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Alcohol consumption and metabolic syndrome: Clinical and
epidemiological impact on liver disease
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Summary

Alcohol use and metabolic syndrome are highly prevalent in the population and frequently co-exist. Both are implicated in a large
range of health problems, including chronic liver disease, hepatocellular carcinoma, and liver-related outcomes (i.e. decom-
pensation or liver transplantation). Studies have yielded mixed results regarding the effects of mild-moderate alcohol consumption
on the risk of metabolic syndrome and fatty liver disease, possibly due to methodological differences. The few available pro-
spective studies have indicated that mild-moderate alcohol use is associated with an increase in liver-related outcomes. This
conclusion was substantiated by systems biology analyses suggesting that alcohol and metabolic syndrome may play a similar
role in fatty liver disease, potentiating an already existing dysregulation of common vital homeostatic pathways. Alcohol and
metabolic factors are independently and jointly associated with liver-related outcomes. Indeed, metabolic syndrome increases the
risk of liver-related outcomes, regardless of alcohol intake. Moreover, the components of metabolic syndrome appear to have
additive effects when it comes to the risk of liver-related outcomes. A number of population studies have implied that measures of
central/abdominal obesity, such as the waist-to-hip ratio, can predict liver-related outcomes more accurately than BMI, including
in individuals who consume harmful quantities of alcohol. Many studies even point to synergistic interactions between harmful
alcohol use and many metabolic components. This accumulating evidence showing independent, combined, and modifying ef-
fects of alcohol and metabolic factors on the onset and progression of chronic liver disease highlights the multifactorial back-
ground of liver disease in the population. The available evidence suggests that more holistic approaches could be useful for risk
prediction, diagnostics and treatment planning.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Alcohol use and metabolic syndrome (MetS) are both highly
prevalent in the population and they frequently co-exist. Both are
implicated in a broad range of health problems, including chronic
liver disease, hepatocellular carcinoma (HCC), and liver-related
outcomes (i.e. decompensation or liver transplantation).1

From a population perspective, alcohol harm is not limited to
a small minority of individuals with alcohol dependency. How-
ever, safe levels of alcohol intake are difficult to define because
of wide variations in the factors that contribute to susceptibility,
including sex, genetics, and multiple effect modifiers.2 More-
over, definitions of a standard drink or low- and high-risk
drinking vary substantially between countries.3 A standard
drink often does not reflect customary serving sizes, and
alcohol content varies considerably within and across different
beverage types. Nonetheless, the World Health Organization
(WHO) advises that neither men nor women should drink more
than 20 g/day of pure ethanol (2 standard drinks).4

MetS has become a global problem.5 It is largely attributed
to excess caloric intake and physical inactivity. MetS
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comprises a cluster of factors, including abdominal obesity,
hyperglycaemia/insulin resistance, dyslipidaemia, and arterial
hypertension. Moreover, MetS is often present in participants
with non-alcoholic fatty liver disease (NAFLD).

NAFLD and alcohol-related liver disease (ALD) are the
leading causes of chronic liver disease worldwide.6,7 In the
hepatology literature, mild-to-moderate drinking is often
distinguished from hazardous/harmful drinking by an arbitrary
threshold of regular intake; this threshold is 20 g/day (140 g/
week) of pure alcohol for women or 30 g/day (210 g/week)
for men.8,9

Both dysregulated metabolism and alcohol act as inde-
pendent and synergistic drivers of liver disease.1 MetS can
prime the liver to alcohol-induced harm, and vice versa; thus,
the distinction has blurred between ALD and NAFLD as sepa-
rate conditions.

In this review, we summarise the epidemiology of alcohol
consumption and MetS and discuss their independent and
combined impacts, particularly on liver-related clinical
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Keypoints

� Alcohol use and metabolic syndrome are highly prevalent in the population, frequently co-exist, and both predispose to a wide range of
health problems.

� Complex relationships exist between alcohol use and components of metabolic syndrome.

� Metabolic syndrome increases the risk of liver-related outcomes, regardless of the level of alcohol consumption.

� Metabolic components seem to modify the dose-response association between alcohol intake and risk of liver disease.

� Risk stratification that simultaneously considers alcohol use and metabolic abnormalities can potentially help detect persons at risk of
liver-related outcomes at earlier stages.
outcomes. Additionally, we look at the potential clinical impli-
cations of alcohol consumption and MetS on chronic
liver disease.

Global alcohol consumption and associated harm

In 2018, the global average alcohol consumption among in-
dividuals aged >−15 years was 6.2 L of pure ethanol per person
(Fig. 1A), 2.6 L for women and 9.7 L for men, with substantial
variations by country.10 This sex difference is lower in countries
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with a higher overall prevalence of drinking.11 Although the total
alcohol consumption has decreased slightly since the year
2000, the consumption among active drinkers has increased in
most parts of the world and is generally 2-3-fold higher than the
overall consumption levels.8

The average worldwide prevalence of heavy episodic
drinking (consuming at least 60 g of pure ethanol on one
occasion at least monthly) is 18.4%, being highest (30–34%) in
Europe, high-income Asia Pacific, Central sub-Saharan Africa
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Review
and Australasia.12 In 2016, an estimated 1.3% (�100 million
people) of the global population had alcohol use disorders.10

Annually, >2.4 million deaths result from harmful alcohol use
(Fig. 1B). Alcohol-attributable age-standardised mortality is
higher for men (6.8%) than women (2.2%) and among young
adults.11 Cardiovascular diseases were responsible for 34.3%
of all alcohol-attributable deaths in 2012, followed by injuries
(25.8%) and digestive diseases (16.2%).13 Again, there is
considerable variation by age, sex, and region.

