1

[Bx,By]−BΠsl∗2
[Bx,y]−BΠsl∗2

[x,By] =−[G x,G y].

The Lie algebra structure defined by B, namely
((sl∗2)B , [, ]B), with

[x,y]B = Πsl∗2
[Bx,y]−Πsl∗2

[By,x]

gives rise to the Lie brackets (22).
The second double Lie algebra constructed as the twilled

extension of sl2 and (sl∗2)
op, namely (sl2⊕ (sl∗2)

op)B , has the
Lie bracket

[(x,X) ,(y,Y )]′

=− [x,y]B +Πsl∗2
[X ,y]−Πsl∗2

[Y,x]

+[X ,Y ]+BΠsl∗2
[X ,y]+ [By,X ]−BΠsl∗2

[Y,x]− [Bx,Y ]

that gives rise to the non-vanishing crossed Lie brackets

[X+,h]
′ = 1

2 X+− x−, [X−,h]′ = x++ 1
2 X−

[H,x+]
′ =−2x+, [X+,x+]

′ = 2h− 1
2 H

[H,x−]′ = 2x−, [X−,x−]′ =−2h− 1
2 H

.

The orthogonal subspaces E +and E − are spanned by the
graph of (B±G ) on the basis {h,x+,x−} ⊂ sl∗2, so that

E + =

{
h+

1
4

H,x++X−,x−

}

E − =

{
h− 1

4
H,x+,x−−X+

}
where the overbar is meant to indicate the linear span by each
set of vectors. The fundamental Lie brackets in each subspace
are [

h+
1
4

H,x++X−

]′
=−(x++X−)[

h+
1
4

H,x−

]′
= x−

[x++X−,x−]
′ =−2

(
h+

1
4

H
)

and [
h− 1

4
H,x+

]′
= x+[

h− 1
4

H,x−−X+

]′
=−(x−−X+)

[x+,x−−X+]
′ = 2

(
h− 1

4
H
)

showing that E + and E − are Lie subalgebras of (sl∗2)
op⊕ sl2,

isomorphic to sl2 and (sl2)
op, respectively. Of course, the

crossed brackets between E + and E − vanish, confirming that
they are ideals.
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In the ordered basis {h,x+,x−;H,X+,X−} ⊂ sl∗2⊕ sl2, the
linear operators

E =

(
−G−1B G−1

G −BG −1B BG−1

)
,

J =

(
−G−1B G−1

G −BG −1B BG−1

)
have associated the 6×6 matrices

E =


0 0 0 4 0 0
0 1 0 0 0 2
0 0 −1 0 2 0

1/4 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

 ,

J =


0 0 0 4 0 0
0 1 0 0 0 2
0 0 −1 0 2 0
−1/4 0 0 0 0 0

0 0 −1 0 1 0
0 −1 0 0 0 −1



.

V. FROM LIE ALGEBRAS ORTHOGONAL DIRECT SUM
TO MANIN TRIPLES

In this section we will reverse the path followed in the pre-
vious section: departing from a Lie algebra direct sum with a
split bilinear form making both the Lie subalgebras orthogo-
nal, we construct a Manin triple containing them as Lie ideals.

A. Lie algebras direct sum and Manin quasi-triples

Let g be the quadratic Lie algebra direct sum of the n-
dimensional Lie algebras E+ and E−, with a split bilinear form
(,)g rendering E+ and E− mutually orthogonal. Note that Lie
bracket of g is[

X++X−,Y++Y−
]
g
=
[
X+,Y+

]
E+ +

[
X−,Y−

]
E−

implying that E+,E− are Lie ideals in g.
We also assume that an antiisomorphism ϕ : E+ −→ E−

such that ϕ> =−ϕ−1 is given. As we saw in section II, there
exist a couple of symmetric linear operators E ,J : g −→ g
with

E 2 = I , J 2 =−I , E J +J E = 0

such that E+,E− are the n-dimensional orthogonal
eigenspaces of the product structure E . In the direct sum
decomposition g= E+⊕E−, the block-matrices representing
E and J are that given in eq. (2).

