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Abstract

We consider winding conserving four point functions in the SL(2,R) WZW model for states in arbitrary spectral flow sectors. We compute the
leading order contribution to the expansion of the amplitudes in powers of the cross ratio of the four points on the worldsheet, both in the m- and
x-basis, with at least one state in the spectral flow image of the highest weight discrete representation. We also perform certain consistency check
on the winding conserving three point functions.
© 2007 Elsevier B.V. All rights reserved.

The SL(2,R) WZW model describes strings moving in AdS3 and has important applications to gravity and black hole physics
in two and three dimensions. It is also an interesting subject by itself, as a step beyond the well known rational conformal field
theories. Actually, unlike string propagation in compact target spaces, where the spectrum is in general discrete and the model can
then be studied using algebraic methods, the analysis of the worldsheet theory in the non-compact AdS3 background requires the
use of more intricate analytic techniques.

String theory on AdS3 contains different sectors characterized by an integer number w, the spectral flow parameter or winding
number [1]. The short string sectors correspond to maps from the worldsheet to a compact region in AdS3 and the states in this
sector belong to discrete representations of SL(2,R) with spin j ∈ R and unitarity bound 1

2 < j < (k − 1)/2. Other sectors contain
long strings at infinity, near the boundary of spacetime, described by continuous representations of SL(2,R) with spin j = 1

2 + is,
s ∈ R. Several correlation functions have been computed in various sectors [2,3]. In particular, four point functions of w = 0 states
were computed in [2] analytically continuing previous results in the SL(2,C)/SU(2) coset model [4] which corresponds to the
Euclidean H3 background. In this Letter we consider four point functions of states in arbitrary w sectors, a crucial ingredient to
determine the consistency of the theory through factorization.

Different basis have been used in the literature to compute correlation functions in this theory. Vertex operators and expectation
values for the spectral flow representations were constructed in [1,2] in the m-basis, where the generators (J 3

0 , J̄ 3
0 ) of the global

SL(2,C) isometry are diagonalized. The m-basis has the advantage that all values of w can be treated simultaneously. In particular,
all winding conserving N -point functions have the same coefficient in this basis, for a given N , and they differ only in the worldsheet
coordinate dependence [2,5] which reflects the change in the conformal weight of the states

(1)Δ(j) → Δw(j) = Δ(j) − wm − k

4
w2,

where Δ(j) = − j (j−1)
k−2 is the dimension of the unflowed operators.

Alternatively, the x-basis refers to the SL(2,R) isospin parameter which can be interpreted as the coordinate of the boundary in
the context of the AdS/CFT correspondence. The operators Φj(x, x̄) in the x-basis and Φj ;m,m̄(z, z̄) in the m-basis are related by
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the following transformation

(2)Φj ;m,m̄(z, z̄) =
∫

d2x

|x|2 xj−mx̄j−m̄Φj (x, x̄; z, z̄).

Finally, the μ-basis was found convenient to relate correlation functions in Liouville and SL(2,C)/SU(2) models [5,6].
In this Letter we extend the results for the four point function of unflowed states in SL(2,R) given in [2] to the case of winding

conserving four point functions for states in arbitrary spectral flow sectors. This is accomplished by transforming the x-basis
expression found in [4] to the m-basis in order to exploit the fact that the coefficient of all winding conserving correlators is the
same (for a given number of external states).1 In order to simplify the calculations we consider first the four point function in which
one of the original unflowed operators is a highest weight and then analyze the more general case in which it is replaced by a global
SL(2,R) descendant. Finally we transform the result back to the x-basis.

Actually the explicit expression computed in [4] and further analyzed in [2] corresponds to the leading order in the expansion of
the four point function in powers of the cross ratio of the worldsheet coordinates. It was pointed out in [4] that higher orders in the
expansion may be determined iteratively once the lowest order is fixed as the initial condition. We will further discuss this topic for
four point functions involving spectral flowed states.

Let us start recalling the result for the four point function of unflowed states originally computed for the SL(2,C)/SU(2) model
in [4] and later analytically continued to SL(2,R) in [2], namely〈

Φj1(x1, z1)Φj2(x2, z2)Φj3(x3, z3)Φj4(x4, z4)
〉

=
∫

dj C(j1, j2, j)B(j)−1C(j, j3, j4)F(z, x)F̄(z̄, x̄)|x43|2(j1+j2−j3−j4)|x42|−4j2 |x41|2(j2+j3−j1−j4)|x31|2(j4−j1−j2−j3)

(3)× |z43|2(Δ1+Δ2−Δ3−Δ4)|z42|−4Δ2 |z41|2(Δ2+Δ3−Δ1−Δ4)|z31|2(Δ4−Δ1−Δ2−Δ3),

where the integral is over j = 1
2 + is with s a positive real number. Here B and C are the coefficients corresponding to the two and

three point functions of unflowed operators respectively (see [2] for the explicit expression in our conventions), and F is a function
of the cross ratios z = z21z43

z31z42
, x = x21x43

x31x42
, with a similar expression for the antiholomorphic part. The function F is obtained by

requiring (3) to be a solution of the Knizhnik–Zamolodchikov (KZ) equation [7,8].
Expanding F in powers of z as follows

(4)F(z, x) = zΔj −Δ1−Δ2xj−j1−j2

∞∑
n=0

fn(x)zn,

the lowest order f0 is determined to be a solution of the standard hypergeometric equation thus giving two linearly independent
solutions

2F1(j − j1 + j2, j + j3 − j4,2j ;x), or x1−2j
2F1(1 − j − j1 + j2,1 − j + j3 − j4,2 − 2j ;x).

