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1. Introduction

Let Ω be a bounded domain of Rn. We will consider non-homogeneous p(x)-Laplace equations of
the form

− ∆p(x)u = f (x, u,Du) in Ω, (1.1)

where, given a function p : Ω→ (1,∞), −∆p(x) is the p(x)-Laplace operator defined as

− ∆p(x)u := −div
(
|Du|p(x)−2Du

)
. (1.2)
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For a smooth function ϕ with Dϕ , 0, we can expand the expression above and write

−∆p(x)ϕ(x) = −|Dϕ|p(x)−2
(
−∆ϕ +

(p(x) − 2)
|Dϕ|2

∆∞ϕ

)
− |Dϕ|p(x)−2Dp(x) · Dϕ log |Dϕ|,

where
∆∞ϕ := D2ϕDϕ · Dϕ

is the ∞-Laplacian. Consequently, two fundamental differences exist between −∆p(x) and the
p-Laplacian, with p constant: the fact that this operator is not invariant under translations in x and the
presence of log-terms.

Recently, the study of partial differential equations with variable exponents has been motivated by
the description of models in electrorheological and thermorheological fluids, image processing [3], or
robotics. Moreover, classical references for existence and regularity of solution for p(x)-Laplacian
Dirichlet problems are [7, 8, 11], among others.

In this work we are interested in analyzing the equivalence between weak and viscosity solutions
(see Section 2.2 for the precise definitions of these notions) of the problem (1.1) under certain
conditions on f . The relation among different types of solutions for different operators has been
studied by several authors in the last decades. For linear problems, the equivalence between
distributional and viscosity solutions was obtained by Ishii in [13]. Later on, for the homogeneous
p-Laplace operator (i.e., (1.1) with f ≡ 0), the equivalence between weak and viscosity solutions was
first obtained in [16], and later on in [14] with a different proof. For a source term like the one
in (1.1), depending on all the lower-order terms, this equivalence for the p-Laplace equation was
given in [19], following some ideas from [14]. Similar studies have been recently made for non-local
operators, see [1, 18].

In the case of the variable p(x)-Laplacian, the equivalence for the homogeneous equation was
proved in [16]. Related results appear in [20] between solutions of homogeneous equations involving
the strong and the normalized p(x)-Laplacian. Up to our knowledge, no results are available in the
case f . 0. Indeed, combining techniques from [16, 20] to deal with the operator, and from [19] to
deal with the function f , the goal of this work is to prove the equivalence of weak and viscosity
solutions for the general problem (1.1).

Indeed, let us assume from now on that the exponent p satisfies

p ∈ C1(Ω), 1 < p− ≤ p+ < ∞, where p− := min
x∈Ω

p(x), p+ := max
x∈Ω

p(x). (1.3)

Hence, our first result is the following:

Theorem 1.1. Let p satisfy (1.3). Assume that f = f (x, t, η) is uniformly continuous in Ω × R × Rn,
non increasing in t, Lipschitz continuous in η, and satisfies the growth condition

| f (x, t, η)| ≤ γ(|t|)|η|p(x)−1 + φ(x), (1.4)

where γ ≥ 0 is continuous and φ ∈ L∞loc(Ω). Thus, if u is a locally Lipschitz viscosity supersolution
of (1.1) then it is a weak supersolution of the problem.
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It is worth to point out that the regularity assumption on u derives from a technical restriction on p
(see Remark 3.2).

The proof of Theorem 1.1 relies on the approximation by the so called inf-convolutions (see
Section 2.3). Roughly speaking, we will regularize u by some functions uε, that will satisfy a related
problem in weak sense, and we will pass to the limit here. This idea was first used in [14] for the
constant p-Laplacian in the homogeneous case, and then in more general settings in [1, 19, 20].

The reverse statement, weak solutions being viscosity, is strongly connected with comparison
arguments, and a new class of functions needs to be considered.

