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We study the non-steady relaxation of a driven one-dimensional elastic interface at the depin-
ning transition by extensive numerical simulations concurrently implemented on graphics process-
ing units. We compute the time-dependent velocity and roughness as the interface relaxes from
a flat initial configuration at the thermodynamic random-manifold critical force. Above a first,
non-universal microscopic time regime, we find a non-trivial long crossover towards the non-steady
macroscopic critical regime. This “mesoscopic” time regime is robust under changes of the micro-
scopic disorder, including its random-bond or random-field character, and can be fairly described
as power-law corrections to the asymptotic scaling forms yielding the true critical exponents. In
order to avoid fitting effective exponents with a systematic bias we implement a practical criterion
of consistency and perform large-scale (L ≃ 225) simulations for the non-steady dynamics of the
continuum displacement quenched Edwards-Wilkinson equation, getting accurate and consistent
depinning exponents for this class: β = 0.245 ± 0.006, z = 1.433 ± 0.007, ζ = 1.250 ± 0.005, and
ν = 1.333 ± 0.007. Our study may explain numerical discrepancies (as large as 30% for the veloc-
ity exponent β) found in the literature. It might also be relevant for the analysis of experimental
protocols with driven interfaces keeping a long-term memory of the initial condition.

PACS numbers: 74.25.Qt, 64.60.Ht, 75.60.Ch, 05.70.Ln

I. INTRODUCTION

The depinning transition of an elastic interface driven
in a randommedium is a paradigmatic example of univer-
sal out-of-equilibrium dynamical behavior in disordered
systems [1, 2]. From a purely theoretically point of view,
considerable progress has been made in the last years
thanks to a fruitful interplay between the very powerful
analytical [3–5] and numerical techniques specially de-
veloped for studying equilibrium [6, 7], depinning [8–12],
and creep [13, 14] of strictly elastic manifolds. From the
experimental viewpoint, on the other hand, the under-
standing of this particular problem is directly relevant
for various experimental situations where the elastic ap-
proximation is well met, such as magnetic [15–18] or
ferroelectric domain walls [19–22], contact lines in wet-
ting [23, 24], and fractures [25, 26]. It has also been useful
for making a connection between laboratory friction ex-
periments and the observed spatial and temporal earth-
quake clustering [27]. In spite of this progress, classify-
ing the above systems in depinning universality classes
remains, in most cases, a challenge. In this respect, we
show in this paper that a detailed understanding of the
experimentally relevant non-stationary dynamics at the
depinning transition can be useful.

The physics of an elastic interface in a random medium
is controlled by the competition between quenched dis-
order (induced by the presence of impurities in the host
material), which promotes the wandering of the elastic
object, and the elastic forces, which tend to make the
object flat. One of the most dramatic manifestations
of this competition is the response of these systems to
an external drive, particularly the depinning transition
phenomenon. In the absence of an external drive, the
ground state of the system is disordered but well charac-

terized by a self-affine rough geometry with a diverging
typical width w ∼ Lζeq , where L is the linear size of the
elastic object and ζeq is the equilibrium roughness ex-
ponent. When the external force is increased from zero,
the ground state becomes unstable and the interface is
locked in metastable states. To overcome the barriers
separating them and reach a finite steady-state velocity
v it is necessary to exceed a finite critical force, above
which barriers disappear and no metastable states exist.
For directed d-dimensional elastic interfaces with con-
vex elastic energies in a (D = d + 1)-dimensional finite
space with disorder, the critical point is unique, char-
acterized by the critical force f = fc and its associated
critical configuration [28, 29]. This critical configuration
is also rough and self-affine such that w ∼ Lζ with ζ the
depinning roughness exponent. When approaching the
threshold from above, the steady-state average velocity
vanishes as v ∼ (f−fc)

β and the correlation length char-
acterizing the cooperative avalanche-like motion diverges
as ξ ∼ (f−fc)

−ν for f > fc with a typical diverging inter-
event time ξz, where β is the velocity exponent, ν is the
depinning correlation length exponent, and z is the dy-
namical exponent [5, 30–32]. At finite temperature and
for f ≪ fc, the system presents an ultra-slow steady-
state creep motion with universal features [4, 33, 34] di-
rectly correlated with geometrical crossovers [13, 35]. At
very small temperatures the monotonic increase of the
correlation length with decreasing f below fc shows that
the naive analogy breaks, and that depinning must be re-
garded as a non-standard phase transition [13, 14]. The
transition is then smeared-out, with the velocity vanish-
ing as v ∼ Tψ exactly at f = fc, with ψ, the so-called
thermal rounding exponent [36–40].

The non-stationary dynamics at depinning is a differ-
ent and interesting manifestation of the competition be-
tween elasticity and disorder, but it has received con-
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siderably less attention than the steady-state dynamics.
Near the threshold the time needed to reach the driven
non-equilibrium steady state can be very long, since the
memory of the initial condition persists for length scales
larger than a growing correlation length ℓ(t) ∼ t1/z. Be-
ing limited only by the divergent steady-state correlation
length ξ and the system size L, the resulting non-steady
critical regime is macroscopically large, t . ξz, Lz . It
is hence relevant for experimental protocols, where it is
in general difficult to assure history independence, as the
memory of the initial condition is erased only by this
slow transient process. Analogously to non-driven sys-
tems relaxing to their critical equilibrium states [41], the
transient dynamics of a driven disordered system displays
interesting, though different, universal features [42].
In this paper we study the non-steady relaxation of an

elastic string in a random medium by extensive numeri-
cal simulations, extending the study of Ref. [43] in sev-
eral ways. We first show that the thermodynamic critical
force, although strictly non-universal, can be defined un-
ambiguously and has a unique value; this is the force that
drives the system into the so-called short-time-dynamics
(STD) scaling form yielding the steady-state critical ex-
ponents. Second, we study corrections to the dynam-
ical scaling form which appear at intermediate (“meso-
scopic”) times, but well above the expected non-universal
microscopic time regime set by the microscopic disor-
der correlation range. We show that these corrections
are rather robust under changes of the microscopic disor-
der, including its random-bond or random-field charac-
ter. Having done this, we implement a practical criterion
for separating these corrections and exploit the paral-
lelism of graphics processing unit (GPU) computing to
perform, to the best of our knowledge, the largest-to-
date molecular dynamics simulations of an elastic line in
a random-medium described by a continuous quenched
Edwards-Wilkinson (QEW) equation. This allows us to
achieve long times in the non-steady critical regime and
get, with the STD method, un-biased and precise esti-
mates for the critical exponents for this depinning uni-
versality class: β = 0.245 ± 0.006, z = 1.433 ± 0.007,
ζ = 1.250± 0.005, and ν = 1.333± 0.007.

Organization of the paper

In Sec. II we define the model and quantities of inter-
est. In Sec. III A we describe the general scaling forms
for the non-steady critical relaxation that are used for
the analysis. In Sec. III B we briefly discuss the nu-
merical methods, leaving all computational details for
the Supplemental Material [44]. In Sec. IV we show all
the results. We first analyze the geometry of the critical
configuration and the thermodynamic limit of the crit-
ical force in Sec. IVA. Then we study the non-steady
relaxation of different observables in Sec. IVB. We char-
acterize in Sec. IVC the deviations from the expected
scaling forms of Sec. III A, and in Sec. IVD we analyze

in detail these corrections to scaling, which explain the
existence of biased effective exponents in the problem. In
Sec. V we summarize and discuss all the results and in
Sec. VI we conclude and give perspectives.