Taking into account both the holomorphic and antiholomorphic parts, the unique monodromy invariant combination is of the
form [2]∣∣F(z, x)

∣∣2 = |z|2(Δj −Δ1−Δ2)|x|2(j−j1−j2)
{∣∣2F1(j − j1 + j2, j + j3 − j4,2j ;x)

∣∣2

(5)+ λ
∣∣x1−2j

2F1(1 − j − j1 + j2,1 − j + j3 − j4,2 − 2j ;x)
∣∣2} + · · · ,

where the ellipses denote higher orders in z and

λ = −γ (2j)2γ (−j1 + j2 − j + 1)γ (j3 − j4 − j + 1)

(1 − 2j)2γ (−j1 + j2 + j)γ (j3 − j4 + j)
,

with γ (a) ≡ Γ (a)
Γ (1−a)

. Higher orders in (4) are determined iteratively by the KZ equation starting from f0 as the initial condition [4].
Now we perform the transformation of (3) to the m-basis with the solution (5). Let us consider first the case in which one of the

operators in the four point function is a highest weight,2 say Φj1 , and look at the contribution of the first term in the r.h.s. of (5) (the
second term will be considered later). The xi dependence is given by

(6)
∣∣K(xi, ji, j)

∣∣2 = ∣∣xj1+j2−j3−j4
43 x

−2j2
42 x

j2+j3−j1−j4
41 x

j4−j1−j2−j3
31 xj−j1−j2

2F1(a, b, c;x)
∣∣2

,

where a = j − j1 + j2, b = j + j3 − j4 and c = 2j .

1 This fact is shown in Appendix B for the winding conserving three point function with states in the sectors w = +1,−1, and 0.
2 The more general case where the highest weight is replaced by a global SL(2,R) descendant is analyzed below.
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We have to evaluate the residue of the pole at j1 = −m1 = −m̄1 in the x1 integral transform of (6). This is obtained applying the
following operator∫

d2x2 d2x3 d2x4 x
j2−m2−1
2 x̄

j2−m̄2−1
2 x

j3−m3−1
3 x̄

j3−m̄3−1
3 x

j4−m4−1
4 x̄

j4−m̄4−1
4 lim

x1,x̄1→∞x
2j1
1 x̄

2j1
1 ,

where we are using (2).
Noticing that

lim
x1→∞

[
x

2j1
1 K(xi, ji, j)

] = x
j1−j2−j3−j4
4

(
1 − x3

x4

)j−j3−j4
(

1 − x2

x4

)j1−j2−j

2F1

(
a, b, c; 1 − x3

x4

1 − x2
x4

)
,

and performing the change of variables x2 → x2/x4, x3 → x3/x4, we may write

lim
x1,x̄1→∞

∫
d2x2 d2x3 d2x4 x

j2−m2−1
2 x̄

j2−m̄2−1
2 x

j3−m3−1
3 x̄

j3−m̄3−1
3 x

j4−m4−1
4 x̄

j4−m̄4−1
4

∣∣x2j1
1 K(xi, ji, j)

∣∣2

(7)∼ Vconfδ
2(m1 + m2 + m3 + m4)Ω(j, ji ,mi, m̄i),

where

Ω(j, ji,mi, m̄i) ≡
∫

d2x2 d2x3 x
j2−m2−1
2 x̄

j2−m̄2−1
2 x

j3−m3−1
3 x̄

j3−m̄3−1
3 |1 − x2|2(j1−j2−j)|1 − x3|2(j−j3−j4)

(8)× 2F1

(
a, b, c; 1 − x3

1 − x2

)
2F1

(
a, b, c; 1 − x̄3

1 − x̄2

)
,

and the δ-function comes from the x4 integral. The factor Vconf is the volume of the conformal group of S2, and it arises from the
fact that we are looking at the residue of the pole at j1 = −m1 = −m̄1 (see [2]).

In order to compute Ω , we begin by considering the following integral

I ≡
∫

d2y ypȳq(1 − y)r (1 − ȳ)s2F1
(
a, b, c; t (1 − y)

)
2F1

(
a, b, c; t̄ (1 − ȳ)

)
.

We approach it by first redefining variables and integration contours.3 Let us define y1 and y2 through y = y1 + iy2, ȳ = y1 − iy2,
and then perform the scaling y2 → −ie2iεy2, where ε is a small positive number. Thus we may write

I ∼
∞∫

−∞
dy1

∞∫
−∞

dy2 (y1 − y2 + 2iεy2)
p(y1 + y2 − 2iεy2)

q(1 − y1 + y2 − 2iεy2)
r

× (1 − y1 − y2 + 2iεy2)
s

2F1
(
a, b, c; t (1 − y1 + y2 − 2iεy2)

)
2F1

(
a, b, c; t̄ (1 − y1 − y2 + 2iεy2)

)
.

It is convenient to introduce y± ≡ y1 ± y2 so that the integral can be rewritten as

I ∼
∞∫

−∞
dy+

∞∫
−∞

dy−
[
y+ − iε(y+ − y−)

]q[
1 − y+ + iε(y+ − y−)

]s
2F1

(
a, b, c; t̄[1 − y+ + iε(y+ − y−)

])

(9)× [
y− + iε(y+ − y−)

]p[
1 − y− − iε(y+ − y−)

]r
2F1

(
a, b, c; t[1 − y− − iε(y+ − y−)

])
.