The eigenspaces of F = J E , namely F+ and F− with

F± =
{

X+±ϕ
(
X+
)
/X+ ∈ E+

}
,

give rise to the Lagrangian splitting g= F+⊕F−, with the Lie
algebra brackets[

X++ϕ
(
X+
)
,Y+−ϕ

(
Y+
)]

=
[
X+,Y+

]
+ϕ

([
X+,Y+

])
(23)[

X+±ϕ
(
X+
)
,Y+±ϕ

(
Y+
)]

=
[
X+,Y+

]
−ϕ

([
X+,Y+

])
turning (g,F+,F−) in a Manin quasi-triple 23, where F− is a
Lie subalgebra while F+ is a F−-module,

[F−,F−]⊂ F− , [F+,F−]⊂ F+ , [F+,F+]⊂ F− .

In the case where g is a semisimple Lie algebra, the pair
(F−,F+) is a Cartan decomposition of g.

B. Generalized metrics and O-operators

Consider now the linear bijection G : F+ −→ F− defined
in (3), and we denote X+ = X++ϕ (X+) ∈ F+. The original
orthogonal subspaces can be expressed as

E± =
{

X+±G (X+)/X+ = X++ϕ
(
X+
)
∈ F+

}
.

Therefore, in the Lagrangian splitting g= F+⊕F−, the oper-
ators E ,J ,F are represented by the block matrices

E =

(
0 G−1

G 0

)
, J =

(
0 −G−1

G 0

)

F =

(
I 0
0 −I

) .

In section II, we saw that a wide family of orthogonal sub-
spaces is obtained by applying the gauge transformation (4).
They are parametrized by B ∈ Skew(F+,F−), namely

E±B = graph(B±G ) = {X++(B±G )X+/X+ ∈ F+} ,

such that g=E+
B⊕E−B . There is an complex product structure

(EB,JB) associated with these orthogonal subspaces that, in
the direct sum decomposition g= F+⊕F−, are

EB =

(
−G−1B G−1

G −BG −1B BG−1

)
,

JB =

(
−G−1B G−1

−G −BG −1B BG−1

) .

Following analogous steps as in subsection IV C, we in-
tend to introduce a new Lie algebra structure in such a way
that E+

B and E−B become Lie subalgebras. This is attained by
asking for B to be an O-operator with extension G of mass
−1 and considering the vector subspace F+ as representation
space of F− under the bilinear map σ : F− −→ End(F+) de-
fined as

σX−Y+ = [X−,Y+] . (24)
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Proposition: G : F+ −→ F− is F−-invariant and antisymmet-
ric, namely

G
(
σX−Y+

)
= [X−,GY+] , σG X+Y++σGY+X+ = 0 .

Proof: Recall that G : F+ −→ F− is defined as in (3), then
using the Lie brackets (23), it is immediate to see that

G
(
σX−Y+

)
= [X−,GY+] .

For the antisymmetry consider

G
(
σG X+Y++σGY+X+

)
= G ([G X+,Y+]+ [GY+,X+])

and, by the previous result, the rhs vanish.�
Next we seek a linear operator B : F+ −→ F− fulfilling the

equation.

[BX+,BY+]−B
(
σBX+Y+−σBY+X+

)
=− [G X+,GY+] ,

so B is an O-operator with extension G of mass −1. In turn,
this implies that

1. The bracket

[X+,Y+]B = [BX+,Y+]− [BY+,X+]

defines a Lie algebra on F+,

2. (B±G ) : F+ −→ F− is a Lie algebra homomorphism
from (F+, [, ]B) to (F−, [, ]), namely

(B±G ) [X+,Y+]B = [(B±G )X+,(B±G )Y+]

∀X+,Y+ ∈ F+.