II. MODELS, PROTOCOLS, AND

OBSERVABLES

We study a one-dimensional elastic line described by
a single-valued function u(x, t). Here, u(x, t) measures
the line’s instantaneous transverse displacement from the
x axis at time t. In the continuum, the overdamped
interface dynamics is described by the QEW equation
of motion,

η∂tu(x, t) = c∂2xu(x, t) + Fp(u, x) + f, (1)

where f is a uniformly applied external force and Fp(u, x)
is the random pinning force. Without lack of generality
we can set the friction coefficient η = 1 and the elastic
constant c = 1. The pinning force has zero average and
correlator

Fp(u, x)Fp(u′, x′) = ∆(u − u′)δ(x− x′). (2)

The overbar represents the average over the disorder re-
alizations and ∆(u) is a short-ranged function, of range
rf = 1. We consider two cases for ∆(x). In the so-
called random bond (RB) case the elastic line moves in a
random potential such that Fp(u, x) = −∂uU(u, x) with
U(u, x) bounded, and thus

∫

u
∆(u) = 0. In the ran-

dom field (RF) case, the random potential U(u, x) is un-
bounded and diffuses as a function of u, with diffusion
constant

∫

u∆(u) > 0 [4]. In turn, the pinning poten-
tial or forces can be sampled from different distributions.
Here we consider Gaussian and uniform (constant) dis-
tributions. Analyzing all the above cases separately will
allow us to detect possible departures from the expected
universal behavior and corrections to scaling at relatively
short time and length scales.
It is a convenient and safe procedure to discretize the

interface displacement in the x-direction, keeping u(x, t)
as a continuum variable. Doing so, we define the center
of mass velocity for an interface of size L as,

v(t) =
1

L

L−1
∑

x=0

∂tu(x, t), (3)

which, given Eq. (1) and η = c = 1, is nothing else
but the spatial average of the instantaneous total forces
acting on the line. From the instantaneous center of mass
displacement,

u(t) =
1

L

L−1
∑

x=0

u(x, t), (4)
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we can define the instantaneous quadratic width of the
interface as,

w2(t) =
1

L

L−1
∑

x=0

[u(x, t)− u(t)]2. (5)

The geometrical properties of the line as a function of
length-scale can be conveniently described using the av-
eraged structure factor

Sq(t) =

∣

∣

∣

∣

1

L

L−1
∑

x=0

u(x, t)e−iqx
∣

∣

∣

∣

2

, (6)

where q = 2πn/L, with n = 1, . . . , L− 1.
We are interested in the time dependence of the above

disorder-averaged observables with the elastic line ini-
tially flat, i.e., u(x, t = 0) = 0. Other, more complex,
initial conditions may also be considered, but they do
not provide more information on the dynamics of relax-
ation as long as they are not correlated with the ran-
dom potential. Choosing an initially flat line allows us
to easily detect the existence of memory depending on
the length-scale, since correlations in this system always
develop a roughness with self-affine length regimes de-
scribed by positive exponents. For a globally self affine
line we have S(q) ∼ q−(1+2ζ), thus yielding the roughness
exponent ζ. Such behavior is expected to hold in the so-
called random-manifold regime; a regime where q is small
compared to both the Larkin wavevector qc ∼ ℓ−1

c , [with
w(ℓc) ∼ rf ] and the discretization wave vector qd ∼ 1.
For our parameters, we have qc ∼ qd of order O(1).

III. METHODS

We describe here the scaling forms expected for the
non-stationary relaxation of an elastic line in a ran-
dom medium at large times, and introduce the numerical
methods used to simulate the dynamics.

A. Universal non-steady relaxation

It was originally shown [45] using renormalization
group techniques for a type A model, and then widely ex-
tended empirically to other models, that the short-time
behavior of the order parameter’s n-th moment close to
a critical point follows the universal scaling relation

m(n)(t, h, L,m0) = b−nβ/νm(n)(b−zt, b1/νh, b−1L, bµm0).
(7)

Here t is the time, h = (H − Hc)/Hc is the reduced
driving field of the transition associated with the order
parameter (such as magnetic field, temperature, etc.), L
is the system size, b is a scaling factor, m0 is the order
parameter’s initial value, µ is a universal exponent as-
sociated with the short-time behavior, while β, ν, and

z are the usual critical and dynamical exponents. This
relation was analytically shown to be valid in the limit of
small initial order parameter m0 ≪ 1, with t larger that
some non-universal microscopic time and smaller than
the equilibration time τeq ∼ Lz. Nevertheless, in agree-
ment with numerical simulations [46–48] and analytical
approximations in mean-field models [49], it was shown
that the following homogeneity relation is valid in the
short (but macroscopic) time regime when starting from
an ordered condition (commonly m0 = 1).

m(n)(t, h, L) = b−nβ/νm(n)(b−zt, b1/νh, b−1L). (8)

In our system, and making the usual analogy with
standard phase transitions, we consider the velocity v
as an order parameter and the adimensionalized force
(f − fc)/fc as the reduced driving field. While it is
not clear yet how to implement a protocol yielding an
initial condition equivalent to m0 ≪ 1 and testing the
complete relation Eq. (7), the implementation of an or-

dered equivalent initial condition is very simple, and a
relation like Eq. (8) has been numerically checked in
this model [42, 43]. In fact, the completely ordered ini-
tial condition should correspond to the infinite-velocity
configuration. Since at large velocities the effect of the
quenched disorder mimics a small thermal noise which
vanishes with increasing v, this initial condition should
correspond to the completely flat condition (i.e., we make
a “quench” from an infinite to a finite force). By analogy,
we therefore expect the velocity short-time behavior

v(t, h, L) = b−β/ν ˜̃v±(b
−zt, b1/νh, b−1L), (9)

where h = |f − fc|/fc and the function ˜̃v± has two
branches depending on the sign of f − fc. By choosing
b = t1/z in (9),

v(h, L, t) = t−β/νz ṽ±(t
1/zνh, t−1/zL), (10)

Here, the functions ṽ+ and ṽ− are such that for h > 0
and L ≫ h−ν , v+ → const and v− → 0 in the large
t limit. It is worth noting here that while h−ν can be
associated with the geometrical correlation length ξ di-
verging in lim f → f+

c in the steady state, this is not
true in lim f → f−

c . We can, however, find a diver-
gent correlation length ℓrelax ∼ (fc − f)−ν , not ob-
served in the steady-state geometry, but associated with
the deterministic part of the avalanches that are pro-
duced in the steady-state dynamics of the f < fc low-
temperature creep regime [13, 14]. Hence, the interpre-
tation of Eq. (10) is slightly different from the one de-
rived from Eq. (8) for the Ising model (and other similar
standard phase transitions), where divergent equilibrium
correlation lengths do exist on approaching the critical
point from both sides. At depinning, the relaxational
dynamics described by Eq. (10) is valid in the short-time
regime, after which the velocity reaches a steady-state
value if f > fc, while for f < fc the velocity is blocked in
a metastable state with memory of the initial condition
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and v → 0 [43]. When T > 0, and for f < fc, activated
processes permit the system to continue relaxing towards
a steady-state with finite velocity [39].

Exactly at the critical point (h = 0) and in the limit
L→ ∞ we expect a power-law behavior for the velocity,

v ∼ t−β/νz. (11)

Equation (11) can also be heuristically derived from a
very simple physical picture, by assuming that the non-
steady relaxation at the critical point is controlled by a
single growing correlation length ℓ(t) ∼ t1/z , and that
in the macroscopic time limit, some critical steady-state
relations are “instantaneously” obeyed, with ℓ(t) playing
the role of ξ, when ξ ≪ L. Hence, the steady-state re-
lation v ∼ ξ−β/ν translates into v ∼ ℓ(t)−β/ν ∼ t−β/νz,
leading to Eq. (11). The physical picture behind this
“mapping” is that length scales below ℓ(t) are expected
to be steady-state quasi-equilibrated, while above it the
memory of the initical condition is still kept. This sug-
gests that the structure factor should be described, above
some microscopic scale and for ℓ(t) ≪ L, by

Sq(t) ∼ q−(1+2ζ) ˜̃S(qℓ(t)) ∼ q−(1+2ζ)S̃(qt1/z), (12)

with S̃(y) ∼ const for y ≫ 1, and S̃(y) ∼ y1+2ζ for y ≪
1. This is confirmed by numerical simulations [42, 43].
Note that this simple scaling is also obeyed in the absence
of disorder but in the presence of thermal noise[50]. For

the depinning transition S̃(y) is expected to be a much
more complicated function however, as the disorder in
principle couples all Fourier modes. The above scaling
relation also implies

w(t) ∼ ℓ(t)ζ ∼ tζ/z (13)

for the global width, or roughness. Note that this simple
result depends on the choice of a flat initial condition.
Otherwise we would have a memory contribution, which
can be included as w(t) ∼ tζ/zw̃(t1/zL−1), with w̃(y) ∼
const for y ≤ 1, and a function depending on the initial
condition for y ≪ 1. The flat initial condition is thus
convenient since w̃(y) = const for all y.