Definition 1.2. Let u be a weak supersolution to (1.1) in D ⊆ Ω. We say that (u, f ) satisfies the
comparison principle property (CPP) in D if for every weak subsolution v of (1.1) such that u ≥ v a.e.
in ∂D we have u ≥ v a.e. in D.

In particular we will see that, for those functions satisfying this property, weak solutions are indeed
viscosity solutions.

Theorem 1.3. Let p satisfy (1.3). Assume u is a continuous weak supersolution of (1.1) and f =

f (x, t, η) is continuous in Ω×R×Rn and Lipschitz continuous in η. If (CPP) holds then u is a viscosity
supersolution of (1.1).

In Section 4, apart from this theorem, we prove a comparison principle for the general
equation (1.1), which has interest in itself.

Applications of the equivalence between viscosity and weak solutions can be found in [15, 20] to
removability of sets and Radó type theorems. Also, the equivalence has been recently used in free-
boundary problems (see [2, 12]).

The paper is organized as follows: in Section 2 we give an introduction into the theory of Sobolev
spaces with variable exponents, we introduce the notions of viscosity and weak solutions in this
context, and the definition and main properties of the infimal convolutions. Section 3 is devoted to the
proof of Theorem 1.1, that is, to see that viscosity solutions of (1.1) are also weak solutions. In
Section 4 we prove Theorem 1.3 (that weak solutions are viscosity solutions) and a general
comparison principle for Eq (1.1).

2. Preliminaries

2.1. Variable exponent spaces

In this section we introduce basic definitions and preliminary results concerning the spaces of
variable exponent and the related theory of differential equations. Let

C+(Ω) :=
{
p ∈ C(Ω) : p(x) > 1 for any x ∈ Ω

}
and

p− := min
Ω

p(·), p+ := max
Ω

p(·).

Assume that p belongs to C+(Ω) and satisfies the following log-Hölder condition: there exists C > 0
so that

|p(x) − p(y)| ≤ C
1

| log |x − y||
, for all x, y ∈ Ω, x , y. (2.1)
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We define the Lebesgue variable exponent space as

Lp(·)(Ω) :=
{

u : Ω→ R : u is measurable and
∫

Ω

|u(x)|p(x) dx < ∞
}
,

and we denote by Lp′(·)(Ω) the conjugate space of Lp(·)(Ω), where

1
p(·)

+
1

p′(·)
= 1.

Consider also the Luxemburg norm

‖u‖Lp(·) := inf
{
λ > 0 :

∫
Ω

∣∣∣∣u(x)
λ

∣∣∣∣p(x)
dx ≤ 1

}
.

Then the following results, that can be found in [5], hold.

Theorem 2.1 (Hölder’s inequality). The space (Lp(·)(Ω), ‖ · ‖Lp(·)(Ω)) is a separable, uniform convex
Banach space. Furthermore, if u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), then∣∣∣∣ ∫

Ω

uv dx
∣∣∣∣ ≤ (

1
p−

+
1

(p′)−

)
‖u‖Lp(·)(Ω)‖v‖Lp′(·)(Ω).

The next proposition states the relation between norms and integrals of p(x)-th power.

Proposition 2.2. Let

ρ(u) :=
∫

Ω

|u|p(x) dx, u ∈ Lp(·)(Ω),

be the convex modular. Then the following assertions hold:

(i) ‖u‖Lp(·)(Ω) < 1 (resp. = 1, > 1) if and only if ρ(u) < 1 (resp. = 1, > 1);
(ii) ‖u‖Lp(·)(Ω) > 1 implies ‖u‖p−

Lp(·)(Ω) ≤ ρ(u) ≤ ‖u‖p+

Lp(·)(Ω), and ‖u‖Lp(·)(Ω) < 1 implies ‖u‖p+

Lp(·)(Ω) ≤ ρ(u) ≤

‖u‖p−

Lp(·)(Ω);
(iii) ‖u‖Lp(·)(Ω) → 0 if and only if ρ(u)→ 0, and ‖u‖Lp(·)(Ω) → ∞ if and only if ρ(u)→ ∞.