Let us denote the Lie algebra (F+, [, ]B) as FB
+ . There

is a one-to-one correspondence between solutions to the O-
operator condition (14) on F− and solutions of the modi-
fied classical Yang-Baxter equation on E+. Recalling that
F± = graph(±ϕ) we may think of B : F+ → F− as realized
by some linear operator θ : E+ −→ E+ in such a way that

B
(
X++ϕ

(
X+
))

= θX+−ϕ
(
θX+

)
.

Theorem: B : F+→ F− is an extended O-operator with ex-
tension G of mass κ =−1 if and only if θ : E+ −→ E+

is a skew-symmetric solution to the modified classical
Yang-Baxter equation.

Proof: From the eq. (14) written in terms of X+ = X++
ϕ (X+) and Y+ =Y++ϕ (Y+) and having in mind the explicit
form of the left action σBX+Y+,

σ(θX+−ϕ(θX+))

(
Y++ϕ

(
Y+
))

=
[
θX+,Y+

]
+ϕ

[
θX+,Y+

]
and the same for σBY+X+, one gets[

θX+,θY+
]
−ϕ

([
θX+,θY+

])
−B

(([
θX+,Y+

]
,ϕ
[
θX+,Y+

]))
−B

(([
θY+,X+

]
,ϕ
[
θY+,X+

]))
=−

[(
X+−ϕ

(
X+
))

,
(
Y+−ϕ

(
Y+
))]

Applying again the action of B in terms of θ , it turns in[
θX+,θY+

]
−θ

([
θX+,Y+

]
−
[
θY+,X+

])
+
[
X+,Y+

]
=

ϕ
([

θX+,θY+
]
−θ

([
θX+,Y+

]
−
[
θY+,X+

])
+
[
X+,Y+

])
which holds if and only if[

θX+,θY+
]
−θ

[
θX+,Y+

]
−θ

[
X+,θY+

]
=−

[
X+,Y+

]
so θ : E+ −→ E+ is a solution of the modified classical Yang-
Baxter equation on E+.

On the other side, because B is skew-symmetric relative to
the bilinear form (,)g, θ must be also skew-symmetric.�

C. Twilled extension of FB
+ ,F−

So far, we have built a Lagrangian decomposition g =
F+⊕F− of a Lie algebra direct sum g= E+⊕E−, where F− is
a Lie subalgebra. Then, by introducing the generalized metric
G ±B and regarding it as an O-operator, we obtained a Lie
algebra structure on F+, denoted as FB

+ , which is homomor-
phic to F−. Next, by constructing a twilled extension out of
the Lie algebras

(
FB
+

)op
,F−9, we shall get a new Lie algebra

structure on g having
(
FB
+

)op and F− as Lie subalgebras.
Together with map σ : F− −→ End(F+) given in eq. (24)

and following the results of subsection IV D, in particular eq.
(16), we introduced the map ρ :

(
FB
+

)op−→End(F−) defined
as

ρX+Y− = B [X+,Y−]− [BX+,Y−] (25)

It is a 1-cocycle making the pair on maps σ ,ρ to fulfill the
constraints (15), so we get a twilled extension gB =

(
FB
+

)op⊕
F− of

(
FB
+

)op and F− with Lie bracket

[X++X−,Y++Y−]
=− [X+,Y+]B +[X−,Y+]− [Y−,X+]
⊕ [X−,Y−]− [BX+,Y−]−B [Y−,X+]
+ [BY+,X−]+B [X−,Y+] .

Proposition:
(
gB,

(
FB
+

)op
,F−
)

equipped with the bilinear
form (,)g is a Manin triple.