Alcohol use was the seventh leading risk factor for disability-
adjusted life years in 2016, and the leading cause of premature
mortality and disability among young adults (Fig. 1C).8,11

Intake of more than two standard drinks per day is associ-
ated with an increased risk of all-cause, cardiovascular, and
cancer-related mortality.14 For cardiovascular subtypes other
than myocardial infarction, there is no clear threshold for safe
drinking.15 Among persons >50 years of age, cancers are the
predominant source of alcohol-attributable burden in countries
with a high socio-demographic index.11

Whilst alcohol use has decreased in some countries since
the beginning of the COVID-19 pandemic, heavy episodic
drinking and the proportion of people with problematic alcohol
use may have increased.16 In parallel, reports from the US and
the UK show that alcohol-related mortality and alcohol-related
liver mortality increased by approximately 20% during the
COVID-19 pandemic.17,18 Beyond health outcomes, alcohol
use is also associated with wide-ranging social consequences
and a large financial burden to society.19

Global trends: MetS
Worldwide, MetS-related factors such as high systolic blood
pressure, high blood glucose and obesity constitute leading
risk factors for death (Fig. 1D).

The recognition of MetS over the last three decades started
with the description of an insulin-resistance syndrome (or
syndrome X) by Reaven, in 1988.20 Although the focus of
syndrome X was insulin resistance, it is now widely recognised
that ectopic fat accumulation such as visceral obesity is a key
component and cause of insulin resistance and MetS
(Table S1). It has also become clear that patients with MetS
often have type 2 diabetes (T2D), NAFLD, an atherogenic li-
poprotein phenotype, and hypertension. Among patients with
T2D, mortality risk increases with increasing numbers of
MetS components.21

MetS may develop from an unhealthy lifestyle that includes
physical inactivity, a poor-quality energy-dense diet, smoking,
and increased alcohol consumption. The first pragmatic diag-
nostic criteria for MetS, published in 2001, focused on mea-
sures of central obesity, dysglycaemia, dyslipidaemia, and
hypertension. Despite limitations related to the dichotomisation
of continuous variables, for the sake of clinical applicability,
MetS was defined by specific thresholds for waist circumfer-
ence, plasma glucose concentration, HDL-cholesterol, fasting
triglyceride concentration, and blood pressure. When three or
more of these five features exceeded the threshold, MetS was
diagnosed. Between 2001–2009 there was considerable
debate concerning the number of features required, the
threshold for each individual variable, whether central obesity
should be obligatory, and whether ethnic-specific thresholds
for central obesity are required to define and characterise
Journal of Hepatology, Janua
MetS. These debates resulted in modifications to the diag-
nostic criteria, and in 2009, the ‘harmonised criteria’ for MetS
were established by consensus among several societies
(Table S1). Nonetheless, the MetS population is heteroge-
neous, due to variations in classifications over time and across
studies and different combinations of individual features. Thus,
prevalence estimates have varied, and it is difficult to draw
conclusions about the changes observed in MetS prevalence
over the last 20 years.

Unsurprisingly, global MetS prevalence estimates have
varied between countries. Recently, cross-sectional surveys
in West China from 2010–2018 showed that the overall
prevalence of MetS ranged between 21.4–27.8%.22 The MetS
prevalence in Sichuan Province (27.8% in 2010, 27.4% in
2018, among individuals aged >−18 years) was lower than that
reported in previous studies from China (33.9% in 2010).23

However, the 2010 estimate might have been an over-
estimate, because a lower waist circumference threshold
(80 cm) was used for women. The estimated percentages of
MetS in other parts of Asia have been similar (e.g., 28–30% in
Korean men aged 40–79 years;24 30% in Indian adults aged
>−18 years, 2004–2019;25 and 20–37% in Bangladesh26). Other
studies have shown different prevalences across the globe.
For example, 36.5% in 2007–2009 in Portugal (individuals
aged >−18 years),27 24.3% in Europe,28 and 44.2% in
Mexico.29 Among US adults, the prevalence of MetS has
increased from 36.2% in 1999–2000 to 47.3% in
2017–2018.30 Over this 20-year period, cardiometabolic
health has also significantly worsened, primarily related to
worsening levels of adiposity and glucose, as well as
increasing blood pressure. In addition, recent evidence shows
that worldwide, about 3% of children and 5% of adolescents
have MetS.31

Alcohol and liver disease: Key remarks
Despite an established dose-response relationship between
the quantity of alcohol consumed and liver disease risk in
general, considerable individual variability exists. In most in-
dividuals, liver steatosis seems to develop after consuming
>60 g/day of alcohol for >2 weeks. However, this condition can
be reversed by 4-6 weeks of abstinence.2 On the other hand,
many population-based studies have failed to find clear a
correlation between the degree of alcohol intake and the de-
gree of liver steatosis.32,33 Thus, it seems that consistently high
daily alcohol consumption is required for “pure” alcohol-related
steatosis to develop.

In contrast, the risk of cirrhosis appears to begin increasing
at lower levels of alcohol consumption. Recently, a meta-
analysis that comprised 2,629,272 participants and 5,505 in-
dividuals with cirrhosis showed that the cirrhosis risk became
significant at around one drink/day, compared to long-term
abstainers, and the risk increased with increasing alcohol
intake.34 However, the cirrhosis risk has varied widely among
studies, and we generally lack studies with data on lifetime
alcohol use. In contrast, case-control studies showed no risk
increase among individuals who consumed 1–4 drinks/day.34

Currently, no liver-safe limit of alcohol consumption has been
firmly established.

Inaccuracy of self-reported alcohol consumption, recall
bias, intentional and unintentional underreporting, and large
ry 2023. vol. 78 j 191–206 193



variation in what constitutes a standard drink can confound
research on the relationship between alcohol consumption and
alcohol-related harm. This was recently highlighted by a study
detecting repeated moderate to excessive alcohol consump-
tion in 29% of individuals with presumed NAFLD when
assessed by alcohol biomarkers.35

Despite the relationship between alcohol dose and liver
disease risk, only 10 to 20% of individuals with chronic heavy
alcohol use develop cirrhosis or alcoholic hepatitis. This
observation highlights the key role of effect modifiers.36 For
example, women are more susceptible to ALD than men at any
given level of alcohol consumption.2 Genetic factors are
involved in the individual susceptibility to both alcohol use
disorder and ALD. Other key effect modifiers of ALD risk
include the drinking pattern (binge drinking, drinking outside
meals), the beverage type (lower risk for wine), the diet (coffee
seems protective), smoking, the gut microbiome, iron overload,
viral hepatitis, comorbidity, and metabolic factors.2

