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Polynomial complex Ginzburg-Landau equations in almost
periodic spaces

Agust́ın Besteiro

Abstract. We consider complex Ginzburg-Landau equations with a polynomial non-
linearity in the real line. We use splitting-methods to prove well-posedness for a
subset of almost periodic spaces. Specifically, we prove that if the initial condition
has multiples of an irrational phase, then the solution of the equation maintains those
same phases.

1 Introduction

We consider the 1-dimensional autonomous system{
∂tu = (α + iβ)∂xxu+ γu+ (a+ ib)B(u),

u(0) = u0,
(1)

where u(x, t) is a complex valued function with x ∈ R, t > 0, α > 0, β > 0, γ ≥ 0,
a > 0, b > 0 and B a continuous map. The linear term represented by (α + iβ)∂xx char-
acterizes the Complex Ginzburg-Landau equations. For β = 0 (1) reduces to a nonlinear
heat equation and for α = 0 to a nonlinear Schrödinger equation. A large amount of
work has been done to prove well-posedness of (1) with different nonlinearities (see, for
instance, [1], [16], [17]). In our case, we study well-posedness of problem (1) with polyno-
mial nonlinearities. These nonlinearities are considered in Fisher-Kolmogorov equations
and Fitzhugh-Nagumo equations [2], [14], [19]. Almost periodic spaces were introduced by
Bohr [9] and further developed by Stepanoff [20], Weyl [21] and Besicovitch [4], [3]. These
spaces are well-studied for the Complex Ginzburg-Landau equations with different nonlin-
earities [18], [15]. We consider u0 with specific irrational phases, and we prove that the
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time evolution by (1) maintains the same phases. We use splitting-methods for evolution
equations developed for numerical purposes [12], [10]. These methods were used to prove
well-posedness of Complex Ginzburg-Landau equations and Reaction-diffusion equations
in other spaces [7], [8], [6], [5].

The paper is organized as follows: In Section 2 we set notations and preliminary re-
sults. In Section 3 we analyze the nonlinear problem. Finally, in Section 4 using splitting
methods, we combine results from Sections 2 and 3 to obtain that the solution of (1) is in
a subset of an almost periodic space.

2 Notations and Preliminaries.

We introduce some definitions and preliminary results.

Definition 2.1. We define Cu(R) as the set of uniformly continuous and bounded functions
on R equipped with the norm,

‖u‖∞ = sup
x∈R
|u(x)|.

Definition 2.2. We define the set of almost periodic functions [9] as,

P (R) = {u ∈ Cu(R) : u =
∞∑
j=1

aje
ixλj : λj ∈ R}

equipped with the uniform continuous norm.

Definition 2.3. We define the following subset of almost periodic functions,

Aλ(R) = {u ∈ Cu(R) : u =
∞∑
j=1

aje
ixjλ;

∞∑
j=1

|aj| <∞ : λ ∈ R} (2)

equipped with the norm:

‖u‖Aλ =
∞∑
j=1

|aj|. (3)

Theorem 2.4. Aλ(R) is a Banach space.

Proof. Let {un}n∈N a Cauchy sequence such that un ∈ Aλ(R) ⊂ P (R). Then {un}n∈N is a
bounded sequence, that is, ‖un‖Aλ =

∑∞
j=1 |anj | ≤ K for all n ∈ N. Additionally, {un}n∈N

is a convergent sequence in P (R), i.e. un → u with u ∈ P (R) and ‖u‖Aλ =
∑∞

j=1 |aj|.
Therefore, we have that

∑N
j=1 |aj| = limn→∞

∑N
j=1 |anj | ≤ K, which implies that

lim
N→∞

N∑
j=1

|aj| =
∞∑
j=1

|aj| ≤ K.
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On the other hand, we can define an inner product for u, v ∈ P (R):

〈u(x), v(x)〉 = lim
T→∞

1

T

∫ T

0

u(x)v(x)dx.