Since Eq. (11) is valid exactly at h = 0, by evolving the
system at different driving forces from a flat initial condi-
tion it is then possible to determine the critical force and
extract the steady-state critical exponents. For the cor-
rect application of this STD method, we need, however,
a good criterion to decide the time range in which to fit
the exponents accurately. This is particularly tricky if
scaling corrections are important and also described by
power laws, since they can lead to effective power-law
decays, yielding biased incorrect exponents. As we show
later on, for our case, we can exploit known depinning
scaling relations and combinations of observables to find
a good criterion.

B. Numerical simulation

The numerical simulation protocol is roughly the same
as the one used in Ref. [43], but here, in addition, we
simulate different kinds of disorder, and implement mas-
sively parallel algorithms. Below we briefly summarize
the method. We refer the reader to the Supplemen-
tal Material [44] for further details; in particular, for
the description of our GPU-based parallel implementa-
tions of the algorithm which allow us to computationally
reach very large system sizes, running simulations with
speedups above 300x.
In order to numerically solve Eq. (1) the system is dis-

cretized in the x direction into L segments of size δx = 1,
i.e., x = 0, . . . , L − 1, while keeping u(x, t) as a contin-
uous variable. Computing the forces at each time-step,
the integration of Eq. (1) is done using the Euler method.
To model the continuous quenched random potential

we can either read from a precomputed array, or gen-
erate dynamically, uncorrelated random numbers with a
finite variance at the integer values of u and x and use
interpolation to get Fp(u, x). In this work we consider
both cubic-spline and linear interpolation between the
random potential values sampled at the integers. This
changes only the shape of the microscopic force correla-
tor, but not the universality class. By generating directly
the force field at integer positions from zero-mean uncor-
related random numbers in both directions we can get a
RF disorder, while by doing the same for the potential
field and deriving the force we can get a RB disorder. In
both cases Eq. (2), with a short-range force correlator, is
automatically satisfied.
For our numerical simulations we have used periodic

boundary conditions in the longitudinal direction, so that
u(0, t) is elastically coupled with u(L− 1, t). In the case
where we construct continuous splines for the disorder
potential or we limit ourselves to read a precomputed
force field, we enforce periodic boundary conditions also
in the transverse direction, thus defining an L ×M sys-
tem. On the other hand, when a dynamically generated
disorder is used, the system size in the u direction is vir-
tually infinite, although in our implementation it can be
forced to be periodic as well [44].
A critical configuration usc(x) and a critical force f sc

can be unambiguously defined for a periodic sample of
size L ×M and with a given disorder realization. They
are defined from the pinned (zero-velocity) configuration
with the largest driving force f in the long time limit
dynamics. They are the real solutions of

c ∂2zu(x) + Fp(u, x) + f = 0, (14)

such that for f > f sc there are no further real solu-
tions (pinned configurations). Middleton theorems [28]
can be used to devise an efficient algorithm which allows
the critical force f sc and the critical configuration usc(x)
to be obtained for each independent disorder realization
iteratively, without having to solve the actual dynam-
ics Eq. (1) nor directly invert the non-linear system of
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FIG. 1. (Color online) Structure factor of the critical config-
uration averaged over N = 1000 samples of size L = 2048
and M = 13777. Using the self-affinity developed at long
wavelengths, S(q) ∼ q−(1+2ζ), we fit the roughness exponent
ζ = 1.250 ± 0.005. Inset: Rescaled structure factor qualita-
tively displaying the accuracy of the fit, and the discretization
effects at large q.

Eq. (14). In the following section we use such an algo-
rithm [10, 11] to study the finite-size effects on f sc and
in particular to obtain the appropriate thermodynamic
limit fc = lim(L,M)→∞ f sc controlling the universal non-
steady relaxation.

IV. RESULTS

A. The critical configuration and the

thermodynamic critical force

We start by analyzing the geometry of the critical con-
figuration and the critical force in periodic samples of
size L ×M , using the exact algorithm of Refs. [10, 11],
for a cubic-spline RB potential. This allows us, on one
hand, to get a very precise estimate for the exponent ζ
directly from steady-state solutions for individual sam-
ples usc(x) and use it to disentangle the combinations of
exponents appearing in the non-steady universal part of
the relaxation. On the other hand, it allows us to get the
value fc for the thermodynamic critical force, and show,
from an anisotropic finite-size analysis, that it is unam-
biguously defined. In the next section we show that the
results obtained in this section are fully consistent with
the non-steady dynamics: The long-time geometry tends
to the self-affine one of the critical configuration and, in
particular, fc is exactly the force for which the velocity
relaxation asymptotically displays a power-law decay in
time, as long as the growing correlation length remains
smaller than the system size L
We determine the critical configurations usc(x) and the

associate critical force f sc (L,M), for several samples of
size L × M . To determine ζ we calculate the time-
independent averaged structure factor Sq of the criti-

cal configurations and fit the expected Sq ∼ q−(1+2ζ)
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FIG. 2. (Color online) Dependence of the finite-size critical
force fs

c on the longitudinal size L for periodic samples of size
L × M with M = kLζ . The dashed line corresponds to the
thermodynamic limit fc = 1.916 ± 0.001.

behavior. The advantage of using Sq over the global
width w(L) ∼ Lζ is that it allows us to better detect
the possible presence of undesirable crossover effects, and
the characteristic associated length-scale. In particular,
when determining ζ, one should be cautious about the
crossover to the random-periodic regime, with exponent
ζRP = 1.5 occurring at the length-scale LM ∼ M1/ζ [51].
In our case we have thus chosen M & Lζ for extracting
ζ. In Fig. 1 we observe that Sq ∼ q−(1+2ζ) holds to high
accuracy in the long wavelength limit (discretization ef-
fects appear at very short wavelengths) for a system of
size L = 2048 and M = 13777. From a power-law fitting
giving 1 + 2ζ = 3.50± 0.01 we deduce ζ = 1.250± 0.005,
with better precision but still in very good agreement
with previous estimates obtained with the structure fac-
tor at finite velocities in the steady-state [52] and with
the scaling of the global width w(L) ∼ Lζ [8, 29].

In order to study the thermodynamic limit of the dis-
order averaged critical force, f sc (L,M), we useM = kLζ,
with k a finite control parameter. Any finite value of k
leads to a parametrized family of universal critical force
distributions, ranging from the Gaussian to the Gumbel
distribution [53]. For our present purposes, it is impor-
tant to know how the thermodynamic limit L → ∞ de-
pends on the aspect-ratio parameter k. In Fig. 2 we show
f sc against L, for different values of k. As we can see, the
size-dependent average critical force f sc tends to a unique
value in the limit L→ ∞ when keeping k fixed. Further-
more, at finite L, f sc is smaller than fc for k . 2, and
larger than fc for k & 2, where fc therefore represents the
thermodynamic critical force. This behavior is consis-
tent with the crossover from a random-periodic depinning
(k → 0), with a thermodynamic critical force smaller
than the random-manifold one, towards the extreme-
statistics random-manifold depinning with an infinite
thermodynamical critical force (k → ∞), with fluctu-
ations described by the Gumbel distribution [53, 54].
What is important to remark here [55] is that for the
whole range of finite values of k that we have analyzed,
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the curves slowly converge to the same thermodynamic
limit fc = lim(L,M)→∞ f sc |M=kLζ = 1.916 ± 0.001. This
value is in very good agreement with the value obtained
for the same microscopic model with other methods,
such as quasi-statically pulling the string with a soft
spring [56].