Metabolic drivers of liver disease
MetS has emerged as an independent driver of liver fibrosis37,38

and liver-related outcomes.39,40 A recent meta-analysis of 19
studies with 1,561,457 participants concluded that MetS was
associated with a 112% increase in the risk of liver-related
clinical outcomes, among non-Asians, and a 73% increase
among Asians.39 MetS is also associated with HCC.40–42 In a
recent US study, MetS was the greatest contributor to
population-level HCC (attributable fraction: 32%).43 Moreover,
the presence of MetS could predict liver-related mortality in
various chronic liver diseases.44 Among the individual com-
ponents of MetS, diabetes and obesity have been closely
linked to liver-related outcomes in numerous studies.40,41,44–52

However, the strong interrelationship among the MetS com-
ponents make it difficult to disentangle their independent risk
effects. Large studies are often limited to registry-based cod-
ing, which often lacks direct measurements of meta-
bolic factors.

A recent large US study of 271,906 individuals with NAFLD
and a mean 9-year follow-up reported that each additional
metabolic trait (diabetes, obesity, hypertension, dyslipidaemia)
was associated with a stepwise increase in the risk of liver-
related outcomes (cirrhosis or HCC). All four metabolic traits
contributed independently to the risk, but diabetes had the
strongest association with incident HCC (hazard ratio [HR]:
2.8).48 However, this study did not assess abdominal obesity.

In a population-based study of 578,700 individuals, obesity
and hyperglycaemia were independently associated with inci-
dent HCC (relative risk: 1.5), even after adjusting for alcohol
use. In contrast, total cholesterol was inversely related to
incident HCC, and blood pressure and triglycerides were not
significantly associated with incident HCC.41 Other studies
have confirmed that MetS components had an additive impact
on HCC risk.40,53

Obesity is typically expressed in terms of BMI (kg/m2).
Nonetheless, when assessing metabolic health, abdominal
waist circumference seems to be the “vital sign”.1,51,51 Several
population-based studies have agreed that measures of cen-
tral/abdominal obesity are better predictors of liver disease
than BMI,1,38,47,53,53–57 and BMI may not provide added prog-
nostic value.1,47,54,55 Furthermore, longitudinal studies have
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suggested that the waist-to-hip ratio (WHR) provides advan-
tages over other anthropometric measures.1,54 The WHR re-
flects the distribution of metabolically harmful visceral fat (waist
circumference), beneficial lower-body subcutaneous fat (hip
circumference), and gluteofemoral muscle mass (hip circum-
ference).58 Moreover, the hip circumference could predict liver
disease independently of waist circumference, and the hip
circumference substantially modified the association between
waist circumference and liver disease.59

Altered lipid metabolism is a hallmark of NAFLD, and low
serum HDL-c and high triglyceride levels are often present
alongside insulin resistance.60 However, at a population level,
no specific lipid signature consistently predicts liver disease.
This lack of consistency is probably due to the complex way
that circulating lipid levels are affected by dysmetabolism,
ageing, sex, ethnicity, menopause, alcohol, genetics, and liver
synthetic dysfunction.47,48,61–64

Arterial hypertension has been highlighted as an indepen-
dent risk factor for liver disease.37,38,44,45,52,55,65,66 However,
the findings are mixed, and the confounding effects of alcohol
and diet on blood pressure may have been incom-
pletely addressed.

In the presence of harmful alcohol consumption, advanced
liver disease and related outcomes can be strongly predicted
by the presence of MetS, particularly diabetes/insulin resis-
tance and obesity (especially WHR).44,57,64,67–69 Obesity is also
associated with elevated mortality risk in individuals with
alcoholic hepatitis.70 However, when liver dysfunction worsens,
obesity, dyslipidaemia, and arterial hypertension can be
masked by sarcopenia, dysfunctional synthesis, and vasodila-
tation, respectively.

Alcohol consumption and MetS prevalence
It is well known that excessive amounts of alcohol are toxic to
all body tissues and systems. However, in diverse epidemio-
logical studies, mild-to-moderate drinking has been associated
with reduced risks of MetS-related phenotypes, including
T2D,71 arterial hypertension,72 obesity,73,74 cardiovascular
disease,75,76 systemic inflammation,77 and all-cause mortal-
ity.78,79 More importantly, abundant evidence has suggested
that mild-to-moderate alcohol consumption is associated with
a lower MetS prevalence. Indeed, mild-to-moderate alcohol
consumption seems to have a favourable influence on the in-
termediate phenotypes of arterial hypertension, T2D, lipids,
central obesity, and cardiovascular disease.

Table 1 summarises the evidence collected from several
studies worldwide. These studies included 265,223 individuals
and focused on the prevalence of MetS and moderate alcohol
consumption. The descriptions of individual studies include
whether the analyses examined covariates. Unfortunately, re-
sults are not consistent among studies. A potential explanation
for the discrepancies is the heterogeneous nature of con-
founders, which were not uniformly or adequately assessed
across studies (Table 1). In addition, definitions of alcohol
consumption patterns varied extensively among studies.
Interestingly, most studies concluded that prospective studies
were needed and that the epidemiological evidence
was inconclusive.

A recent meta-analysis found that in people who drank more
than two drinks per day, a reduction in alcohol intake led to
ry 2023. vol. 78 j 191–206



Table 1. Alcohol consumption and the risk of metabolic syndrome: global prevalence trends.

Reference/Country Population sample (n) Alcohol consumption definition Covariate adjustments Main results Conclusion and key message

Freiberg et al. 2004146/
US.

8,125 individuals from the
Third National Health and
Nutrition Examination
Survey (NHANES III)
(1988–1994)

Alcohol consumption defined as
>−1 alcoholic drink per month.

Age, sex, race/ethnicity, educa-
tion, income, tobacco use, phys-
ical activity, and diet

Individuals that consumed 1-19 or >−20
drinks/month of alcohol had ORs for
MetS of 0.65 and 0.34, respectively,
compared to current non-drinkers.
This association was strongest
among whites and among beer and
wine drinkers.