Proof: It just remains to prove that the bilinear form (,)g
is invariant under the adjoint action of gB . Let (X++X−) ,
(Y++Y−) , (Z++Z−) ∈ gB then

(
[X++X−,Y++Y−]gB

,Z++Z−
)
g

= (Y+, [BX+,Z−]−B [X+,Z−]− [X−,Z−])g
+(Y+, [X−,BZ+]+B [Z+,X−])g
+(Y−, [Z−,X+]− [X−,Z+]− [BZ+,X+]+ [BX+,Z+])g

=−(Y−,− [BX+,Z+]− [X+,BZ+, ]+ [X−,Z+]− [Z−,X+])g

−(Y+, [X−,Z−]+B [X−,Z+]+ [BZ+,X−])g
+(Y+,B [Z−,X+]+ [BX+,Z−])g

=−
(
(Y+,Y−) , [(X+,X−) ,(Z+,Z−)]gB

)
g
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as expected. Thus it shows that
(
gB,

(
FB
+

)op
,F−
)

with the
nondegenerate invariant symmetric bilinear form (,)g is a
Manin triple.�

This Manin triple
(
gB,

(
FB
+

)op
,F−
)

also admit an orthog-
onal splitting in Lie ideals gB = E+

B ⊕ E−B , with E±B =
{X++(B±G )X+/X+ ∈ F+}. The Lie brackets in these sub-
algebras are

[(X+,(B±G )X+) ,(Y+,(B±G )Y+)]gB

=±2
(
G−1 [G X+,GY+]+ (B±G )G−1 [G X+,GY+]

)
and

[(X+,(B+G )X+) ,(Y+,(B−G )Y+)]gB
= 0.

D. Example: Anti-isomorphic Lie algebras

Let E+ and E− be a couple of Lie algebras connected by an
antiisomorphism ϕ : E+ −→ E−, and E− equipped with an in-
variant, symmetric nondegenerate bilinear form (,)E− . Then a
symmetric nondegenerate bilinear form on E+ can be defined
as (

X+,Y+
)

E+ =−
(
ϕ
(
X+
)
,ϕ
(
Y+
))

E−

which is also E+-invariant and implies ϕ> =−ϕ−1.
Consider the Lie algebra direct sum g= E+⊕E− equipped

with the invariant non-degenerate symmetric bilinear form
(,)g : g⊗g−→ R defined as((

X+,X−
)
,
(
Y+,Y−

))
g
=
(
X+,Y+

)
E+ +

(
X−,Y−

)
E−

making E+ and E− mutually orthogonal subspaces of g.
The graph of ±ϕ provides a Lagrangian splitting g= F+⊕

F− where

F± =
{(

X+,±ϕ
(
X+
))

/X+ ∈ E+
}
.

so the invertible linear map G : F+ −→ F− introduced in eq.
(3) is defined as

G
(
X+,ϕ

(
X+
))

=
(
X+,−ϕ

(
X+
))

For instance, consider the Lie algebra E+ = h equipped
with a symmetric, non-degenerate, ad-invariant bilinear form
(,)h, and E−= hop, with the antihomomorphism ϕ : h−→ hop

defined as ϕ (X) = X for X ∈ h, then [ϕ (X) ,ϕ (Y )]hop =

− [X ,Y ] = −ϕ ([X ,Y ]). Define the Lie algebra direct sum
g= h⊕hop with the Lie bracket[(

X ,X ′
)
,
(
Y,Y ′

)]
g
=
(
[X ,Y ] ,−

[
X ′,Y ′

])
and the bilinear form((

X ,X ′
)
,
(
Y,Y ′

))
g
= (X ,Y )h−

(
X ′,Y ′

)
h

which is invariant and makes h and hop orthogonal Lie subal-
gebras of g. The subspaces

h± = {(X ,±X)/X ∈ h}= graph(±ϕ)

are Lagrangian and g = h+⊕ h−, and the Lie brackets in h±
are

[(X ,±X) ,(Y,±Y )]g = ([X ,Y ] ,− [X ,Y ]) ∈ h−

[(X ,+X) ,(Y,−Y )]g = ([X ,Y ] ,+[X ,Y ]) ∈ h+

Now, consider the linear map G : h+ −→ h− is

G (X ,+X) = (X ,−X)

for X ∈ h, which is h−-invariant:

G ([(X ,−X) ,(Y,+Y )])
= ([X ,Y ] ,− [X ,Y ])
= [(X ,−X) ,G (Y,+Y )]

and antisymmetric. Together with G , we introduce a linear
operator B : h+ −→ h− satisfying the O-operator condition
(12), which is realized by some linear operator θ : h −→ h
such that

B (X ,+X) = (θX ,−θX)

provided θ is a solution of the modified classical Yang-Baxter
equation on h. With these operator we get a new Lie algebra
structure on h+ with Lie bracket

[(X ,+X) ,(Y,+Y )]B = ([X ,Y ]
θ
, [X ,Y ]

θ
) .

where, for X ,Y ∈ h

[X ,Y ]
θ
= [θX ,Y ]− [θY,X ]

We denote (h+, [, ]θ ) as hθ
+.

The next step is to construct the twilled action, so we need
the map σ : h− −→ End(h+) (24) that is defined here as

σ(X ,−X) (Y,+Y ) = [(X ,−X) ,(Y,+Y )] = [X ,Y ]+ [X ,Y ] ∈ h+

and the map ρ : h+ −→ End(h−) (25) which turns in

ρ(X ,+X) (Y,−Y ) = (θ [X ,Y ]− [θX ,Y ] ,−θ [X ,Y ]− [θX ,Y ])

Thus the twilled extension gB =
(
hθ
+

)op⊕h− of
(
hθ
+

)op and
h− is defined by the Lie bracket

[(X ,+X)+(X ′,−X ′) ,(Y,+Y )+(Y ′,−Y ′)]
=− [(X ,+X) ,(Y,+Y )]B +[(X ′,−X ′) ,(Y,+Y )]
− [(Y ′,−Y ′) ,(X ,+X)]+ [(X ′,−X ′) ,(Y ′,−Y ′)]
− [B (X ,+X) ,(Y ′,−Y ′)]−B [(Y ′,−Y ′) ,(X ,+X)]
+ [B (Y,+Y ) ,(X ′,−X ′)]+B [(X ′,−X ′) ,(Y,+Y )] .

The orthogonal splitting gθ = h+
θ
⊕ h−

θ
, is defined by the

graph of (B±G ) namely

h+
θ
= {(X ,+X)+(θX +X ,−(θX +X))/X ∈ h}

h−
θ
= {(X ,+X)+(θX−X ,−(θX−X))/X ∈ h} .

Let us introduce the map Θ± : h −→ h±
θ

such that Θ± (X) =

(X ,+X)+ (θX±X ,−(θX +X)), then the Lie bracket in h±
θ

is [
Θ
± (X) ,Θ± (Y )

]
=±2

(
Θ
± ([X ,Y ])

)
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showing that h±
θ

is a Lie subalgebra and that the linear map
1
2 Θ± : h−→ h±

θ
is a Lie algebra isomorphism. Of course, the

crossed bracket is[
Θ

+ (X) ,Θ− (Y )
]
= (0,0)

verifying that h±
θ

is an ideal.

1. Example: sl2 (C)

The above results can be applied to the example of subsec-
tion IV G 1: Define

a1 = 2
(
h− 1

4 H
)

, b1 = 2
(
h+ 1

4 H
)

a2 = x+ , b2 = (x++X−)

a3 = (x−−X+) , b3 = x−

then consider the Lie algebras h− = sl2 and h+ = (sl2)
op gen-

erated by the basis {a1,a2,a3} and {b1,b2,b3}, respectively,
with the Lie brackets

[a1,a2] = 2a2 [a1,a3] =−2a3 [a2,a3] = a1

and

[b1,b2] =−2b2 [b1,b3] = 2b3 [b2,b3] =−b1 .