Here the ε terms define the way we go around the singular points (see [9] for details). We decompose the integration interval for
y+ into (−∞,0) ∪ (0,1) ∪ (1,∞). The only non-vanishing contribution comes from the interval y+ ∈ (0,1), since the integration
contours for y− can be deformed to infinity in the other two intervals, and we assume that the integrals are convergent. For the
non-vanishing contribution, we deform the integration contour to y− in (1,∞).

In this way the m and m̄ contributions are factorized as follows

I = sin(πr)

1∫
0

dy+ y
q
+(1 − y+)s2F1

(
a, b, c; t̄ (1 − y+)

) ∞∫
1

dy− y
p
−(1 − y−)r 2F1

(
a, b, c; t (1 − y−)

)
.

Now changing variable y− → 1/y− we arrive at

(10)I = (−1)r sin(πr)

1∫
0

dy+ y
q
+(1 − y+)s2F1

(
a, b, c; t̄ (1 − y+)

) 1∫
0

dy− y
−p−r−2
− (1 − y−)r 2F1

(
a, b, c; t y− − 1

y−

)
.

3 This is similar to the computation of the integral
∫

d2y |yα(1 − y)β |2 in [9].
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Consider now the integral in (8). Using twice the result above we find

(11)Ω(j, ji,mi, m̄i) = Ω−(j, ji,mi)Ω+(j, ji, m̄i),

where

Ω−(j, ji,mi) = (−1)j1−j2−j3−j4 sin
[
π(j1 − j2 − j)

]
sin

[
π(j − j3 − j4)

]

×
1∫

0

du−
1∫

0

dv− u
j4−j+m3−1
− (1 − u−)j−j3−j4v

j−j1+m2−1
− (1 − v−)j1−j2−j

2F1

(
a, b, c; v−

u−
1 − u−
1 − v−

)
,

(12)Ω+(j, ji, m̄i) =
1∫

0

du+
1∫

0

dv+ u
j−j3−j4+ (1 − u+)j3−m̄3−1v

j1−j2−j
+ (1 − v+)j2−m̄2−1

2F1

(
a, b, c; u+

v+

)
,

and in the last integral we have performed the additional change of variables u+ → 1 − u+, v+ → 1 − v+.
Now notice that the roles of y+ and y− can be exchanged in the manipulations leading from (9) to (10). In this case one would

arrive at an equivalent expression

I = (−1)s sin(πs)

1∫
0

dy+ y
−q−s−2
+ (1 − y+)s2F1

(
a, b, c; t̄ y+ − 1

y+

) 1∫
0

dy− y
p
−(1 − y−)r 2F1

(
a, b, c; t (1 − y−)

)
,

which leads to

(13)Ω−(j, ji,mi) =
1∫

0

du−
1∫

0

dv− u
j−j3−j4− (1 − u−)j3−m3−1v

j1−j2−j
− (1 − v−)j2−m2−1

2F1

(
a, b, c; u−

v−

)
.

Comparing Eqs. (12) and (13) we are now able to write Ω in a form which is manifestly symmetric with respect to mi and m̄i ,
namely

Ω =
1∫

0

du−
1∫

0

dv− u
j−j3−j4− (1 − u−)j3−m3−1v

j1−j2−j
− (1 − v−)j2−m2−1

2F1

(
a, b, c; u−

v−

)

(14)×
1∫

0

du+
1∫

0

dv+ u
j−j3−j4+ (1 − u+)j3−m̄3−1v

j1−j2−j
+ (1 − v+)j2−m̄2−1

2F1

(
a, b, c; u+

v+

)
.

Therefore, the problem of computing Ω reduces to that of solving the following integral

Σ =
1∫

0

du

1∫
0

dv uα(1 − u)βvμ(1 − v)ν2F1

(
a, b, c; u

v

)
.

Now using (A.1) (see Appendix A) we may write

Σ = Γ (α + 1)Γ (β + 1)

Γ (α + β + 2)

1∫
0

dv vμ(1 − v)ν3F2

(
a, b,α + 1; c,α + β + 2; 1

v

)
,

and with the help of (A.2) and (A.3) (see Appendix A) we arrive at

Σ = Γ (α + 1)Γ (β + 1)

(
Λ

[
a, a − c + 1, a − α − β − 1, a + μ + 1

a − b + 1, a − α,a + μ + ν + 2

]
+ Λ

[
b, b − c + 1, b − α − β − 1, b + μ + 1

b − a + 1, b − α,b + μ + ν + 2

]

(15)+ Λ

[
α + 1, α − c + 2,−β,α + μ + 2

α − a + 2, α − b + 2, α + μ + ν + 3

])
,

where we have defined

Λ

[
ρ1, ρ2, ρ3, ρ4

σ1, σ2, σ3

]
≡ (−1)ρ1

Γ (1 − σ1)Γ (1 − σ2)Γ (1 + ρ1 − ρ2)Γ (ρ4)Γ (σ3 − ρ4)

Γ (1 − ρ2)Γ (1 − ρ3)Γ (1 + ρ1 − σ1)Γ (1 + ρ1 − σ2)Γ (σ3)
× 4F3(ρ1, ρ2, ρ3, ρ4;σ1, σ2, σ3;1).
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Finally, replacing (15) in (14) we find the explicit form of Ω as follows