Mild-to-moderate alcohol con-
sumption is associated with lower
prevalence of MetS, with a
favourable influence on lipids,
waist circumference, and fasting
insulin.

Fan et al. 2008147/US. 1,529 individuals from the
National Health and Nutri-
tion Examination Survey
1999–2002

Categories: <1 drink/week, 1–2
drinks/week, >−3 drinks/week

Demographics, family history of
CVD and diabetes, and lifestyle
factors

More than 2 drinks/day increased the
risk of developing 4 of the 5 MetS
components, including HBP, high tri-
glycerides, increased abdominal girth,
and elevated blood glucose.

Public health messages should
emphasise the potential car-
diometabolic risk associated with
drinking.

Fan et al. 2008148/
China

3,953 participants from the
general population of
Shanghai

Current alcohol consumption was
defined as more than 1 alcoholic
drink/month

Age and sex Prevalence of abdominal obesity, low
serum HDL-c, and diabetes mellitus
were lower in individuals that
consumed 2 or more alcoholic drinks/
month; a trend showed that alcohol
intake reduced the prevalence of
MetS.

Alcohol consumption is associated
with lower MetS prevalence, irre-
spective of intake quantity, and it
favourably influences HDL-c, waist
circumference, and diabetes
mellitus.

Hirakawa et al.
2015149/Japan

22,349 men from Japan Drinking categories: none, light
(<20 g ethanol/day), heavy (>−20
and <60 g ethanol/day) and very
heavy (>−60 g ethanol/day)

Not specified The prevalence of MetS was signifi-
cantly lower among light drinkers and
higher in very heavy drinkers,
compared to non-drinkers.

A significant association was
observed between very heavy
alcohol intake (>−60 g/day) and the
prevalence of MetS.

Wakabayashi et al.
2010150/Japan

30,585 individuals from
Yamagata Prefecture,
Japan

Drinking categories: None; light:
<22 g/day; heavy: >−22 and <44 g/
day; very heavy: >−44 g/day

Age, BMI, smoking history, history
of hypertension therapy, dyslipi-
daemia, or diabetes mellitus

Prevalence of MetS was lowest in light
drinkers (both men and women) and
higher in very heavy drinkers.

Light drinking is associated with a
lower risk of MetS in Japanese
men and women

Oh et al. 2018151/
Republic of Korea

39,055 individuals from the
Korea National Health and
Nutritional Examination
Survey (KNHANES)

Drinking categories:
None, <1 drink/month, 1 drink/
month, 2-4 drinks/month, 2-3
drinks/week, and >4 drinks/week

Age, physical activity, region (ur-
ban, rural), smoking status,
household income, occupation,
and educational attainment

Relative to abstaining males, males
that consumed alcohol more than 2-3
drinks/week (OR: 1.32) and those that
consumed more than 10 drinks/drink-
ing session (OR: 1.71) had greatly
increased odds of developing MetS.

Alcohol consumption, even in
quantities as small as 3-4 standard
drinks per session for females, and
7-9 standard drinks per session for
males, is associated with
increased risk of MetS.

Kim et al. 2017152

/Ansan and Ansung
City, Republic of Korea

10,037 individuals in a
community-based cohort

Drinking categories: None, very
light (0.1–5.0 g/day), light (5.1–
15.0 g/day), moderate (15.1–
30.0 g/day), or heavy (>30 g/day)

Age, sex, hypertension, BMI, and
diabetes

Very light alcohol consumption in both
men and women was associated with
reduced prevalence of MetS (men,
OR 0.65; women, OR 0.72)

Alcohol consumption (0.1–5.0 g/
day) contributed to reducing the
prevalence of MetS and compo-
nents, including triglyceride and
HDL-c.

Baik et al. 2018153/
Republic of Korea

3,833 individuals from the
Korean Genome Epidemi-
ology Study

Drinking categories: Very light: 0.1
to 5 g/day; light: 5.1 to 15 g/d;
moderate: 15.1 to 30 g/d; heavy:
>30 g/d

Age; sex; BMI; income; occupa-
tion; marital status; education;
smoking status; physical activity;
average daily intake of: calories,
fat, and dietary fibre; average fre-
quency of consuming red meat,
fish, or nuts; and family history of
diabetes or hypertension

Multivariate relative risks of MetS were
1.06 for very light drinkers; 1.13 for
light drinkers; 1.25 for moderate
drinkers, and 1.63 for heavy drinkers

Heavy consumption, particularly
liquor consumption, is associated
with an increased risk of MetS, due
to influences on its components.

Slagter et al. 2014154/
The Netherlands

64,046 participants from
the Life Lines Cohort study

Number of alcoholic drinks/week =
the number of drinking days/week
multiplied by the average number
of units consumed on a drinking
day

Age, sex, BMI class, alcohol con-
sumption subgroup, smoking
subgroup, and the number of
medications used

Consumption of >2 drinks/day
increased blood pressure; the stron-
gest associations were among heavy
smokers. The overall metabolic profile
of wine consumers was better than
that of non-consumers or consumers
of beer or spirits/mixed drinks.

Light alcohol consumption may
moderate the negative association
between smoking and MetS.

(continued on next page)
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Table 1. (continued)

Reference/Country Population sample (n) Alcohol consumption definition Covariate adjustments Main results Conclusion and key message

Baghdan et al.
2021155/African-origin
cohorts

2,506 participants in 5
African-origin cohorts from
Ghana, Jamaica, South
Africa, Seychelles, and the
US.

Drinking categories: None; light (1–
3 drinks/day for men and 1–2
drinks/day for women); heavy (>−4
drinks/day for men and >−3 or more
drinks/day for women)

Age, sex, smoking status, self-
reported physical activity, and site

Light or heavy drinking was not asso-
ciated with increased odds of high
cardiometabolic risk compared to non-
drinkers (ORs of 1.05 and 1.1,
respectively). Light drinking was
associated with lower odds of low
HDL-c (OR 0.69) and increased risk of
high triglycerides (OR 1.48).