In particular, we have a normalized orthogonal system in the following sense (see [9]):

〈eiλ1x, e−iλ2x〉 = lim
T→∞

1

T

∫ T

0

eiλ1xe−iλ2x =

{
0 , for λ1 6= λ2

1 , for λ1 = λ2.

For u ∈ P (R), u =
∑∞

j=1 aje
iλjx, we have,

〈u(x), e−iλjx〉 = aj.

If un ∈ Aλ(R) is a Cauchy sequence, then

anj = 〈un(x), e−ixjλ〉 n→∞−−−→ 〈u(x), e−ixjλ〉 = aj.

As (2) and (3) are met then u ∈ Aλ(R).

Remark 2.5. As `1(N) is a Banach Algebra then, if u ∈ Aλ(R) and v ∈ Aλ(R) we have
that,

‖uv‖Aλ ≤ ‖u‖Aλ ‖v‖Aλ .

The following definitions and proofs can be extended to x ∈ Rd (See [13]).

Definition 2.6. We denote U(t) as the one parameter semigroup that solves the underlying
linear equation

∂tu = (α + iβ)∂xxu+ γu. (4)

The operator can be represented by the convolution in x

U(t) = (4πt(α + iβ))−1/2e(−x
2/[4t(α+iβ)])+γt ∗ u0 = Gt(x) ∗ u0

and the kernel Gt satisfies:

|Gt(x)| = (4πt(α2 + β2)(4πt(α2 + β2)1/2)
−1/2

e(−x
2/[4t(α2+β2)])+γt.

Clearly, Gt(x) ∈ L1(R).

Proposition 2.7. For each t ≥ 0, define U(t)u0 = Gt ∗ u0. The one-parameter family of
operators {U(t)}t≥0 ia a strongly continuous semigroup in Cu(R).
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Proof. The semigroup property, U(t)U(t′)u = U(t + t′)u is proven similarly to the heat
kernel. We show that, U(t)u converges to u for all u ∈ Cu(R) when t → 0. Indeed, we
have,

|(U(t)u)(x)− u(x)| ≤
∫
R
Gt(y)|u(x− y)− u(x)|dy

=

∫
|y|<δ

Gt(y)|u(x− y)− u(x)|dy +

∫
|y|≥δ

Gt(y)|u(x− y)− u(x)|dy.

The first integral of the right side of the equality can be estimated as follows:∫
|y|<δ

Gt(y)|u(x− y)− u(x)|dy ≤
∫
R
Gt(y) max

|y|<δ
|u(x− y)− u(x)|dy

= max
|y|<δ
|u(x− y)− u(x)|.

This can be small enough because, |y| < δ and u is uniformly continuous. For the second
term we proceed in the following way,∫

|y|≥δ
Gt(y)|u(x− y)− u(x)|dy ≤ 2‖u‖∞

∫
|y|≥δ

Gt(y)dy.

Since (−x2/[4t(α2+β2)])→∞ when t→ 0+ and Gt ∈ L1(R), the right side of the previous
equality tends to 0. The next property proves that U is well defined, that is U(t)u ∈ Cu(R).

|(U(t)u)(x1)− (U(t)u)(x2)| ≤
∫
R
Gt(y)|u(x1 − y)− u(x2 − y)|dy

≤ ε

∫
R
Gt(y)dy = ε,

In the last inequality we used that u is uniformly continuous.

Lemma 2.8. If u0 ∈ Aλ(R) then U(t)u0 ∈ Aλ(R) for t > 0

Proof. As u0 ∈ A(R) then we have

U(t)u0 = Gt ∗ u0 =

∫
R

(4πt(α + iβ))−1/2e(−y
2(α−iβ)/[4t(α2+β2)])+γtu0(x− y)dy

where

u0(x− y) =
∞∑
j=1

aje
ijλ(x−y) (5)
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then we have,

U(t)u0 =

∫
R

(4πt(α + iβ))−1/2e(−y
2(α−iβ)/[4t(α2+β2)])+γt

∞∑
j=1

aje
ijλ(x−y)dy

=

∫
R

(4πt(α + iβ))−1/2
∞∑
j=1

aje
(−y2(α−iβ)/[4t(α2+β2)])+γt+ijλ(x−y)dy

= (4πt(α + iβ))−1/2
∫
R

∞∑
j=1

ajB(y)eijλ(x−y)dy,

with

B(y) = e(−y
2(α−iβ)/[4t(α2+β2)])+γt.