Therefore, we see that although fc is not universal,
for fixed microscopic disorder correlations it attracts the
infinite family of sample geometries that is compatible
with the random-manifold setting M = kLζ . Therefore,
this setting alone removes the ambiguity of defining the
critical force of a periodic sample in the thermodynamic
limit. Since the short-time relaxation of the string is con-
trolled by a single growing correlation length ℓ(t) ∼ t1/z

describing the slow development of correlations from mi-
croscopic scales, it can not be sensitive to the dimensions
or aspect ratio of the computational box, provided that
ℓ(t) ≪ L and ℓ(t)ζ ≪ M . It is then natural to expect
that fc, which is sensitive only to the microscopic pin-
ning correlator for the random-bond family M = kLζ,
is the force that must be tuned to target the universal
non-steady relaxation regime.

B. Short-time-dynamics scaling

We now turn to the study of the relaxation dynamics.
We start by reproducing previous results [43], with ex-
actly the same model, but using larger systems, in order
to make visible the effects that were neglected before.

In Fig. 3 we observe the averaged string velocity be-
havior against time. When the applied force f is greater
than the thermodynamic critical force fc, v(t) saturates
to a finite value at a time which increases as we approach
fc from above. On the other hand, for forces smaller
than fc, v(t) goes to 0 after a transient, which is longer
as we approach fc from below. Exactly at f = fc we
expect v(t) ∼ t−β/νz after a microscopic time regime.
One can in principle use this as a criterion to determine
fc. Of course, it is very difficult to hit exactly fc, but
what we can do is to bound it from above and below.
As we approach fc it takes longer and longer times (and
requires better averages) to determine if a velocity curve
for a given force is saturating or vanishing. Big system
sizes help to reduce noise, since v(t) self-averages. A de-
tailed inspection of the simulations results presented in
Fig. 3(a) permits us to determine f STDc = 1.915 ± 0.002
using the STD method, in complete agreement with the
extrapolation to the thermodynamic limit of the exact
critical force obtained in Sec. IVA. This shows the con-
sistency of the two methods, and from now on we refer
to f STDc simply as fc.

With the value of fc, from Eq. (9) one can test a joint
scaling form for the force and time-dependent velocity.
Considering L→ ∞ and using b ∼ t1/z in Eq. (9) we get

v(t) tβ/νz ∼ ṽ±

[

t1/z(f − fc)
ν
]

, (15)
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FIG. 3. (Color online) Non-stationary averaged string veloc-
ity as a function of time for different driving forces. (a) Raw
data. The best power-law curve corresponds to f = fSTD

c =
1.915. (b) Rescaled data. The parameters fSTD

c = 1.915,
β = 0.33, z = 1.5, and ν = 1.33 were used. The curves
correspond to L = M = 8192, and averages were taken over
N = 1000 samples.

where ṽ± are universal functions, and the ± sign indi-
cates whether the critical point at fc is approached from
above or from below. This scaling relation is tested in
Fig. 3(b). In order to appreciate the difference from pre-
vious studies of the same problem the following values for
the exponents have been used: z = 1.5 [43], β = 0.33 [52],
and ν = 1.33 [43]. It can be observed that the curves col-
lapse into two sets: on one hand those with f < fc, with
ṽ−(x) going to zero, and on the other hand those with
f > fc with a saturation to a finite value of ṽ+(t).

In Fig. 4 we show the string averaged structure factor
at different times during the evolution of the system in
the presence of the applied force f = fc = 1.915. As can
be seen in Fig.4(a), at large length scales (small values
of q) the system keeps memory of its initial state, which
we have chosen to be flat. At small length scales though
(but not small enough to explore the lattice effects), the
geometry of the string becomes approximately self affine,
being characterized by a behavior Sq ∼ q−(1+2ζ) where
ζ is the roughness exponent. In Fig.4(b) we test the
scaling hypothesis of Eq. (12), by using z = 1.5 [43] and
ζ = 1.25 [29, 52].

As we can observe in Figs. 4(b) and 3(b), the assumed
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FIG. 4. (Color online) Structure factor of the string at dif-
ferent times during evolution at f = fc. (a) Raw data. (b)
Rescaled data. The parameters z = 1.5 and ζ = 1.25 were
used. The curves correspond to a system size L = M = 8192,
and averages were taken over N = 10000 samples.

0.2

1

v

10
-1

10
0

10
1

10
2

10
3

10
4

 t

10
0

10
2

w

~ t
0.84

~ t
0.67

~ t
0.13

~ t
0.16

(a)

(b)

FIG. 5. (Color online) Non-stationary velocity (a) and width
(b) as functions of time for f = fc = 1.915. Black dots
correspond to data. Dashed red and dot-dashed green curves
are power law fits in the regions 1 < t < 30 and 30 < t <
21000, respectively. The data correspond to L = M = 8192,
and averages were taken over N = 3500 samples.

critical exponents β = 0.33, ν = 1.33, ζ = 1.25, and
z = 1.5 produce rather good collapses. We will argue
however that these exponents are effective and have an
appreciable bias, which causes the small deviations ap-
preciated in those collapses. This can be perceived only
by simulating large systems and reaching several orders
of magnitude in time. In Fig. 5 we show v(t) and w(t)
vs t at the critical force fc. Above the microscopic time
regime of order tmic ∼ 1 we observe in v(t) a crossover
at a time tcross ∼ 50, between two approximate power-
law decays with exponents ≈ 0.16 for short but meso-
scopic times, and ≈ 0.13 for times larger than a few
tens [see Fig.5(a)]. A similar crossover is seen in Fig.5(b)
where we observe a crossover between two approximate
power-law decays, from ≈ 0.67 to ≈ 0.84. This behav-
ior is unexpected from the universal non-steady relations
v(t) ∼ t−β/νz and w(t) ∼ tζ/z, which generally assume a
microscopically very short transient regime before reach-
ing the truly universal macroscopic time regime. In order
to understand this behavior, in the next section we ana-
lyze this crossover in detail.

C. Robustness of the crossovers

The first question we can ask is how robust are the
observed crossovers and in particular, how much they
depend on specific details such as the intensity or the
shape of the microscopic disorder correlator.
For a given disorder distribution, we have first checked,

by simulating v(t) at the corresponding critical force,
that the crossover time (tcross ∼ 50) does not change
appreciably by changing the nature of the disorder.
In order to study the dependence of the crossover on

the shape and nature of the microscopic disorder correla-
tor, we have fixed ∆(0), defined in Eq. (2), and analyzed
four different cases:

• Case 1: Gaussian-distributed disorder potential
with cubic spline interpolation between the inte-
gers (RB),

• Case 2: Uniformly-distributed disorder potential
with cubic spline interpolation between the inte-
gers (RB),

• Case 3: Gaussian-distributed disorder potential
with linear spline interpolation between the inte-
gers (RB),

• Case 4: Gaussian-distributed random forces (RF)
without interpolation between the integers.