Associations varied greatly across
each of the 5 sites, suggesting an
effect of environmental factors on
cardiometabolic risk. These re-
lationships also varied when strat-
ified by sex, which indicated that
sex may modify the association
between alcohol consumption and
cardiometabolic risk.

Vieira et al. 2016156/
Brazil

15,105 participants from
the Brazilian Longitudinal
Study of Adult Health

Categories: <−4 drinks/week, 4 to 7
drinks/week, 7 to 14 drinks/week,
>14 drinks/week

Age, sex, educational level, in-
come, socioeconomic status,
ethnicity, smoking, BMI, and
physical activity

Light alcohol consumption with meals
was inversely associated with MetS
(<−4 drinks/week: OR 0.85; 4 to 7
drinks/week: OR 0.75). Greater alcohol
consumption outside meals was
associated with MetS (7 to 14 drinks/
week: OR 1.32; >−14 drinks/week:
OR 1.60)

The alcohol association with MetS
differs markedly, depending on
whether intake coincided with
meals. Beverage preference (wine
or beer) appears to underlie at
least part of this difference.

Bermúdez et al.
2015157/Venezuela

2,230 individuals from
Maracaibo City, Venezuela

Habitual drinkers were defined as
individuals that consumed >−1 g/
day of alcohol

Age, ethnic groups, socioeco-
nomic status, educational status,
occupational status, family history
of hypertension and diabetes, to-
bacco use, 4 domains of physical
activity

Alcohol consumption was associated
with high triglycerides levels in both
sexes. Among men, consuming 28.41–
47.33 g/day significantly increased the
risks of MetS, hyperglycemia, HBP,
high triglyceride levels, and large waist
circumference.

The relationship between alcohol
consumption, MetS, and its com-
ponents is complex and not
directly proportional.

Xiao et al. 2015158/
China

20,502 participants from
rural China

Drinking categories: None, light
(<−5.7 g/day for women; <−16.4 g/
day for men), moderate (<−17.7 g/
day for women; <−45.2 g/day for
men), and severe (>17.7 g/day for
women; >45.2 g/day for men)

Age at interview, BMI, education,
marriage status, personal income,
occupation, exercise, smoking
status, tea consumption, and
intake of meat, fish, soy products,
fruit, and vegetables

Alcohol consumption was associated
with a lower prevalence of MetS in
women; any alcoholic beverage might
reduce the risk of low HDL-c in both
men and women.
Regardless of the type of alcoholic
beverage, alcohol consumers had
higher HDL-c levels than non-
consumers.

All alcoholic beverages increased
HDL-c levels.
Rice wine decreased both the tri-
glyceride level and blood glucose
in women only. Rice wine could be
a healthy alcoholic beverage for
MetS prevention in Chinese
women.

Choi et al. 201981/
Republic of Korea

41,368 males and
females from the Health
Examinees-GEM study

Drinking categories: None (0.0 g/
day), light (male: 0.1 to 19.9 g/day;
female: 0.1 to 9.9 g/day), moderate
(male: 20.0 to 39.9 g/day; female:
10.0 to 19.9 g/day), and heavy
(male: >−40.0 g/day; female:
>−20.0 g/day) at initial and each
follow-up health examination

Waist circumference, fasting
serum glucose, blood pressure,
triglycerides, and HDL-c levels

Increasing from persistent light intake
to heavy intake led to an elevated risk
of MetS. Conversely, reducing from
persistent heavy intake to light intake
reduced the risk of MetS

Heavy drinkers that reduce their
alcohol consumption could benefit
from a reduced risk of MetS

Total number of individuals: 265,223

CVD, cardiovascular disease; HBP, high blood pressure; HDL-c, HDL-cholesterol; LDL-c, LDL-cholesterol; MetS, metabolic syndrome; OR, odds ratio.
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Fig. 2. Combined effects of alcohol and metabolic syndrome on liver-related
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reductions in blood pressure levels.80 and a recent South
Korean study performed sequential assessments of alcohol
use. Their results suggested that a change in alcohol use over
time was correlated with the risk of MetS.81 However, ethnic
differences in alcohol metabolism or consumption patterns
may exist that influence the relationship between alcohol
consumption and features of MetS.

Interactions between harmful alcohol use and
MetS: Effects on liver-related outcomes
Alcohol use and metabolic factors are independently and jointly
associated with chronic liver disease.67 MetS increases the risk
of liver-related outcomes, regardless of alcohol intake (Fig. 2).82

The importance of joint effects was highlighted in a population-
based Finnish study on 10,993 individuals with NAFLD. They
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Fig. 3. Abdominal obesity increases alcohol-related liver toxicity by fourfold.
The figure shows the hazard ratios for the risk of incident severe liver disease
according to alcohol consumption in a man with difference WHRs. In the highest
tertile of WHR (red) in the population, for a man that consumes 1 alcoholic drink
daily (10 g ethanol) risk is similar to that of a man with a low WHR (green) who
consumes 4 alcoholic drinks daily (40 g ethanol). Results are based on Cox
regression analysis adjusted for age, diabetes, smoking, and body mass index.61

WHR, waist-to-hip ratio.
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found that 42% of future liver-related outcomes were actually
alcohol-related, and the alcohol-related events were relatively
more common among young people with NAFLD.83 Similarly, a
recent French study on 52,066 individuals hospitalised with
diabetes found that most liver-related complications were
attributable to alcohol use disorders, whereas <10% were
attributed to obesity or MetS.84

Synergism, or a supra-additive interaction effect, describes
an interaction between two exposures (e.g., harmful alcohol
use and MetS), where the effect on the outcome (e.g., liver
disease) is greater than the sum of the individual effects.
Several epidemiological studies (reviewed in1,85) have shown
supra-additive effects of harmful drinking and metabolic factors
on liver disease. Nonetheless, the study methodologies were
heterogeneous, and few studies investigated clin-
ical outcomes.1,85