Ω(j, ji,mi, m̄i) = Γ (−j3 − j4 + j + 1)2Γ (j3 − m3)Γ (j3 − m̄3)

×
(

Λ

[ −j1 + j2 + j,−j1 + j2 − j + 1,−j1 + j2 + j4 + m3,1

−j1 + j2 − j3 + j4 + 1,−j1 + j2 + j3 + j4, j2 − m2 + 1

]

+ Λ

[
j3 − j4 + j, j3 − j4 − j + 1, j3 + m3, j1 − j2 + j3 − j4 + 1

j1 − j2 + j3 − j4 + 1,2j3, j1 + j3 − j4 − m2 + 1

]

+ Λ

[−j3 − j4 + j + 1,−j3 − j4 − j + 2,−j3 + m3 + 1, j1 − j2 − j3 − j4 + 2

j1 − j2 − j3 − j4 + 2,−2j3 + 2, j1 − j3 − j4 − m2 + 2

])

×
(

Λ

[ −j1 + j2 + j,−j1 + j2 − j + 1,−j1 + j2 + j4 + m̄3,1

−j1 + j2 − j3 + j4 + 1,−j1 + j2 + j3 + j4, j2 − m̄2 + 1

]

+ Λ

[
j3 − j4 + j, j3 − j4 − j + 1, j3 + m̄3, j1 − j2 + j3 − j4 + 1

j1 − j2 + j3 − j4 + 1,2j3, j1 + j3 − j4 − m̄2 + 1

]

(16)+ Λ

[−j3 − j4 + j + 1,−j3 − j4 − j + 2,−j3 + m̄3 + 1, j1 − j2 − j3 − j4 + 2

j1 − j2 − j3 − j4 + 2,−2j3 + 2, j1 − j3 − j4 − m̄2 + 2

])
.

We still have to take into account the second term in the r.h.s. of (5). However, as pointed out in [2], this can be obtained from the
first term by just replacing j → 1 − j . Therefore the explicit form of the four point function of unflowed operators in the m-basis
is the following〈

Φj1;−j1,−j1(z1)Φj2;m2,m̄2(z2)Φj3;m3,m̄3(z3)Φj4;m4,m̄4(z4)
〉

∼ Vconfδ
2(m1 + m2 + m3 + m4)|z43|2(Δ1+Δ2−Δ3−Δ4)|z42|−4Δ2 |z41|2(Δ2+Δ3−Δ1−Δ4)|z31|2(Δ4−Δ1−Δ2−Δ3)

(17)×
∫

dj C(j1, j2, j)B(j)−1C(j, j3, j4)
[
Ω(j, ji,mi, m̄i) + λΩ(1 − j, ji,mi, m̄i)

]|z|2(Δj −Δ1−Δ2) + · · · ,
where the ellipses denote higher orders in z.

We would now like to discuss the more general case in which the highest weight operator Φj1;−j1,−j1 is replaced by a global
SL(2,R) descendant, namely, we will consider the extension to m1 = −j1 − n1, m̄1 = −j1 − n̄1 with n1, n̄1 = 0,1, . . . , which
corresponds to an operator in the highest weight principal discrete representation D−

j1
(see [1] for notations and conventions).

The procedure is analogous to that followed in [10] in the case of the three point function, and it involves acting on the correlator
(17) with the lowering operator J+ and making use of the Baker–Campbell–Hausdorff formula (see [10] for details). In the case
of the three point function, the result can be expressed in terms of a sum over one running index.4 In our case, however, there are
sums over two holomorphic and two antiholomorphic indices, since we are dealing with a four point function and mi − m̄i ∈ Z. In
fact, performing these operations on (17), the following generalization is obtained〈

Φj1;−j1−n1,−j1−n̄1(z1)Φj2;m2,m̄2(z2)Φj3;m3,m̄3(z3)Φj4;m4,m̄4(z4)
〉

= (−1)n1+n̄1
Γ (2j1)

2

Γ (j1 − m1)Γ (j1 − m̄1)

n1∑
n2,n3=0

n̄1∑
n̄2,n̄3=0

Gn2,n3(ji,mi)Gn̄2,n̄3(ji, m̄i)

(18)× 〈
Φj1;−j1,−j1(z1)Φj2;m2−n2,m̄2−n̄2(z2)Φj3;m3−n3,m̄3−n̄3(z3)Φj4;m4−n4,m̄4−n̄4(z4)

〉
,

where ni ∈ Z, n1 = n2 + n3 + n4, n̄1 = n̄2 + n̄3 + n̄4, and we have defined

Gn2,n3(ji,mi) ≡ 1

Γ (n2 + 1)Γ (n3 + 1)

Γ (−j1 − m1 + 1)

Γ (−j1 − m1 − n2 − n3 + 1)

× Γ (j2 − m2 + n2)Γ (j3 − m3 + n3)Γ (j4 − j1 − m4 − m1 − n2 − n3)

Γ (j2 − m2)Γ (j3 − m3)Γ (j4 − m4)
.

The correlator in the r.h.s. of (18) can be obtained by performing the replacements mi → mi − ni , m̄i → m̄i − n̄i (i = 2,3,4)

in (17). In particular, note that this transforms

δ2(m1 + m2 + m3 + m4) → δ2(m1 + (m2 − n2) + (m3 − n3) + (m4 + n2 + n3 − n1)
)

= δ2((m1 − n1) + m2 + m3 + m4
)
,

as expected for the correlator in the l.h.s. of (18) since m1 is lowered to m1 − n1.