Using dominated convergence theorem and that∣∣∣∣∣
n∑
j=1

ajB(y)eijλ(x−y)

∣∣∣∣∣ ≤
n∑
j=1

|ajB(y)| = |B(y)|
n∑
j=1

|aj| ≤ K|B(y)|

we have,

U(t)u0 = (4πt(α + iβ))−1/2
∞∑
j=1

∫
R
ajB(y)eijλ(x−y)dy.

Finally, we know that ∫
R
e−ax

2−bx+cdx =
eb

2/(4a)+c
√
π√

a

with Re(a) > 0. In our case we have

a = (α− iβ)/[4t(α2 + β2)]) = 1/(4t(α + iβ)), b = ijλ and c = ixjλ+ γt.

Then we have,

U(t)u0 =(4πt(α + iβ))−1/2
∞∑
j=1

aj
e−t(jλ)

2(α+iβ)+ixjλ+γt
√
π√

(1/(4t(α + iβ))

=
∞∑
j=1

aje
−t(jλ)2(α+iβ)+ixjλ+γt

=
∞∑
j=1

Aje
ixjλ,
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where Aj = aje
−t(jλ)2(α+iβ)+γt, so we have (2). On the other hand we have,

∞∑
j=1

|Aj| =
∞∑
j=1

|aje−t(jλ)
2(α+iβ)+γt| =

∞∑
j=1

|aje−t(jλ)
2α+γt| <∞

Then we have (3) and U(t)u0 ∈ Aλ(R)

Next, we consider integral solutions of the problem (1).
We say that u ∈ C([0, T ], Cu(R)) is a mild solution of (1) if and only if u verifies

u(t) = U(t)u0 +

∫ t

0

U(t− t′)B(u(t′))dt′. (6)

If F is a locally Lipschitz map, for any z0 ∈ Cu(R) there exists a unique solution of the
equation {

∂tz = B(z),

z(0) = z0,
(7)

defined in the interval [0, T ∗(z0)). Moreover, there exists a function T̄ : [0,∞) → [0,∞),
which is non-increasing and such that T ∗(z0) ≥ T̄ (|z0|). The solution of (7) is solution of
the integral equation

z(t) = z0 +

∫ t

0

B(z(t′))dt′. (8)

Also, one of the following alternatives holds:

- T ∗(z0) =∞;

- T ∗(z0) <∞ and |z(t)| → ∞ when t ↑ T ∗(z0).

We will denote by N(t, .) : Cu(R)→ Cu(R) the flow generated by the ordinary equation,
i.e.: for any x ∈ R, N(t, u0)(x) is the solution of the problem (7) with initial data z0 = u0(x).
Therefore, if u(t) = N(t, u0)

u(x, t) = u0(x) +

∫ t

0

B(u(x, t′))dt′.

We recall well-known local existence results for evolution equations.

Theorem 2.9. There exists a function T ∗ : Cu(R) → R+ such that for u0 ∈ Cu(R), exists
a unique u ∈ C([0, T ∗(u0)), Cu(R)) mild solution of (1) with u(0) = u0. Moreover, one of
the following alternatives holds:

• T ∗(u0) =∞;
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• T ∗(u0) <∞ and limt↑T ∗(u0) |u(t)| =∞.

Proof. See Theorem 4.3.4 in [11].

Proposition 2.10. Under conditions of the theorem above, we have the following state-
ments:

1. T ∗ : Cu(R)→ R+ is lower semi-continuous;

2. If u0,n → u0 in Cu(R) and 0 < T < T ∗(u0), then un → u in the Banach space
C([0, T ], Cu(R)).

Proof. See Proposition 4.3.7 in [11].