A Finnish population-based study found that MetS and
weekly binge drinking (>−60 g ethanol/occasion) had substantial
supra-additive effects on liver-related outcomes.86 Similarly, a
US study involving individuals with ultrasound-verified liver
steatosis reported a supra-additive effect of MetS and exces-
sive drinking (>−3 daily drinks for men and >−1.5 for women) on
all-cause mortality.87 In both studies,86,87 hazardous drinking
was associated with the outcome only in the presence of MetS.
Other studies have reported profound supra-additive effects of
hazardous drinking and diabetes on HCC and other liver-
related outcomes. The proportion of the effect attributable to
such an interaction was estimated at 60-74%.85

Findings are more mixed regarding supra-additive in-
teractions between hazardous alcohol use and high
BMI.85,88–90 With competing-risk methodology and a cohort
from the general population, we recently found that liver-related
outcomes were affected by an interaction between harmful
alcohol consumption and a high WHR, but not between alcohol
and BMI.91 This finding supported the notion that WHR is a key
obesity measure in this context. One study estimated that, in
the general population, for abdominally obese men with a WHR
in the highest tertile, consuming 1 unit/day of alcohol was
associated with a liver-related outcome risk similar to that
associated with consuming 4 units/day in men with lower
WHRs (Fig. 3).61 However, it remains unclear to what extent this
epidemiologic synergism is behavioural. For example, it might
be explained by unmeasured confounding from other unhealthy
lifestyle habits that are common in individuals with concurrent
high-risk alcohol consumption and MetS/obesity.

The intricate relationship between alcohol
consumption and NAFLD: Does moderate
alcohol consumption affect the natural history
of NAFLD?
Study results disagree on whether social or mild-to-moderate
alcohol consumption has a detrimental or beneficial impact
on the natural history of NAFLD.92 Quantitative evidence from
cross-sectional studies (sample size = 43,172 individuals)
assessed in a meta-analysis suggested that moderate alcohol
consumption had a protective effect (�31%) on the risk of
developing NAFLD (Fig. 4).93 This beneficial effect appeared to
be independent of covariates, like BMI, but was influenced by
sex.93 More importantly, quantitative evidence suggested that
moderate alcohol consumption was associated with an
ry 2023. vol. 78 j 191–206 197
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Fig. 4. The intricate relationship between alcohol consumption and NAFLD and the synergistic effects of covariates. Summary of the evidence supporting the
favourable (left) and unfavourable (right) effects of modest alcohol consumption on NAFLD and disease severity. (Top left) Study limitations. (Lower right) Factors that
are generally not well measured in observational studies. For instance: the pattern of drinking is often not very well established, and this affects the cumulative
exposure to alcohol at baseline; moreover, the type of beverage is typically not correctly estimated; sex differences are generally not included in stratified analyses, and
studies typically inadequately address how the sex dimension influences the effects of moderate alcohol consumption on NAFLD and disease progression. These
inconsistencies are liable to introduce significant biases in the analyses. ADH1B, alcohol dehydrogenase 1B; ADH1B*1, ancestral allele G of the rs1229984 variant;
ADH1B*2, allele A of the rs1229984 variant; CKD, chronic kidney disease; CVD, cardiovascular disease; FU, follow-up; HCC, hepatocellular carcinoma; HR, hazard
ratio; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; OR, odds ratio.
average reduction in the risk of developing NASH of about
50%.93 A more recent meta-analysis also suggested that
moderate alcohol consumption was associated with reduced
odds of developing NASH and advanced fibrosis.94 However,
most of these studies employed observational cross-sectional
designs. Moreover, in each study, potential confounding was
not properly assessed, the cumulative effect of moderate
alcohol consumption was not adequately quantified, and cau-
sality could not be ascertained.

What makes the relationship between moderate alcohol
consumption and NAFLD so complex? Many aspects are not
measured very precisely in observational studies; thus, the
presumed beneficial effects of moderate alcohol consumption
are inconsistent across studies. In the absence of robust clin-
ical trials, the evidence has recently been reassessed and even
questioned. A Mendelian randomisation study used a genetic
variant (rs1229984 A>G) in the alcohol dehydrogenase (ADH1B)
gene as a proxy for long-term alcohol exposure. The results of
this study suggested that moderate alcohol consumption had
no beneficial effect in terms of the severity of NAFLD.95 In
contrast, a recent large population-based study showed that
moderate alcohol consumption reduced the severity of
NASH, in a dose-dependent manner, among carriers of both
ADH1B-rs1229984 alleles, although carriers of the ADH1B*2
allele (A allele) showed a more significant benefit.96 Neverthe-
less, this “protective” effect disappeared when the BMI was
>37 kg/m2.96 Additionally, a longitudinal NAFLD study that
198 Journal of Hepatology, Janua
involved �14 years of follow-up showed that moderate alcohol
consumption was associated with fibrosis progression.97

Other studies have shown that critical aspects of co-existing
comorbidities can significantly impact the burden of liver-
related disease and mortality (Fig. 4). Blomdahl et al. found
that, among patients with NAFLD and T2D, those with mod-
erate alcohol consumption had significantly higher advanced
fibrosis rates than those with low-level alcohol consumption.
Their results suggested that insulin resistance and alcohol had
a synergistic effect on NAFLD progression.98

Åberg et al. also found that insulin resistance was a signif-
icant risk factor for severe liver-related outcomes.47