4 See [10] for mi = m̄i and [11] for the more general case of the three point function with mi − m̄i ∈ Z.
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Now plugging (17) into (18) we get〈
Φj1;−j1−n1,−j1−n̄1(z1)Φj2;m2,m̄2(z2)Φj3;m3,m̄3(z3)Φj4;m4,m̄4(z4)

〉
∼ Vconfδ

2((m1 − n1) + m2 + m3 + m4
) Γ (2j1)

2

Γ (j1 − m1)Γ (j1 − m̄1)

× |z43|2(Δ1+Δ2−Δ3−Δ4)|z42|−4Δ2 |z41|2(Δ2+Δ3−Δ1−Δ4)|z31|2(Δ4−Δ1−Δ2−Δ3)

×
n1∑

n2,n3=0

n̄1∑
n̄2,n̄3=0

Gn2,n3(ji,mi)Gn̄2,n̄3(ji, m̄i)

∫
dj C(j1, j2, j)B(j)−1C(j, j3, j4)

× [
Ω(j, ji,m2 − n2,m3 − n3, m̄2 − n̄2, m̄3 − n̄3)

(19)+ λΩ(1 − j, ji,m2 − n2,m3 − n3, m̄2 − n̄2, m̄3 − n̄3)
]|z|2(Δj −Δ1−Δ2) + · · · ,

where the ellipses denote higher orders in z.
A comment is in order. In the case of the three point function, the sum over one running index considered in [10] was extended

to ∞ and then identified with the generalized hypergeometric function 3F2. However, in the present case we have not been able to
reduce the sums in (19) to any elementary function, due to the much involved nature of the coefficient (16) (it is even possible that
such reduction is not at all practicable).

Since the results (17) and (19) are written in the m-basis, we may now proceed to perform the spectral flow operation following
the prescription (1) in order to obtain the winding conserving four point functions for states in arbitrary spectral flow sectors. For
instance, applying the spectral flow operation to (17) gives〈

Φ
w1,j1=−m1=−m̄1

J1,M1;J̄1,M̄1
(z1)Φ

w2,j2

J2,M2;J̄2,M̄2
(z2)Φ

w3,j3

J3,M3;J̄3,M̄3
(z3)Φ

w4,j4

J4,M4;J̄4,M̄4
(z4)

〉
∼ Vconfδ

2(m1 + m2 + m3 + m4)z
Δ

w1
1 +Δ

w2
2 −Δ

w3
3 −Δ

w4
4

43 z̄
Δ̄

w1
1 +Δ̄

w2
2 −Δ̄

w3
3 −Δ̄

w4
4

43 z
−2Δ

w2
2

42 z̄
−2Δ̄

w2
2

42 z
Δ

w2
2 +Δ

w3
3 −Δ

w1
1 −Δ

w4
4

41

× z̄
Δ̄

w2
2 +Δ̄

w3
3 −Δ̄

w1
1 −Δ̄

w4
4

41 z
Δ

w4
4 −Δ

w1
1 −Δ

w2
2 −Δ

w3
3

31 z̄
Δ̄

w4
4 −Δ̄

w1
1 −Δ̄

w2
2 −Δ̄

w3
3

31

(20)

×
∫

dj C(j1, j2, j)B(j)−1C(j, j3, j4)z
Δw

j −Δ
w1
1 −Δ

w2
2 z̄

Δ̄w
j −Δ̄

w1
1 −Δ̄

w2
2

[
Ω(j, ji,mi, m̄i) + λΩ(1 − j, ji,mi, m̄i)

] + · · · ,

where Ji = |Mi | = |mi + k
2wi |, J̄i = |M̄i | = |m̄i + k

2wi | are the spacetime conformal weights of the spectral flowed operators and
they should be distinguished from the ji of the original unflowed states. Recall that this is a winding conserving correlator with
states in arbitrary spectral flow sectors up to the requirement

∑4
i=1 wi = 0.

Similarly, applying the spectral flow operation to (19) one gets〈
Φ

w1,j1=−m1−n1=−m̄1−n̄1

J1,M1;J̄1,M̄1
(z1)Φ

w2,j2

J2,M2;J̄2,M̄2
(z2)Φ

w3,j3

J3,M3;J̄3,M̄3
(z3)Φ

w4,j4

J4,M4;J̄4,M̄4
(z4)

〉
∼ Vconfδ

2((m1 − n1) + m2 + m3 + m4
) Γ (2j1)

2

Γ (j1 − m1)Γ (j1 − m̄1)

× z
Δ

w1
1 (n1)+Δ

w2
2 −Δ

w3
3 −Δ

w4
4

43 z̄
Δ̄

w1
1 (n̄1)+Δ̄

w2
2 −Δ̄

w3
3 −Δ̄

w4
4

43 z
−2Δ

w2
2

42 z̄
−2Δ̄

w2
2

42

× z
Δ

w2
2 +Δ

w3
3 −Δ

w1
1 (n1)−Δ

w4
4

41 z̄
Δ̄

w2
2 +Δ̄

w3
3 −Δ̄

w1
1 (n̄1)−Δ̄

w4
4

41 z
Δ

w4
4 −Δ

w1
1 (n1)−Δ

w2
2 −Δ

w3
3

31 z̄
Δ̄

w4
4 −Δ̄

w1
1 (n̄1)−Δ̄

w2
2 −Δ̄

w3
3

31

×
n1∑

n2,n3=0

n̄1∑
n̄2,n̄3=0

Gn2,n3(ji,mi)Gn̄2,n̄3(ji, m̄i)