Let h− be equipped with a symmetric nondegenerate invariant
bilinear form (,)h− defined by the matrix

(ai,a j)h− =

 2 0 0
0 0 1
0 1 0


which is symmetric, nondegenerate and invariant. We use it to
equip the Lie algebra direct sum g= h+⊕h− with the bilinear
form(
X++X−,Y++Y−

)
g
=
(
X−,Y−

)
h−−

(
ϕ
(
X+
)
,ϕ
(
Y+
))

h−

making h+ and h− mutually orthogonal.
The linear map ϕ : h+ −→ h− defined as ϕ (bi) = ai is an

antiisomorphism of Lie algebras and the graph of ±ϕ is

h± = graph(±ϕ) = {b1±a1,b2±a2,b3±a3}

Then

(bi±ϕ (bi) ,b j±ϕ (b j))g

= (ϕ (bi) ,ϕ (b j))h− − (ϕ (bi) ,ϕ (b j))h−

= 0

so that h± is a Lagrangian subspace.

Let us denote ei
± = bi ± ϕ (bi) = bi ± ai, then the non-

vanishing Lie brackets in the Lie algebra direct sum are[
e1
+,e

2
+

]
=−2e2

− ,
[
e1
+,e

3
+

]
= 2e3

− ,
[
e2
+,e

3
+

]
=−e1

−[
e1
−,e

2
−
]
=−2e2

− ,
[
e1
−,e

3
−
]
= 2e3

− ,
[
e2
−,e

3
−
]
=−e1

−[
e1
+,e

2
−
]
=−2e2

+ ,
[
e1
+,e

3
−
]
= 2e3

+ ,
[
e2
+,e

1
−
]
= 2e2

+[
e2
+,e

3
−
]
=−e1

+ ,
[
e3
+,e

1
−
]
=−2e3

+ ,
[
e3
+,e

2
−
]
= e1

+

.

Next we introduce the map G : h+ −→ h− defined as

G ei
+ = ei

− i = 1,2,3

which is h−-invariant:

G
[
ei
−,e

j
+

]
=
[
ei
−,G e j

+

]
,

and antisymmetric. Also, we introduce a linear operator B :
h+ −→ h− satisfying the O-operator condition (12), realized
through a solution θ : h+ −→ h+ of the modified classical
Yang-Baxter equation on h+

Bei
+ = B (bi +ai) = θbi−ϕ (θ (bi)) .

We use the quasitriangular factorizable solution of the modi-
fied classical Yang-Baxter equation 2r ∈ sl2⊗ sl2 introduced
in eq. (21) and define θ (bi) = −(bi⊗ I,r−) from r− =
b2⊗b3−b3⊗b2 so that

θ (b1) = 0 , θ (b2) = b2 , θ (b3) =−b3 .

and the map B on the basis
{

e1
+,e

2
+,e

3
+

}
⊂ h+ is

Be1
+ = 0 , Be2

+ = e2
− , Be3

+ =−e3
− .

From it we calculate the new Lie bracket on h+, namely
[X ,Y ]B = [BX ,Y ]− [BY,X ], which turns out to be[

e1
+,e

2
+

]
B
=−2e2

+ ,
[
e1
+,e

3
+

]
B
=−2e3

+ ,
[
e2
+,e

3
+

]
B
= 0
(26)

and we denote it as hB
+ , which can be identified as an sl∗2 Lie

algebra.
The next step is to construct the twilled action, so we need

the bilinear map σ : h− −→ End(h+) (24) and ρ : h+ −→
End(h−) (25), whose non-vanishing actions are

σe1
−

e2
+ =−2e2

+ , σe1
−

e3
+ = 2e3

+

σe2
−

e1
+ = 2e2

+ , σe2
−

e3
+ =−e1

+

σe3
−

e1
+ =−2e3

+ , σe3
−

e2
+ = e1

+

and

ρ
(
e1
+,e

2
−
)
=−2e2

− , ρ
(
e1
+,e

3
−
)
=−2e3

− .
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The twilled extension gB =
(
hB
+

)op⊕h− of
(
hB
+

)op and h−
is then defined by the Lie bracket

[X++X−,Y++Y−]
=− [X+,Y+]B +[X−,Y+]− [Y−,X+]
+ [X−,Y−]− [BX+,Y−]−B [Y−,X+]
+B [X−,Y+]+ [BY+,X−]