A multicentre, retrospective cohort study from Japan that
included patients with ultrasound-verified NAFLD reported an
annual HCC incidence rate of 0.05% in individuals who
consumed <20 g/day of alcohol. Increasing levels of alcohol
consumption were associated with increases in annual HCC
incidence rates: 0.06% for 20-39 g/day (HR 1.54), 0.16% for
40-69 g/day (HR 3.49), and 0.22% for >−70 g/day (HR 10.58).99 A
recent meta-analysis assessed two cohort studies to determine
the effects of modest alcohol intake on the histological severity
of NAFLD, histological progression, and the risk of HCC
development. They found that moderate alcohol intake was
associated with a pooled HR of 3.77 for developing HCC
(Fig. 4).94 Kimura et al. also showed that moderate drinking
appeared to be a risk factor for HCC in patients with NAFLD,
particularly those with advanced fibrosis.100
ry 2023. vol. 78 j 191–206
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Fig. 5. Effects of MetS, alcohol consumption, and intestinal factors on fatty liver disease. Liver-specific pathways are affected by a variety of MetS-associated
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A prospective study in a general population cohort based in
the US showed that modest alcohol consumption was asso-
ciated with a significant reduction in all-cause mortality. How-
ever, drinking more than an average of 1.5 drinks/day (>−21 g/
day alcohol) was associated with an increase in mortality
among patients with NAFLD.101 Åberg et al. found that, among
individuals with NAFLD, alcohol consumption dose-
dependently increased the risk of incident advanced liver dis-
ease and malignancies.102 Moreover, consuming 10-19 g/day
of alcohol, in general, or 0-9 g/day of non-wine beverages,
doubled the risk of advanced liver disease, compared to life-
time abstainers. In contrast, low-to-moderate alcohol use was
associated with reduced mortality and cardiovascular disease
risk, but only among individuals that had never smoked to-
bacco.102 Finally, Jarvis et al. reviewed the current literature
and performed a narrative synthesis of the data. They
concluded that any level of alcohol consumption was associ-
ated with worse liver-related outcomes in NAFLD, even when
drinking within the recommended limits.103

Potential mechanisms of interaction

The frequent co-occurrence of high-risk alcohol intake and
MetS in the population indicates that the multiple pathogenetic
mechanisms of ALD and NAFLD often act in parallel to drive
disease. ALD and NAFLD have similar histologic features, many
Journal of Hepatology, Janua
common pathogenetic mechanisms,104,105 and a shared genetic
background (e.g., PNPLA3, TM6SF2, MBOAT7, HSD17B13,
APOE, GPAM).104,106 The precise mechanisms underlying the
synergism between alcohol and metabolic dysfunction remain
elusive. However, they might involve combined effects on
mitochondrial dysfunction, oxidative stress,107–109 CYP2E1 ac-
tivity,110 innate immune response activation,111 hepatic stellate
cell activation,112 gut microbiota and increased gut perme-
ability,113,114 bile acid metabolism (e.g., farnesoid X receptor and
fibroblast growth factor 21),115,116 lipid metabolism,117 and
adipocyte dysfunction with subsequent increases in lipolysis
and proinflammatory factor release.118

Mouse studies have demonstrated that moderate obesity
and alcohol use can synergistically induce steatohepatitis and
liver fibrosis.111 Furthermore, obesity-induced steatosis seems
to sensitise the liver to alcohol toxicity119 In addition, a high-fat
diet sensitises adipose tissue to alcohol-induced lipolysis.118

Similarly, a recent human experimental study showed that
alcohol intoxication induced rapid changes in circulating lipids,
and that the alcohol-induced effects on lipid metabolism and
lipotoxicity were amplified in the presence of NAFLD.120

Moreover, alcohol is an energy-dense molecule and can
therefore induce metabolic dysfunction and contribute to
obesity through caloric excess.117 One gram of ethanol is
nearly as energy dense as 1 g of dietary fat.
ry 2023. vol. 78 j 191–206 199
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Endogenous ethanol production by gut microbiota has been
proposed to contribute to liver disease progression in
NAFLD.121,121–123 This hypothesis was recently substantiated
by a large population-based study.124 Moreover, in a Finnish
population-based cohort (N = 7,115), a specific gut microbial
signature could predict both overall incident liver disease and
alcohol-related liver disease, and the same signature could
distinguish patients with NAFLD from healthy controls in an
independent US cohort.125 Additionally, several other pathways
and molecules, including micro-RNAs, DNA methylation, and
extracellular vesicles, have been postulated to play roles in
both ALD and NAFLD.126,127 Fig. 5 illustrates some of the ef-
fects of MetS, alcohol consumption, and intestinal factors on
fatty liver disease, highlighting how liver-specific pathways are
affected by a variety of MetS-associated factors.
Systems biology analyses elucidate the interrelationship
between alcohol and MetS

The number of genes and proteins associated with the effects
of both alcohol consumption and the individual components of
MetS is overwhelming. Moreover, the interaction between
alcohol consumption and systemic metabolic deregulation is
200 Journal of Hepatology, Janua
characterised by multicausality and multidimensionality (i.e., a
single factor is influenced by factors in several dimensions,
including host factors, the exposome, and the microbiota). This
complexity makes it difficult to study the interrelationship be-
tween alcohol consumption and systemic metabolic dysregu-
lation. In addition, the diseases clustered in MetS show strong
co-occurrence and associations with other conditions,
including cancer.

We employed a systems biology strategy to integrate
existing evidence and to visualise relevant gene/protein net-
works. This approach allows, at least in part, the integration of
systems-level and multidimensional information. Likewise,
systems biology differs from standard analyses as it makes use
of diverse strategies, such as gene enrichment analysis,
protein-protein interaction networks, and gene prioritisation,
based on multi-level data extracted by computational data
mining.128 Moreover, it takes into account the complexity of
biological system dynamics. We used gene ontology (GO)
terms, derived from published records and restricted to human
studies, to construct Reactome pathways and perform
enrichment analyses. Among the list of disease-associated
genes (n = 569, 716, 725, 465, and 872, for diabetes, dyslipi-
daemia, hypertension, obesity, and fatty liver, respectively), 380
ry 2023. vol. 78 j 191–206
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genes that were highly associated with fatty liver were also
associated with the other four MetS components (Fig. 6A).
Significantly enriched genes were involved in the following
biological processes, based on GO terms: metabolism, energy
pathways, cell communication, signal transduction, immune
response, and anti-apoptosis.129 Although related to ethanol
metabolism, xenobiotic metabolism was not significantly
enriched (Fig. 6B). The only significantly enriched transcription
factor was HNF1A (hepatic nuclear factor 1 homeobox A),
which is a member of a hepatic transcription factor family highly
associated with diabetes.129