∫
dj C(j1, j2, j)B(j)−1C(j, j3, j4)

× [
Ω(j, ji,m2 − n2,m3 − n3, m̄2 − n̄2, m̄3 − n̄3) + λΩ(1 − j, ji,m2 − n2,m3 − n3, m̄2 − n̄2, m̄3 − n̄3)

]
(21)× z

Δw
j −Δ

w1
1 (n1)−Δ

w2
2 z̄

Δ̄w
j −Δ̄

w1
1 (n̄1)−Δ̄

w2
2 + · · · ,

where Δ
w1
1 (n1) = Δ

w1
1 + w1n1 and Δ̄

w1
1 (n̄1) = Δ̄

w1
1 + w1n̄1.

Having completed the analysis in the m-basis, our aim is to transform the four point functions (20) and (21) back to the x-basis.
We follow a procedure analogous to that considered in [2] in the case of two and three point functions. It was shown that it is
not necessary to compute the most general expression since the x-basis correlators are the pole residue of the m-basis results at
Ji = Mi , J̄i = M̄i , for a given spectral flowed state.5 Similarly as in the case of the two point functions, the pole here is in the

5 Actually, this procedure was applied in [2] to the two point function and the winding violating three point function. However, it may be shown that it also gives
the correct result for winding conserving three point functions comparing expressions in [3] and [11] (see Appendix B).
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divergent factor Vconf, and (20) can then be interpreted as resulting from an x-basis expression of the form〈
Φ

|w1|,j1

J1,J̄1
(x1, z1)Φ

|w2|,j2

J2,J̄2
(x2, z2)Φ

|w3|,j3

J3,J̄3
(x3, z3)Φ

|w4|,j4

J4,J̄4
(x4, z4)

〉
∼ x

J1+J2−J3−J4
43 x̄

J̄1+J̄2−J̄3−J̄4
43 x

−2J2
42 x̄

−2J̄2
42 x

J2+J3−J1−J4
41 x̄

J̄2+J̄3−J̄1−J̄4
41 x

J4−J1−J2−J3
31 x̄

J̄4−J̄1−J̄2−J̄3
31

× z
Δ

|w1 |
1 +Δ

|w2|
2 −Δ

|w3|
3 −Δ

|w4|
4

43 z̄
Δ̄

|w1|
1 +Δ̄

|w2|
2 −Δ̄

|w3|
3 −Δ̄

|w4|
4

43 z
−2Δ

|w2 |
2

42 z̄
−2Δ̄

|w2 |
2

42

× z
Δ

|w2 |
2 +Δ

|w3|
3 −Δ

|w1|
1 −Δ

|w4|
4

41 z̄
Δ̄

|w2|
2 +Δ̄

|w3|
3 −Δ̄

|w1|
1 −Δ̄

|w4|
4

41 z
Δ

|w4 |
4 −Δ

|w1|
1 −Δ

|w2|
2 −Δ

|w3|
3

31 z̄
Δ̄

|w4 |
4 −Δ̄

|w1|
1 −Δ̄

|w2|
2 −Δ̄

|w3|
3

31

×
∫

dj C(j1, j2, j)B(j)−1C(j, j3, j4)
[
Ω(j, ji,mi, m̄i) + λΩ(1 − j, ji,mi, m̄i)

]
× z

Δ
|w|
j −Δ

|w1|
1 −Δ

|w2|
2 z̄

Δ̄
|w|
j −Δ̄

|w1|
1 −Δ̄

|w2|
2 xj−J1−J2 x̄j−J̄1−J̄2

{∣∣2F1(j − J1 + J2, j + J3 − J4,2j ;x)
∣∣2

(22)+ λ̂
∣∣x1−2j

2F1(1 − j − J1 + J2,1 − j + J3 − J4,2 − 2j ;x)
∣∣2} + · · · ,

where the ellipses denote higher order terms in z. We have replaced wi → |wi | because in the x-basis the operators are labeled with
positive winding number [2] and

(23)λ̂ = −γ (2j)2γ (−J1 + J2 − j + 1)γ (J3 − J4 − j + 1)

(1 − 2j)2γ (−J1 + J2 + j)γ (J3 − J4 + j)
.

In order to determine the x dependence of (22) we have used that the Ward identities satisfied by correlators involving either
unflowed or spectral flowed fields in the x-basis are the same up to the replacements Δi → Δw

i , ji → Ji for the spectral flowed
fields [3]. In addition, although the modified KZ and null vector equations to be satisfied by correlators involving spectral flowed
fields in the x-basis were shown in [3] to be iterative in the spins Ji , and their forms differ from the usual KZ and null vector
equations for the unflowed case, at the lowest order in z that we are considering here the modified KZ equation actually reduces to
that of the unflowed case with the replacements ji → Ji , and the iterative terms do not contribute. Therefore we expect that the four
point functions have the same dependence on the coordinates and anharmonic ratios as (3), (5), with the replacements mentioned
above.