,

giving rise to the nonvanishing crossed Lie brackets[
e1
+,e

2
−
]
B
=−2e2

+−2e2
− ,

[
e1
+,e

3
−
]
B
= 2e3

+−2e3
−[

e2
+,e

1
−
]
B
= 2e2

+ ,
[
e2
+,e

3
−
]
B
=−e1

++ e1
−[

e3
+,e

1
−
]
B
=−2e3

+ ,
[
e3
+,e

2
−
]
B
= e1

++ e1
−

that is completed with[
e1
−,e

2
−
]
=−2e2

− ,
[
e1
−,e

3
−
]
= 2e3

− ,
[
e2
−,e

3
−
]
=−e1

−

and (26). It coincides with the crossed brackets of the twilled
extension of sl2 and (sl∗2)

op namely (sl2⊕ (sl∗2)
op)B , obtained

in subsection IV G 1, after the substitutions e1
− = H, e2

− = X−,
e3
− = X+, e1

+ = 4h, e2
+ = 2x+ and e3

+ = 2x−.
The orthogonal subspaces

E±B =
{

ei
++(B±G )ei

+/i = 1,2,3
}

are spanned by the sets
{

e1
++ e1

−,e
2
++2e2

−,e
3
+

}
and{

e1
+− e1

−,e
2
+,e

3
+−2e3

−
}

, and one may easily verify that they
are Lie ideals in (sl2⊕ (sl∗2)

op)B .

VI. CONCLUSIONS

We have studied some algebraic aspects of quadratic vec-
tor spaces with Lagrangian and orthogonal splittings associ-
ated with complex product structures. This algebraic struc-
ture comes to complete the role of the involutive operator E
which is well known in various settings such as string the-
ory, Poisson Lie T-duality and generalized Kähler geometry,
by associating a complex structure J constructed from E . In
addition, this structure can be tied to a generalized metric on
one of the Lagrangian components, and this is the origin of the
physical interest on it, since it arise as twisting of a genuine
metric. When this metric is encoded in the operator E , the
duality idea becomes more apparent because a metric in the
Lagrangian complement, related to the former, is introduced.

When dealing Lie bialgebras, we have shown that start-
ing from a Manin triple (g,g+,g−) with a generalized metric
G +B : g+ −→ g−, that gives rise to an orthogonal splitting
g= E +⊕E −, we can build the Manin triple

(
g,
(
gB
+

)op
,g−
)

where E + and E − become anti-isomorphic Lie ideals pro-
vided B is an O-operator with extension G of mass −1. This
can be interpreted as g = E + ⊕ E − is a decoupling of the
Manin triple because there are no non trivial dressing action.
Conversely, starting from a quadratic Lie algebra direct sum of
a pair of orthogonal Lie algebras E+ and E− we built a quasi-
Manin triple (g,F+,F−) with a metric G on the F−-module

F+. Then, after introducing a twisting B : F+ −→ F−, a
Lie algebra structure FB

+ = (F+, [, ]B) is defined on the vector
space F+ by taking B as an O-operator with extension G of
mass −1 and, in turn, we get a Main triple

(
gB,

(
FB
+

)op
,F−
)

where the orhogonal subspaces E+ and E− are Lie ideals.
In both cases, the O-operator is a masked version of a qua-

sitriangular factorizable solution of the classical Yang-Baxter
equation so the key behind these constructions is the fact
that if k is a quasitriangular factorizable Lie bialgebra then
its double k⊕ (k∗)op admits an orthogonal splitting in anti-
isomorphic Lie ideals, as shown in subsection 4.7. However,
the approach through generalized metrics and O-operators al-
lows making a direct contact with some subjects with geomet-
ric contents as those described at the Introduction and in the
end of Section 1.

From the point of view of possible application in some The-
oretical Physics problems, it is interesting to see this proce-
dure as a way to obtain the decoupled modes inside a Manin
triple, since there are no nontrivial dressing actions in the or-
thogonal Lie ideals splitting.
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