Case 1 corresponds to the usual Gaussian-distributed
disorder with cubic spline that we used in Sec. IVB.
Case 2 consists in using a uniformly distributed disor-
der instead of the Gaussian-distributed numbers of the
first case. In Case 3 we determine the continous po-
tential using linear interpolation instead of a cubic one,
so the pinning force as a function of the position has
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FIG. 6. (Color online) Velocity at the corresponding criti-
cal forces of the four different cases defined in the text. (a)

Raw data. Power-laws fits of the form v ∼ tβ/νz for times
t & 30 give similar results for all curves, consistent with
β/νz = 0.129 ± 0.002. (b) Velocity multiplied by t0.129.
Dashed horizontal lines showing the apparent scaling regime
are displayed to guide the eye. All curves correspond to
L = 4096, M = 8192, and averages over N = 50000 sam-
ples.

discontinuities at the integers. These first three cases
correspond to random-bond disorder, as the quenched
potential fluctuations [U(u, x)− U(u′, x′)]2 ∼ δ(x − x′)
saturate at long distances |u − u′|. Case 4 is a typical
random-field with Gaussian disorder, corresponding to
[U(u, x)− U(u′, x′)]2 ∼ δ(x−x′)|u−u′| for large |u−u′|.
Case 4 helps us in particular to answer the question of
whether the observed crossovers may be related to the
crossover from RF to RB expected for depinning [5].

In Fig. 6 we show the time dependent velocity for the
four cases, each one at its corresponding thermodynamic
critical force, determined with the STD method. Apart
from a factor depending on fc, the qualitative behav-
ior of v(t) appears unaltered for times longer than some
microscopic threshold tmic ∼ 1. This time is controlled
by the microscopic correlator range [43], which is the
same in the four cases, rf = 1. If we fit pure power
laws for all curves in the region t & tcross ≈ 50 we find,
within the error bars, consistent values for the exponent
β/νz ∼ 0.129, as shown in Table I. By plotting vt0.129 vs
t, we clearly see that corrections to scaling at intermedi-
ate times (tmic < t < tcross) are present. They have an
approximate algebraic decay, and seem to have a weak
dependence on the microscopic disorder. We thus con-
clude that the observed value for β/νz is universal as
expected. Moreover, the corrections to scaling appear to
be robust: they do not strongly depend on the intensity,
shape, or nature (RB vs RF) of the short-ranged corre-
lated microscopic pinning force.

The crossovers in Fig. 6 can be thus possibly ascribed
to leading order power-law scaling corrections to the uni-
versal non-steady dynamics, similar to what is observed

Case description fc fitted β/νz

1 RB CS Gaussian 1.915 ± 0.002 0.130 ± 0.001

2 RB CS Uniform 1.848 ± 0.002 0.128 ± 0.001

3 RB LS Gaussian 1.565 ± 0.002 0.129 ± 0.001

4 RF Gaussian 0.971 ± 0.001 0.130 ± 0.001

TABLE I. Critical forces and exponents for four different
cases: CS and LS stand for cubic-spline and linear-spline in-
terpolations for the potential, respectively. RB and RF cor-
respond to the random-bond and random-field cases. The
power-law fits are consistent with a universal value β/νz =
0.129 ± 0.001.

in the Ising, Potts, and XY models for instance [57–59].
As is customary, one can try here to fit a “corrected”
formula in order to get an unbiased value for β/νz:

v = v0t
−β/νz

[

1 +

(

t

t0

)−α
]

. (16)

However, with the present data, we find that this proce-
dure is inaccurate as it involves several parameters intro-
duced through an ad hoc formula for the correction.
This takes us to our next step, the search for a dif-

ferent practical criterion to directly estimate tcross. We
start by observing that in the truly universal non-steady
macroscopic critical regime, the quantity

γ(t) =
w(t)

tv(t)
(17)

should reach a time-independent constant value as a con-
sequence of the scaling relation β = ν(z − ζ): since at
f = fc in the macroscopic regime, v(t) ∼ t−β/νz and
w(t) ∼ tζ/z, then γ(t) ∼ const. This criterion was used
to determine the depinning threshold in the long-range
discrete elastic model [12], since any departure from fc
would make γ vanish, or increase with time at very long
times. For our present purposes, we note that if the mea-
sured γ(t) depends on time, it means that we have not
reached the critical scaling regime yet. Therefore, a con-
stant γ(t) is, at least, a necessary condition.
In Fig. 7 we show the behavior of γ(t) with time for

Case 1. After a microscopic regime we can see a decreas-
ing behavior of γ(t) with time, which implies an “effec-
tive” unbalanced relation [ν(z − ζ)− β]eff < 0. The sys-
tem is then in what we call a “mesoscopic” regime where
the critical dynamics scaling [Eq. (8)] is still not valid.
Nevertheless, it is possible to fit a reasonable power law
for v(t) in this regime, if larger times are not available.
We hence see the importance of having a good criterion
to decide where to fit the exponents: if the time is not
large enough, the resulting exponents will be effective
and have a systematic bias. Moreover, using γ(t) as a
method to determine fc may also suffer from these meso-
scopic time effects, as its initial decay may be incorrectly
ascribed to having an applied force larger than fc. Af-
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ter that long crossover, we can observe that γ(t) devel-
ops a plateau starting at t ∼ 1000. This plateau is cut-
off by finite-size effects, which introduce an L-dependent
characteristic time. We also observe that scaling correc-
tions in v(t) or w(t), shown in Figs. 5 and 6, are impor-
tant in the mesoscopic time regime, clearly visible in the
time-dependence of γ(t). We thus argue that within the
plateau in γ(t), scaling corrections are already negligi-
ble, and the true critical exponents can be consistently
extracted with the STD method. As we see in Fig. 7,
this criterion is strongly limited by finite size effects, re-
ducing the time range of the plateau. We observe that
in order to obtain a sufficiently wide time window to fit
the exponents accurately (i.e., a few decades in time), we
really need to attain big system sizes, much larger than
L = 8192.

D. Large-scale simulations

With the numerical method implemented so far, in pe-
riodic samples of size L×M , we are limited [60] to system
sizes not much bigger than L = 8192. This is because we
need sufficiently largeM in order to avoid undesirable pe-
riodicity effects, i.e., a crossover to the random-periodic
class [61]. We hence move to our “memory-free” numer-
ical implementation, where we dynamically generate the
underlying disorder instead of reading it from a previ-
ously stored array, similarly to what was done in Ref. [36]
but with concurrent computations. As we explain in the
Supplemental Material [44], in this implementation it is
simpler to work with linear splines for interpolating the
potential, therefore corresponding to Cases 3 (RB) and 4
(RF) of Sec. IVC, for which we have already shown that
scaling corrections are present.
In Fig. 8 we present the behavior of γ(t) with time for a

string of size L = 225 = 33554432, for Case 3. Simulating
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FIG. 8. (Color online) γ(t) as a function of time for the
RB case with Gaussian distributed disorder. The system size
is L = 225 = 33554432. The continuous line is a fit using
Eq. (18).

such large systems give us the benefit of the self-averaging
of the velocity. Indeed, in Fig. 8 the smooth curve for
fc was averaged only over five samples, while the other
two correspond to only one sample. Second, notice that,
compared with Table I, we are now able to improve the
determination of the thermodynamical critical force with
the STD method, pushing the uncertainty to the fourth
decimal place, fc = 1.5652± 0.0003 for Case 3. At this
value of fc we obtain a well defined plateau in γ, lasting
approximately two decades, starting at t ∼ 1000. Ignor-
ing the microscopic time regime t < tmic ∼ 1, we can
now perform a good fit of the data at f = fc with the
expression

γ(t) = G0

[

1 +

(

t

tg

)−αg

]

. (18)

Here we have introduced the fitting parameters G0, tg
and αg, obtaining G0 ≃ 1.143, tg ≃ 0.142, and αg ≃
0.56. This allows us to quantify the development of the
plateau, and to confirm the power-law shape of the scal-
ing correction in γ(t). We are now prepared to consis-
tently fit both the scaling corrections in w(t) and v(t)
and the combination of critical exponents ζ/z and β/νz
respectively.
In Figs. 9 and 10 we show w(t) and the velocity v(t)

as functions of time, for L = 225 = 33554432 and for an
applied force fc = 1.5652, corresponding to a RB linearly
interpolated random-potential generated with Gaussian
numbers. In Fig. 10, we have also included the behavior
of the string for two other forces, just above (f = 1.5655)
and just below (f = 1.5649) the estimated depinning
force fc. For w(t) the corresponding three curves are in-
distinguishable, so we show only the curve corresponding
to f = fc. We can see very nice asymptotic power-law
behaviors of both quantities, spanning several orders of
magnitude. Nevertheless, as noticed for γ(t) in Fig.8,
a proper power-law fit can be accomplished only after
deciding a starting point for the scaling regime. With
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time for the RB case with Gaussian-distributed disorder. The
system size is L = 225 = 33554432.