Similarly, the same procedure can be followed in order to transform (21) back to the x-basis and we get〈
Φ

|w1|,j1

J1(n1),J̄1(n̄1)
(x1, z1)Φ

|w2|,j2

J2,J̄2
(x2, z2)Φ

|w3|,j3

J3,J̄3
(x3, z3)Φ

|w4|,j4

J4,J̄4
(x4, z4)

〉
∼ Γ (2j1)

2

Γ (j1 − m1)Γ (j1 − m̄1)
x

J1(n1)+J2−J3−J4
43 x̄

J̄1(n̄1)+J̄2−J̄3−J̄4
43 x

−2J2
42 x̄

−2J̄2
42

× x
J2+J3−J1(n1)−J4
41 x̄

J̄2+J̄3−J̄1(n̄1)−J̄4
41 x

J4−J1(n1)−J2−J3
31 x̄

J̄4−J̄1(n̄1)−J̄2−J̄3
31

× z
Δ

|w1 |
1 (n1)+Δ

|w2|
2 −Δ

|w3|
3 −Δ

|w4|
4

43 z̄
Δ̄

|w1 |
1 (n̄1)+Δ̄

|w2|
2 −Δ̄

|w3|
3 −Δ̄

|w4|
4

43 z
−2Δ

|w2 |
2

42 z̄
−2Δ̄

|w2 |
2

42

× z
Δ

|w2 |
2 +Δ

|w3|
3 −Δ

|w1|
1 (n1)−Δ

|w4|
4

41 z̄
Δ̄

|w2 |
2 +Δ̄

|w3|
3 −Δ̄

|w1 |
1 (n̄1)−Δ̄

|w4|
4

41

× z
Δ

|w4 |
4 −Δ

|w1|
1 (n1)−Δ

|w2|
2 −Δ

|w3|
3

31 z̄
Δ̄

|w4 |
4 −Δ̄

|w1|
1 (n̄1)−Δ̄

|w2|
2 −Δ̄

|w3|
3

31

×
n1∑

n2,n3=0

n̄1∑
n̄2,n̄3=0

Gn2,n3(ji,mi)Gn̄2,n̄3(ji, m̄i)

∫
dj C(j1, j2, j)B(j)−1C(j, j3, j4)

× [
Ω(j, ji,m2 − n2,m3 − n3, m̄2 − n̄2, m̄3 − n̄3) + λΩ(1 − j, ji,m2 − n2,m3 − n3, m̄2 − n̄2, m̄3 − n̄3)

]
× z

Δ
|w|
j −Δ

|w1|
1 (n1)−Δ

|w2|
2 z̄

Δ̄
|w|
j −Δ̄

|w1|
1 (n̄1)−Δ̄

|w2|
2 xj−J1(n1)−J2 x̄j−J̄1(n̄1)−J̄2

× {∣∣2F1(j − J1(n1) + J2, j + J3 − J4,2j ;x)
∣∣2

(24)+ λ̂(n1)
∣∣x1−2j

2F1(1 − j − J1(n1) + J2,1 − j + J3 − J4,2 − 2j ;x)
∣∣2} + · · · ,

where J1(n1) = |−j1 − n1 + k
2w1|.

Therefore we have extended the result (3), (5) for the four point function of unflowed operators in the SL(2,R) WZW model, to
all winding conserving four point functions for states in arbitrary spectral flow sectors. We have obtained results both in the m- and
the x-basis, with the simplifying assumption that at least one operator is in the spectral flow image of D−

j .
Notice that, while the m-basis expressions (20) and (21) remain valid for all winding conserving four point functions, including

in particular the case in which all the external operators are unflowed, the results (22) and (24) in the x-basis do not hold when all the
external states are unflowed. This is consistent with the fact that in the m-basis, all N -point functions are the same, for a given N ,
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up to some free boson correlator [1,2,5] which only modifies the zi dependence. On the other hand, the procedure we have followed
to transform from the m- to the x-basis, by evaluating the pole residue at J = M , J̄ = M̄ , requires at least one spectral flowed state
in the correlator.6 Consequently (22) and (24) result in this case, whereas (3), (5) hold for four unflowed operators.

We would like to comment on the higher order contributions to the expansion in z. As in the case of the four point function
of unflowed operators [4], we expect them to be determined once the lowest order is given as the initial condition. This works
in two different but equivalent ways. The first one is that higher orders in the spectral flowed case are fixed by first iteratively
determining the higher orders in (4) starting from (5), and then performing the spectral flow operation to the result, in a similar
fashion as we have done here to the lowest order contribution. Alternatively one may determine the higher order contributions using
modified KZ equations for amplitudes involving spectral flowed states, starting from (20)–(24) as the initial conditions. In the m-
and μ-basis, such modified KZ equations were discussed in [5]. In the x-basis, modified KZ equations were computed in [3] and
the determination of the higher order contributions was also discussed in the one-unit violating case.

Finally, one important application of our results would be to investigate the structure of the factorization of (20)–(24) in order to
establish the consistency of string theory on AdS3 and verify the winding violation pattern suggested in [2]. We hope to tackle this
problem in the future.
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Appendix A. Useful formulae

The following identities for the hypergeometric functions can be found e.g. in [12]

(A.1)

1∫
0

duuα(1 − u)β2F1(a, b, c;λu) = Γ (α + 1)Γ (β + 1)

Γ (α + β + 2)
3F2(a, b,α + 1; c,α + β + 2;λ).

(A.2)

1∫
0

duuα(1 − u)β3F2(a, b, c;d, e;u) = Γ (α + 1)Γ (β + 1)

Γ (α + β + 2)
4F3(a, b, c,α + 1;d, e,α + β + 2;1).