3 Nonlinear equation

In order to apply the Lie-Trotter method, we prove that if the initial state u0 ∈ Aλ(R)
the solution of the nonlinear ordinary equation z(t) ∈ Aλ(R). We consider the equation
with a cubic nonlinearity and then we extend the result to a nth-degree nonlinearity.

We study first, the solution for the nonlinear equation (7) with a cubic nonlinearity,
that is {

∂tz = −(a+ ib)z3,

z(0) = z0.
(9)

Lemma 3.1. If u0(x) = z0 ∈ Aλ(R) then the solution of the equation (9), z(t) ∈ Aλ(R)
for t ∈ (0, T ∗(z0)).

Proof. We prove that F : Aλ(R)→ Aλ(R) and that F is a locally Lipschitz map in Aλ(R).
Let u ∈ Aλ(R) and k = −(a+ ib) then we have,

F (u) = ku3 = k
∞∑
j=1

∞∑
k=1

∞∑
l=1

ajakale
ix(j+k+l)λ

= k
∞∑
j=1

∞∑
m=1

∞∑
l=1

ajam−j−lale
ixmλ =

∞∑
m=1

Ame
ixmλ

with m = j+ k+ l and Am = (am)3. Also we have that
∑∞

m=1 |Am| =
∑∞

m=1 |ajakal| <∞.
On the other hand, if u, v ∈ Aλ(R) we can see that,

‖F (u)− F (v)‖Aλ =
∥∥u3 − v3∥∥

Aλ

≤ 1

2

∥∥(u2 − v2)
∥∥
Aλ
‖(u+ v)‖Aλ +

∥∥(u2 + v2)
∥∥
Aλ
‖(u− v)‖Aλ .

We use that, ‖u+ v‖Aλ(R) ≤ ‖u‖Aλ(R) + ‖v‖Aλ(R) =
∑∞

j=1 |aj| +
∑∞

k=1 |ak| < ∞, a similar

procedure proves that ‖u2 + v2‖Aλ <∞ and ‖u2 − v2‖Aλ <∞. Then,

‖F (u)− F (v)‖Aλ ≤
1

2
C ‖u− v‖Aλ .
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We generalize the ODE with an n-th degree nonlinearity for n > 2.

{
∂tz = −(a+ ib)zn,

z(0) = z0.
(10)

Lemma 3.2. If u0(x) = z0 ∈ Aλ(R) then the solution of the equation (10), z(t) ∈ Aλ(R)
for t ∈ (0, T ∗(z0)).

Proof. The proof is similar to the previous proof, using that,

un =
∞∑
j1=1

∞∑
j2=1

· · ·
∞∑
jn=1

aj1aj2 · · · ajneixλ
∑∞
i=1 ji

and
an − bn = (a− b)

(
an−1 + an−2b+ an−3b2 + · · ·+ a2bn−3 + abn−2 + bn−1

)
.

4 Splitting method

This section is based on the splitting method developed in [12]. We apply the Lie-
Trotter method to the linear and nonlinear problem. The temporal variable must be
broken down into regular intervals and the evolution of the linear and nonlinear problems
are considered alternately. This is described by two sequences {Vh,k} for the linear equation
and {Wh,k} for the nonlinear equation. Using Theorem 3.9 from [12], this approximate
solution converges to the solution of problem (1), when the time intervals h = t/n→ 0.

Let X be a Banach space and we define α : R→ R a periodic function of period 1 as:

α(t) =

{
2 , if k ≤ t < k + 1/2,
0 , if k − 1/2 ≤ t < k,

for k ∈ Z.
Given h > 0, we define the function αh : R→ R as αh(t) = α(t/h). Clearly 0 ≤ αh ≤ 2,

αh is h-periodic and its mean value is 1.
We consider τh : R2 → R given by

τh(t, t
′) =

∫ t

t′
αh(t

′′)dt′′.

We define Ω = {(t, t′) ∈ R2 : 0 ≤ t′ ≤ t} and Uh : Ω → B(X) given by Uh(t, t
′) =

U(τh(t, t
′)).