the criterion of a plateau in γ(t) such a starting point
could be decided up to some arbitrariness, but it can
be included in the final uncertainty of the fitted expo-
nents. In addition, we propose corrected expressions for
w and v that can be used to fit the data during all the
non-steady evolution, excluding the microscopic regime
0 ≤ t < tmic ∼ 1. The corrections to scaling in these
quantities then read

w(t) =W0 t
ζ/z

[

1 +

(

t

tw

)−αw

]

, (19)

v(t) = V0 t
−β/νz

[

1 +

(

t

tv

)−αv

]

. (20)

The fits giveW0 ≃ 0.839, tw ≃ 0.485, and αw ≃ 0.712 for
the width, and V0 ≃ 0.721, tv ≃ 0.110, and αv ≃ 0.715
for the velocity. The insets of Figs. 9 and 10 confirm
that the corrections can be fairly described by power-
laws, as observed earlier in Sec. IVC for smaller systems.
The fitted parameters are to some extent sensitive to the
choice of tmic but this arbitrariness can be included in
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FIG. 11. (Color online) String velocity v(t) as a function of
time for the RF case with Gaussian-distributed disorder. The
system size is L = 225 = 33554432.

the error bars, and the proposed form of the corrected
critical behavior is robust.
For completeness, we also present the corrections to

scaling for the RF case. In Fig. 11 we can see the be-
havior of the string velocity with time when we apply
the critical force for the RF case fc = 0.9713 ± 0.0002
and different forces close to fc. The complete picture of
the RB case is repeated, but now the expression Eq. (20)
gives back slightly different exponents for the corrections
to scaling. The fit gives V0 ≃ 0.53, tv ≃ 0.382 and
αv ≃ 0.927 in this case. Nevertheless we cannot confirm
whether or not the correction exponents are distinguish-
able between the RB and RF cases, since they are very
sensitive to the choice of the arbitrary quantity tmic, the
time from which we start the fitting. For example for the
RF case αv changes between 0.69 and 0.99 when tmic is
varied from 2 to 10.
However, for the RF case we find a β/νz which is indis-

tinguishable from the one extracted for the RB case, as
detailed in the following section. With the precision we
have, we can not rule out, however, that these exponents
are actually the same for the RB and RF cases, and thus
maybe universal.

E. Critical exponents

We are now in position to accurately and consistently
determine the critical exponents β and z from the non-
stationary dynamical behavior of the system. In Fig. 12
we show our determination of β/νz and ζ/z [presented as
(1− ζ/z) since these are expected to be equal] extracted
from v(t) and w(t), respectively. To check the consistency
of the fitted values we have used three different fitting
procedures:

(a) First, as is customary, we use the corrected expres-
sions (19) and (20) to extract (ζ/z) and (β/νz), re-
spectively. The fit should be performed above the
microscopic regime t > tmic. Since the microscopic
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In black (full lines) we show the time tmic on and after which
we fitted using the corrected expressions (19) and (20). In
red (dotted lines) is shown the time tplat from which we can
consider γ(t) to be constant, and we fitted w(t) and v(t) with

pure power laws v ∼ t−β/νz and w ∼ tζ/z, without correc-
tions. In green (dot-dashed lines) we show the exponents as a
function of t0, with t0 such that we fitted the data with pure
power laws in the window [t0, 4t0].

time tmic is not precisely defined we let it vary in a
reasonable range t ∈ [2, 20] and compare the values
fitted for (ζ/z) and (β/νz) according to (19) and
(20).

(b) Second, we use the “plateau in γ” criterion to fit
our exponents. That is, we first observe the be-
havior of γ(t), and propose a time tplat, above
which we can consider the plateau well developed.
From t > tplat we fit separately w(t) and v(t) with

the pure power-law expressions w = w0t
ζ/z and

v = v0t
−β/νz, respectively. Again, since tplat is not

precisely defined, we allow it to move in a wide win-
dow tplat ∈ [500, 40000] and observe how the fitted
exponents (ζ/z) and (β/νz) behave.

(c) Third, we perform pure power-law fittings of our
data, as in the previous case, but now we perform
fits within time windows t ∈ [t0, 4t0] where t0 is
arbitrarily chosen in a wide range of values. This
is to show how the resulting exponent changes de-
pending on the selected time window and to mimic
the situation where long-time runs of large systems
are not available.

Figure 12 shows that the three fitting procedures lead
to the same result β/νz ≈ 1 − ζ/z ≈ 0.128, for suffi-
ciently large tmic, tplat and t0. Interestingly, the values
fitted for 1 − ζ/z and β/νz in the third procedure are
very sensitive to t0, and show a clear tendency to pro-
duce a positive bias on both at small times. This ex-
plains the previous observations of larger effective values
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FIG. 13. (Color online) String velocity v(t) as a function
of time for the RB case with uniformly distributed disorder
for which fc = 1.5652 using δt = 0.1. The system size is
L = 4194304. In (a) we present the raw data, and in (b)

v(t, f) has been rescaled to vtβ/νz and t to t1/z|f − fc|
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for (β/νz) [43]. On increasing t0, while keeping the win-
dow selection as [t0, 4t0] (other choices different from the
factor 4 give the same qualitative result), the exponent
values decrease and at some point the dependence on t0
ceases. This coincides with the beginning of the range
of good values for tplat ∼ 1000. From this analysis we
conclude for the depinning transition of the QEW elastic
line, that

β/(νz) = 1− ζ/z = 0.128± 0.003. (21)

Combining this with the value of ζ = 1.250 ± 0.005,
obtained in Sec. IVA with a reliable exact steady-state
method, this finally gives

z = 1.433± 0.007; (22)

and considering the statistical tilt symmetry of the
model, which yields ν = 1/(2− ζ), we obtain

ν = 1.333± 0.007 (23)

and

β = 0.245± 0.006. (24)

F. Scaling relations around the critical point

Now that we know the accurate critical exponents of
the model, we test them in large scale simulations around
the critical point, i.e., at force values around the critical
force fc.
In Fig. 13(a) we present the behavior of v(t) with time,

at different driving forces, for a string of size L = 222 =
4194304. In Fig. 13(b) we scale the data according to
Eq. (15) with the exponents just obtained. Compared
with Fig. 3 for a much smaller system, we now get a
much better scaling, especially for large times, and since
we are using now the new set of critical exponents.
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FIG. 14. (Color online) γ(t) as a function of time for the RB
case with uniformly distributed disorder for which fc = 1.5652
using δt = 0.1. The system size is L = 4194304. In (a) we
present the raw data, and in (b) t has been rescaled.

Consistently, Fig. 14(a) we show that the quality of
the collapse in Fig. 13(b) is closely accompanied by the
development of a plateau in γ(t) with time at f ≈ fc,
for t & 1000. For forces greater or smaller than fc, γ
deviates from its flat behavior towards decreasing or in-
creasing, respectively. Using the facts that in the scaling
region we expect v(t, f) ∼ t−β/νzGv(|f − fc|

νt1/z) and
w(t, f) ∼ tζ/zGw(|f − fc|

νt1/z), with Gv(x) and Gw(x)
some universal functions we get γ(t, f) ∼ F (|f−fc|

νt1/z),
with a new universal function F (y). This scaling is
checked in Fig. 14(b) and, again, the quality of the col-
lapse is closely accompanied by the development of a
plateau in γ(t) at f ≈ fc, occurring for t & 1000. This
shows that our criterion for bounding the scaling region
is consistent.