3F2(a, b, c;d, e;u)

= Γ (d)Γ (e)

Γ (a)Γ (b)Γ (c)

[
Γ (a)Γ (b − a)Γ (c − a)

Γ (d − a)Γ (e − a)
(−u)−a

3F2

(
a − d + 1, a − e + 1, a;a − b + 1, a − c + 1; 1

u

)

+ Γ (b)Γ (a − b)Γ (c − b)

Γ (d − b)Γ (e − b)
(−u)−b

3F2

(
b − d + 1, b − e + 1, b;b − a + 1, b − c + 1; 1

u

)

(A.3)+ Γ (c)Γ (a − c)Γ (b − c)

Γ (d − c)Γ (e − c)
(−u)−c

3F2

(
c − d + 1, c − e + 1, c; c − a + 1, c − b + 1; 1

u

)]
.

Appendix B. Three point functions

In this appendix we transform the three point function including two w = 1 operators, computed in [3], from the x-basis to the
m-basis. We verify that the result equals the three point function for unflowed operators in the m-basis computed in [11]. This may
be considered a check not only on the expressions in [3,11], but also on the claim that the coefficient of all winding conserving
correlators is the same in the m-basis (for a given number of external states) [1,2,5].

The three point function including two w = 1 operators in the x-basis is [3]

(B.1)

〈
Φ

w=1,j1

J1,J̄1
(x1, z1)Φ

w=1,j2

J2,J̄2
(x2, z2)Φj3(x3, z3)

〉
∼ 1

V 2
conf

B(j1)B(j2)C

(
k

2
− j1,

k

2
− j2, j3

)
W(j1, j2, j3,m1,m2, m̄1, m̄2)

× x
j3−J1−J2
12 x̄

j3−J̄1−J̄2
12 x

J2−J1−j3
13 x̄

J̄2−J̄1−j3
13 x

J1−J2−j3
23 x̄

J̄1−J̄2−j3
23

× z
Δ3−Δw=1

1 −Δw=1
2

12 z̄
Δ3−Δ̄w=1

1 −Δ̄w=1
2

12 z
Δw=1

2 −Δw=1
1 −Δ3

13 z̄
Δ̄w=1

2 −Δ̄w=1
1 −Δ3

13 z
Δw=1

1 −Δw=1
2 −Δ3

23 z̄
Δ̄w=1

1 −Δ̄w=1
2 −Δ3

23 ,

6 In fact there should be at least two spectral flowed operators in the winding conserving case.
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where

W(j1, j2, j3,m1,m2, m̄1, m̄2) =
∫

d2ud2v uj1−m1−1ūj1−m̄1−1vj2−m2−1v̄j2−m̄2−1

× |1 − u|2(j2−j1−j3)|1 − v|2(j1−j2−j3)|u − v|2(j3−j1−j2),

was computed in [13], but the explicit result is not relevant for our purposes here.
In order to transform this expression to the m-basis, we use (2) and evaluate the residue of the pole at J2 = −M2, J̄2 = −M̄2 in

the x2 integral, i.e. we perform the following operation to (B.1)∫
d2x1 d2x3 x

J1−M1−1
1 x̄

J̄1−M̄1−1
1 x

j3−m3−1
3 x̄

j3−m̄3−1
3 lim

x2,x̄2→∞x
2J2
2 x̄

2J̄2
2 .

Thus we find that the x-dependent part in (B.1) contributes the following factor

(B.2)Vconfδ
2(M1 + M2 + m3)

Γ (j3 − m3)Γ (J2 − J1 − j3 + 1)Γ (J̄1 − J̄2 + m̄3)

Γ (−j3 + m̄3 + 1)Γ (J̄1 − J̄2 + j3)Γ (J2 − J1 − m3 + 1)
,

up to some k-dependent (j independent) coefficient. Considering that J1 = M1 = m1 + k/2, J2 = −M2 = −m2 + k/2, M1 + M2 +
m3 = 0 and m3 − m̄3 ∈ Z, this can be reduced to

(B.3)V 2
confδ

2(m1 + m2 + m3).

Therefore, recalling the identity [3]

(B.4)B(j1)B(j2)C

(
k

2
− j1,

k

2
− j2, j3

)
∼ C(j1, j2, j3),

we obtain the following expression for the winding conserving (w1 = −w2 = 1,w3 = 0) three point function in the m-basis〈
Φ

w=1,j1

J1,M1;J̄1,M̄1
(z1)Φ

w=−1,j2

J2,M2;J̄2,M̄2
(z2)Φj3;m3,m̄3(z3)

〉
∼ δ2(m1 + m2 + m3)C(j1, j2, j3)W(j1, j2, j3,m1,m2, m̄1, m̄2)

(B.5)× z
Δ3−Δw=1

1 −Δw=−1
2

12 z̄
Δ3−Δ̄w=1

1 −Δ̄w=−1
2

12 z
Δw=−1

2 −Δw=1
1 −Δ3

13 z̄
Δ̄w=−1

2 −Δ̄w=1
1 −Δ3

13 z
Δw=1

1 −Δw=−1
2 −Δ3

23 z̄
Δ̄w=1

1 −Δ̄w=−1
2 −Δ3

23 .

This expression coincides with the three point function of unflowed operators computed in [11] up to the powers of zij , which
have to be transformed according to (1).
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