We consider the system,{
∂tuh + αh(t)∂xxuh(x, t) = (2− αh(t))F (uh(x, t)),

uh(x, 0) = uh0(x),
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where u(x, t) ∈ X, t > 0 and F : X → X is a continuous function.
Similarly, we define the integral equation:

uh(t) = Uh(t, 0)uh0 +

∫ t

0

(2− αh(t′))Uh(t, t′)F (uh(t
′))dt′. (11)

The following two theorems are a consequence of sections 2 and 3 of [12].

Theorem 4.1. Let uh the solution of (11), if Wh,k = uh(kh) y Vh,k = uh(kh− h/2), then

Vh,k+1 = U(h)Uh,k, (12a)

Wh,k+1 = N(kh+ h, kh+ h/2, Vh,k+1), (12b)

where N is the flux associated to 2F , that is:{
ẇ = 2F (w(t)),

w(0) = w0.

Proof. For t1 ∈ (0, t) it verifies

uh(t) = Uh(t, t1)uh0(t1) +

∫ t

t1

(2− αh(t′))Uh(t, t′)F (uh(t
′))dt′

using that t1 = kh y t = kh+ h/2, we have

Vh,k+1 = Uh(kh+ h/2, kh)Wh,k +

∫ kh+h/2

kh

(2− αh(t′))Uh(kh+ h/2, t′)F (uh(t
′))dt′,

given that αh(t) = 2 for t ∈ [kh, kh+h/2), we have τh(kh+h/2, kh) = h and therefore (12a).
Similarly, αh(t) = 0 for t ∈ [kh+ h/2, kh+ h), then τh(t, kh+ h/2) = 0 and therefore

uh(t) = Vh,k+1 + 2

∫ t

kh+h/2

F (uh(t
′))dt′,

evaluating in t = kh+ h, we obtain (12b).

Theorem 4.2. Let u ∈ C([0, T ∗), X) the solution of the integral problem (6)

u(t) = U(t)u0 +

∫ t

0

U(t− t′)F (u(t′))dt′,

T ∈ (0, T ∗) and ε > 0. There exists h∗ > 0 such that if 0 < h < h∗, then uh the solution
of (11) with uh(x, 0) = u0(x), is defined in the interval [0, T ] and verifies

‖u(t)− uh(t)‖X ≤ ε for t ∈ [0, T ].
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Proof. See Theorem 3.9 from [12].

We now apply Lemma 2.8 from Section 2 related to linear equation and Lemmas 3.1
and 3.2 from Section 3 related to the nonlinear equations. In order to obtain well-posedness
results for the solution u(t) of equation (1) in Aλ(R), we use Theorem 4.2 to join the linear
and nonlinear results. The following theorem is proved for the cubic case but the other
cases are similar.

Theorem 4.3. Let u0 ∈ Aλ(R), then the solution of (1) u(t) ∈ Aλ(R) for t ∈ (0, T ∗(u0)).

Proof. For t ∈ [0, T ∗(u0)), let n ∈ N, h = t/n and {Wh,k}0≤k≤n, {Vh,k}1≤k≤n be the se-
quences given by Wh,0 = u0,

Vh,k+1 = U(h)Wh,k, (13a)

Wh,k+1 = N(h, Vh,k+1), k = 0, . . . , n− 1. (13b)

We claim that Wh,k+1 ∈ Aλ(R) for k = 0, . . . , n. Clearly, the assertion is true for k = 0.
If Wh,k ∈ Aλ(R), from Lemma 2.8, we have U(h)Wh,k ∈ Aλ(R). Using Lemma 3.1, we can
see that

Wh,k+1 = N(h, Vh,k) ∈ Aλ(R).

By theorem 4.2 we have that Wh,n → u(t) when n→∞.
As Aλ(R) is a Banach space, we obtain the result.
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hebdomadaires des séances de l’Académie des sciences 181 (20) (1925) 90–92.

[21] Weyl H.: Integralgleichungen und fastperiodische Funktionen. Mathematische Annalen 97 (1)
(1927) 338–356.

Received: November 15, 2020
Accepted for publication: April 30, 2021
Communicated by: Serena Dipierro