V. DISCUSSION

Power-law corrections to the non-equilibrium scaling
have been observed in several other systems such as Ising,
Potts, and XY models [57–59]. Interestingly, it is found
that these corrections are stronger for systems with dis-
order or frustration, or dilution [48]. Corrections are usu-
ally used to improve the accuracy of the exponents ob-
tained by the STD method. For the depinning transition
we have shown that this practice does not much increase
the accuracy of the STD method. We think that one
reason is that we rely on an ad hoc model for the correc-
tions, add extra parameters to the fit, and still have to
decide where to start fitting the corrected formula (the
non-universal microscopic time). We have shown that a
better approach for depinning is to use scaling relations
between the exponents that are violated in the presence
of corrections. This allows us to find the truly assymp-
totic regime where we can expect to get very close to the
true exponents. We think it may be useful to try this
kind of approach in other problems.

Thermodynamic

Steady−State

Velocity−Force

characteristics

scaling region

v(t)

t ∼ tmic

t ≫ tmic

f(t) ≡ fc(ℓ(t))

v
(t
)
∼

[f
c
−
f
(t
)]
β
∼

t−
β
/
ν
z

fc
fc − f(t) ∼ ℓ(t)−1/ν ∼ t−1/νz

FIG. 15. (Color online) Heuristic connection between steady
state and the non-steady universal relaxation at the thermo-
dynamical critical force fc. The circle represents the system
and the short arrows indicate its non-steady time evolution.
At large times, in the critical region, we can think of the relax-
ation of the velocity as “driven” by the small finite-size bias of
the critical force fc−fc(ℓ) ∼ ℓ−1/ν at the scale ℓ = ℓ(t) ∼ t1/z,
where fc is the thermodynamic value. Although the geometry
of the interface beyond ℓ(t) still retains memory of the initial
condition, these large-wavelength modes will not affect v(t).

A heuristic explanation for the power-law corrections
can be proposed by relating Eq. (11) to the steady-state
relation v ∼ ξ−β/ν . As we already pointed out, replac-
ing ξ by the correlation length ℓ(t) ∼ t1/z yields Eq. (11),
obtained from general arguments. This suggests two sim-
ple pictures: (i) In the first picture we simply introduce
phenomenological corrections to the dynamical exponent
as ℓ′(t) ∼ t1/z(1 + |c3|t

−ǫ) with c3 and ǫ parameters of
the correction. This type of correction has been intro-
duced in studies of the off-equilibrium critical dynam-
ics of the three-dimensional diluted Ising model, for in-
stance, and attributed to the biggest irrelevant eigen-
value of the renormalization group in the dynamics [62].
If we assume that v(t) ∼ ℓ′(t)−β/ν holds, it is easy to see
that such a correction would lead to a corrected veloc-
ity v(t) ∼ t−β/zν(1 + |c2|t

−σ) with parameters c2 and σ.
Something similar would happen with w(t). Note, how-
ever, that if w(t) ∼ ℓ′(t)ζ also held, we would not explain
the corrections observed, in the same time regime, in
γ(t) = w(t)/v(t)t. In any case, it would be interesting to
see whether such corrections for ℓ(t), which are certainly
absent in the non-steady relaxation of a flat line in the
EW model at T > 0 for instance (and more generally of
non-Markovian Gaussian signals [63, 64] related to man-
ifolds with long-range elasticity), can be explained using
the complicated coupling between Fourier modes induced
by the non-linearity of the quenched disorder. It is known
that “non-Gaussian” effects are indeed subtle [65, 66].
(ii) In the second picture we assume that the universal
non-steady relaxation at the thermodynamic threshold fc
is actually “quasistatically driven” by the finite-size bias
of the critical force. In other words, the small velocity of
the large string is roughly controlled by the steady-state
dynamics of an effective string of increasing size ℓ(t) and
width w(t) ∼ ℓ(t)ζ , as v(t) ∼ [fc − fc(ℓ(t))]

β . Indeed, if
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we assume that this finite-size bias with respect to the
thermodynamic value fc is positive, and scales with ℓ ex-
actly as the finite-size critical force fluctuations around
its mean value, i.e., fc − fc(L) ∼ L−1/ν , we get

v(t) ∼ [fc − fc(ℓ(t))]
β ∼ ℓ(t)−β/ν ∼ t−β/νz, (25)

equivalent to Eq. (11). This picture is schematized in
Fig. 15. The assumption of a positive bias fc − fc(L) ∼
L−1/ν can be justified from results using the quasi-
statically velocity-driven ensemble, where the interface is
driven by a parabolic potential m2(vt− u). For small m,
it was shown, via the functional renormalization group
(FRG), that fc(m) = fc−|c1|m

2−ζ = fc−|c1|m
1/ν , with

c1 a constant [56]. Since the parabola imposes a char-
acteristic length Lm ∼ m−1, beyond which the driven

interface looks flat, we can write [fc − fc(m)] ∼ L
−1/ν
m .

Identifying Lm with ℓ(t), we explain the assumed pos-
itive bias and again get Eq. (11). This identification
of lengths is supported by the fact that both Lm and
ℓ(t) (for the initially flat line) represent the same geo-
metrical crossover. For lengths below ℓ(t)(or Lm), the
string is steady-state quasi-equilibrated with the pin-
ning landscape yielding the roughness exponent ζ, but
it remains macroscopically flat because of the memory
of the initial condition (due to the confinement of the
parabola) at scales above ℓ(t) (or Lm). With the picture
above we can now speculate about a possible mechanism
for generating the scaling correction. Since the formula
fc(ℓ) = fc−|c1|ℓ

−1/ν is expected to hold only in the limit
of large ℓ it is plausible to add corrections to it, which
decay to zero in the large ℓ limit. If we add a correc-
tion of the type fc(ℓ) = fc − |c1|ℓ

−1/ν(1 + |c2|ℓ
−α) with

α > 0 and c2 constants, and use v(ℓ) ∼ [fc − fc(ℓ)]
β ,

we get v(t) ∼ t−β/zν(1 + |c2|t
α/z), using ℓ = ℓ(t) = t1/z,

the same type of correction we observe in our simula-
tions. The correction just proposed is not completely ad

hoc, but qualitatively consistent (the same sign and order
of magnitude) with the corrections to the FRG formula
fc(m) = fc − |c1|m

2−ζ observed at intermediate values
of m in simulations in the quasistatically velocity-driven
ensemble [56]. It would thus be interesting, in the first
place, to check quantitatively whether such corrections
are directly related to the ones we report here, and in
the second place to check whether one can explain them
directly from the FRG-flow behavior. This picture for
the corrections suggests that both finite-size steady-state
simulations and finite-time non-steady simulations would
yield, in particular, an effective exponent for β larger
than the true one. This may explain the trend of discrep-
ancies found in the literature. In any case, an analytical
and more fundamental description of these effects would
be welcomed.
The critical exponents associated with the depinning

transition for the QEW model in one dimension as re-
ported in previous works are shown in Table II, together
with the values obtained in the present work. Comparing
previous estimates, the largest discrepancy is found for
the β exponent. Our value β = 0.245±0.006 is more pre-

exponent estimate reference

ζ 0.97 ± 0.05 [36]

1.25 ± 0.05 [8]

1.25 ± 0.01 [67]

1.2 ± 0.2 [5]

1.26 ± 0.01 [29]

1.250 ± 0.005 this work

z 1.42 ± 0.04 [8]

1.54 ± 0.05 [67]

1.35 ± 0.2 [5]

1.433 ± 0.007 this work

ν 1.05 ± 0.1 [36]

1.00 ± 0.05 [37]

1.1 ± 0.1 [67]

1.25 ± 0.3 [5]

1.29 ± 0.05 [52]

1.33 ± 0.01 [53]