To obtain and visualise networks that corresponded to each
cluster (i.e., disease-associated genes), we analysed all the
clusters simultaneously with the ClueGO Cytoscape application
V2.5.8.130 Regardless of the underlying disease, the associated
genes belonged to common Reactome pathways (Fig. 6C).
Interestingly, although some genes (a minority) were associated
with a particular clinical entity, the pathways enriched in these
genes were common in all MetS components. Fig. 6C shows that
all the disease-related genes contributed equivalently to each
pathway, except for pathways that involved Toll-like receptor
(TLR) cascades and PI3K/AKT signalling (Fig. 6A). Those path-
ways were slightly more enriched in fatty liver-associated genes
than inMetS-related genes. TLRs play a significant role in hepatic
inflammation and injury. They also play roles in the cross-talk
between NAFLD severity and insulin resistance, obesity, and
systemic inflammation.131 Moreover, alcohol-related impair-
ments in gut permeability132 and changes in the gutmicrobiota133

can lead to the hepatic localisation of gut-derived endotoxins,
whose effects on liver cells are mediated by TLRs. A recent hu-
man study explored the intrahepatic localisation of lipopolysac-
charides in patients with NASH. They showed that endotoxins
derived from gut bacteria were frequently observed in the portal
tracts of patients with severe fibrosis.134

Although we cannot disregard the potential biases
encountered in text mining, the evidence indicates that alcohol
and MetS may have common systemic and multiorgan effects
that include promoting the development of fatty liver. Indeed,
both alcohol and MetS appear to potentiate an existing dys-
regulation of vital homeostatic pathways.

Clinical implications for chronic liver disease

Accumulating evidence shows that alcohol and metabolic
factors have independent, combined, and modifying effects on
the onset and progression of chronic liver disease. This is
analogous to cardiovascular medicine, where it is well estab-
lished that multiple factors drive cardiovascular risk, and the
risk can be quantified with risk-factor prediction scores. Simi-
larly, it is now increasingly appreciated that liver disease has a
multifactorial background, where the contribution of several
common risk factors in combination may produce a higher
overall risk than any significantly elevated single
factor.1,37,38,41,43,44,47,48,52,57,64,67,68,82,84,85,87,103,135 Therefore,
in the context of chronic liver disease, risk prediction models
that incorporate multiple factors could be useful for risk strat-
ification, diagnostics, and therapeutic purposes.

To that end, the Chronic Liver Disease (CLivD) risk score
was recently developed and validated (Fig. 7).135 The CLivD
score is based on age, sex, alcohol use, diabetes, WHR,
smoking, and the level of serum gamma-glutamyltransferase –

all are readily accessible and inexpensive to analyse. The
Journal of Hepatology, Janua
CLivD score predicts the 15-year risk of future severe liver
disease in the general population. Its performance (C-index
0.77-0.78) is comparable to that of many cardiovascular risk
scores (C-index 0.71-0.78).135,136 Moreover, the competing
risk of death was accounted for in the construction of the
CLivD score. This score can enable the early identification of
individuals in the community that are at high risk, before the
development of advanced liver fibrosis, as part of other
healthcare contacts. The CLivD score is conceptually different
from non-invasive fibrosis tests. Ongoing studies will evaluate
the ability of the CLivD score to provide holistic referral
pathways, individualised follow-up, and evaluations of the
response to liver-oriented interventions. Future studies will
seek to incorporate genetic data, gut microbiota, and novel
biomarkers into risk predictions.125,137
ry 2023. vol. 78 j 191–206 201



It is crucial to assess drinking habits, including binge
drinking, with standardised approaches (e.g., AUDIT-C [alcohol
use disorders identification test] or CAGE) for all patients with
liver disease.138 Moreover, continued alcohol consumption
might impair the response to drug therapies for NAFLD. Hence,
alcohol use biomarkers, such as phosphatidylethanol, could be
useful to detect unreported high-risk drinking.98

Currently, the potential health benefits of low alcohol use
remain controversial and unclear at the individual level; therefore,
counselling should not advocate alcohol use for beneficial pur-
poses.19 In individuals with steatosis, alcohol use of around 2-3
drinks/day seems to double the risk of liver-related out-
comes.102,139,140 However, in those with simple steatosis (i.e., in
the absence of steatohepatitis or advanced fibrosis), the abso-
lute risk of liver-related outcomes is generally low, and increases
in risk due to low alcohol use are thus small. In contrast, in those
with steatohepatitis or advanced fibrosis, any alcohol use should
be discouraged, due to the high absolute risks.103,138 This
distinction requires more active evaluations of liver fibrosis stage
in the community. In individuals with cirrhosis, regardless of the
main aetiology, complete alcohol abstinence is important.

Although limited, the available evidence supports the active
management of metabolic factors when caring for patients with
liver disease, including those who actively consume alcohol.
Adequate metabolic control measures, with metformin, statins,
aspirin, and angiotensin-converting enzyme inhibitors, have been
associatedwithbeneficialoutcomes inchronic liverdisease.141–145
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Conclusions and prospects for future research
The combined effects of alcohol use and metabolic factors on
clinical liver-related outcomes should be assessed further in
longitudinal studies with repeated exposure assessments.
Alcohol intake should be quantified with accurate biomarkers.
The combination of harmful alcohol use and metabolic factors
is linked to generally unhealthy lifestyles; therefore, multivari-
able analyses should seek to clarify potential unmeasured or
residual confounding that might contribute to the synergism
between harmful alcohol use and metabolic factors; moreover,
mechanistic studies are needed to clarify biologic synergism.
Studies should assess factors that modify individual suscep-
tibility to alcohol-induced harm or potential alcohol-related
benefits. Studies are needed to clarify the most effective in-
terventions for reducing harm from alcohol intake and meta-
bolic factors, both at the population and individual level.
Feasible ways of implementing these measures should be
explored. The efficacy of combined interventions to reduce
drinking and improve lifestyle should be studied prospectively,
particularly among patients at risk of liver disease and
advanced fibrosis. Studies are needed to clarify the optimal
treatment for metabolic risk factors among individuals that
actively consume alcohol. It remains to be determined whether
active alcohol use modifies the proposed benefits of treat-
ments such as metformin, statins, and aspirin, on liver-
related outcomes.
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