1.333 ± 0.007 this work

β 0.25 ± 0.03 [32]

0.24 ± 0.01 [36]

0.34 ± 0.04 [37]

0.40 ± 0.05 [67]

0.25 ± 0.03 [8]

0.22 ± 0.02 [68]

0.2 ± 0.2 [5]

0.33 ± 0.02 [52]

0.245 ± 0.006 this work

TABLE II. Representative values for the depinning exponent
ζ, the dynamical exponent z, and the critical exponents ν and
β, reported in the literature. The major dispersion is seen in
the value of β.

cise than previous reported values and agrees well with
the ones obtained in automaton models [8] and in molec-
ular dynamics simulations [36], but disagrees appreciably
with respect to random-field Ising model simulations [37]
and other molecular dynamics simulations [52], which
give about 30% larger values. All these works correspond
to the steady-state dynamics. They thus rely on a proper
steady-state equilibration and on a precise knowledge of
the critical threshold, which is difficult to achieve, except
in periodic samples [10, 52]. In steady-state simulations
with dynamically generated disorder, such as the ones in
Ref. [36], one should be cautious at long times or large
center of mass displacements, because of the critical force
extreme statistics, since, in this case, fc can be consid-
ered as the maximum among ∼M/Lζ independent typi-
cal critical forces [53, 54, 69]. Therefore, a finite-velocity
steady-state might not exist at zero temperature if the
critical force statistics tends to Gumbel’s type for large
M/Lζ for instance, as the interface will eventually be
blocked (by virtue of the Middleton theorems [28]) at
any finite-force. It is not clear how a finite temperature
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can diminish the dominant effect of these rare events at
very large averaging times, or eliminate the sensibility to
the tails of the distributions. At T = 0, one possibility
is to perform a disorder average over finite time averages
of the steady-state velocity, such that the distance cov-
ered by the center of mass is of order Lζ , and thus the
critical force becomes typical again. The problem with
this approach is that this critical force fluctuates and
thus the control parameter f − fc also varies from sam-
ple to sample, complicating the direct estimation of β. In
this respect finite samples with periodic disorder have the
great advantage that we can calculate accurately the crit-
ical force for each sample using an exact algorithm [10].
Steady-state simulations exploiting this algorithm were
limited by the narrow scaling region for obtaining β [52]
however, bounded by finite-size effects on one side, and
by the effects of the crossover to the Edwards-Wilkinson
equation at large velocities on the other side. Addition-
ally, one should also be cautious with periodic bound-
ary conditions: if M is small compared to the expected
random-manifold width, i.e., M ≪ Lζ , we can have sev-
eral crossovers from the random-manifold to the random-
periodic universality class. In this respect one should be
warned that, for a fixed L, the crossovers to the random-
periodic class are not controlled only by M , but also by
the velocity [51, 61].

The STD method applied to the depinning transition
has the advantage, on one hand, that it does not suffer
from finite-size effects, as it assumes a growing correlation
length which should lie well below the system size. On
the other hand, it does not suffer from extreme statis-
tics either, as the spatial region covered in the scaling
region is at maximun of order Lζ and thus the critical
force and configuration can not be rare. Moreover, we
have shown that it actually detects the thermodynami-
cal critical force corresponding to the random-manifold
familyM = kLζ, separating the random-periodic case for
k → 0, and the extreme Gumbel case k → ∞ [53]. We
have shown, however, that in order to have a long power-
law decay in v(t) we must use a large system with the
force precisely tuned to the thermodynamic critical force
fc. Fortunately, as shown in Fig.2, fc can be unambigu-
ously and precisely determined from a finite-size analysis
of the precisely known sample critical force f sc of periodic
samples. It is also usually said that the STD method
has the advantage that we do not need to (steady-state)
equilibrate the system. The presence of power-law-like
scaling corrections shows, however, that we do need to
wait (or correct) until the truly asymptotic universal
non-steady regime is reached, before determining the ex-
ponents. It is also worth noting that the STD method
does not yield β or ζ directly, as the direct steady-state
method does, but the combination of exponents β/νz.
This is not very problematic however, since for the QEW
model we accurately determine ζ from the analysis of
large critical configurations [29], ν = 1/(2− ζ), from the
statistical tilt-symmetry exact relation, and ζ/z, from the
power-law increase of the width w(t), as shown in Fig. 9.

It would thus be interesting to try the STD method in
the computationally more convenient automaton models
belonging to the QEW universality class. Such models
are described in pioneering papers such as Ref. [8]. Since
by construction they involve a kind of coarse-grained dy-
namics, it would be instructive to study the non-steady
dynamics of this model and see what happens in the
mesoscopic time-regime reported here.

VI. CONCLUSIONS

We have studied the non-steady relaxation of a driven
one-dimensional elastic interface at the depinning tran-
sition. Above a first, non-universal microscopic time
regime, we have found a non-trivial long crossover to-
wards the non-steady macroscopic critical regime, ex-
pected from general scaling arguments. We have shown
that this mesoscopic time regime is robust under changes
of the microscopic disorder, including its random-bond
or random-field character, and can be fairly described
as power-law corrections to the asymptotic scaling forms
yielding the true critical exponents. These corrections
may explain some numerical discrepancies found in the
literature (as large as 30% for some exponents), for this
universality class. In particular they explain the appear-
ance of effective power laws in the nonsteady relaxation
with exponents presenting a systematic bias with respect
to the critical values. To improve the accuracy and con-
sistency of the STD method for extracting critical ex-
ponents, we have implemented a practical criterion of
consistency and tested it in large-scale (L = 225) sim-
ulations concurrently implemented on GPUs. In this
way we obtained accurate exponents for the universal-
ity class of the paradigmatic continuum displacement
quenched Edwards-Wilkinson equation. Accurate critical
exponents are necessary tu succeed in classifying diverse
experimental systems and theoretical models into univer-
sality classes. It is interesting to note that our estimates
coincide, within error bars, with the critical exponents
obtained for a stochastic sandpile model in the conserved
directed-percolation class [70] The method applied in the
present paper may be used to analyze exponents in differ-
ent depinning universality classes, such as the long-range
elasticity, quenched Kardar-Parisi-Zhang, or correlated
disorder classes [71].
We believe that the features here observed might be ex-

perimentally relevant. In many experiments at low tem-
peratures with magnetic or electric domain walls, or with
contact lines of liquids, the dynamics of the interface is
non-stationary, in the sense that the system keeps for a
while a memory of the initial conditions (i.e. the mem-
ory of the preparation or “writing” of the domain wall is
visible in the experimental time and length scales), and
a growing dynamical correlation length is slowly devel-
oped in the presence of a driving field. The STD method
might be thus applied experimentally to determine the
critical field and exponents, and ultimately to determine
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the universality class of the system. In particular, we
have shown here that scaling corrections are important
in a mesoscopic time regime, between the so-called mi-
croscopic and macroscopic time-regimes. It would be
important to determine whether this regime can be ac-
cessed experimentally. In this respect we note that in
systems with weak pinning, where the microscopic time-
regime t < tmic is determined by a large Larkin length

ℓc, we have ℓ(tmic) ∼ t
1/2
mic ∼ ℓc [43]. If tmic is large

enough, the mesoscopic time-regime might be observable.
In such cases, our criterion of consistency may be useful,
as we only require monitoring of the time dependence
of the interface width and velocity simultaneously (by
direct imaging for instance). This would allow correc-
tions from the truly universal part of the relaxation to
be disentangled and accurate critical steady-state expo-
nents to be obtained experimentally. Finally, the inclu-
sion of thermal fluctuations would be important in order
to compare with some experiments. If the temperature

is small enough, we expect a critical universal relaxation
yielding the zero-temperature depinning exponents up
to length-scales comparable with the thermal rounding
length ξT ∼ T−ψν/β or up to time-scales of the order of
ξzT . The STD method can thus also be used to determine
ψ [39].
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