The following result allows us to relate the norms of different Lebesgue variable exponent spaces
(see [6] for a proof).

Lemma 2.3. Suppose that p, q ∈ C+(Ω). Let f ∈ Lq(·)p(·)(Ω). Then

(i) ‖ f ‖p+

Lp(·)q(·)(Ω) ≤ ‖ f
p(·)‖Lq(·)(Ω) ≤ ‖ f ‖

p−

Lp(·)q(·)(Ω) if ‖ f ‖Lp(·)q(·)(Ω) ≤ 1;

(ii) ‖ f ‖p−

Lp(·)q(·)(Ω) ≤ ‖ f
p(·)‖Lq(·)(Ω) ≤ ‖ f ‖

p+

Lp(·)q(·)(Ω) if ‖ f ‖Lp(·)q(·)(Ω) ≥ 1.

Let us denote the distributional gradiente by Du. Then we can define the variable Sobolev space
W1,p(·)(Ω) as

W1,p(·)(Ω) :=
{
u ∈ Lp(·)(Ω) : |Du| ∈ Lp(·)(Ω)

}
,

equipped with the norm
‖u‖W1,p(·)(Ω) := ‖u‖Lp(·)(Ω) + ‖Du‖Lp(·)(Ω),

and we denote by W1,p(·)
0 (Ω) the closure of C∞0 (Ω) in W1,p(·)(Ω). Notice that, due to the log-Hölder

condition (2.1), C∞0 (Ω) is dense in W1,p(·)(Ω). The following Embedding Theorem can be proved (see
for instance [10]).
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Theorem 2.4. If p+ < n, then

0 < S (p(·), q(·),Ω) := inf
v∈W1,p(·)

0 (Ω)

‖Dv‖Lp(·)(Ω)

‖v‖Lq(·)(Ω)
,

for all

1 ≤ q(·) ≤ p∗(·) =
np(·)

n − p(·)
.

Remark 2.5. The q(·) exponent has to be uniformly subcritical, i.e., infΩ(p∗(·) − q(·)) > 0, to enssure
that W1,p(·)

0 (Ω) ↪→ Lq(·)(Ω) is compact.

Let X = W1,p(·)
0 (Ω). Recalling Definition 1.2, the operator −∆p(x) can be seen as the weak derivative

of the functional J : X → R,

J(u) :=
∫

Ω

1
p(x)
|Du|p(x) dx,

in the sense that if L := J′ : X → X∗ then

(L(u), v) =

∫
Ω

|Du|p(x)−2DuDv dx, u, v ∈ X.

We also recall the following properties from [11].

Theorem 2.6. Let X = W1,p(·)
0 (Ω). Then:

(i) L : X → X∗ is continuous, bounded and strictly monotone;
(ii) L is a mapping of type (S +), that is, if un ⇀ u in X and

lim sup
n→∞

(L(un) − L(u), un − u) ≤ 0

then un → u in X;
(iii) L is a homeomorphism.

2.2. Notions of solutions

Considering the variable Sobolev spaces defined before, we can already introduce the notion of
weak solution.

Definition 2.7. We say that u ∈ W1,p(x)(Ω) is a weak supersolution of (1.1) if for any non-negative
ϕ ∈ C∞0 (Ω) there holds ∫

Ω

|Du|p(x)−2Du · Dϕ dx ≥
∫

Ω

f (x, u,Du)ϕ dx.

Likewise, we say that u ∈ W1,p(x)(Ω) is a weak subsolution of (1.1) if∫
Ω

|Du|p(x)−2Du · Dϕ dx ≤
∫

Ω

f (x, u,Du)ϕ dx

for any non-negative ϕ ∈ C∞0 (Ω).
Finally, u ∈ W1,p(x)(Ω) is a weak solution to (1.1) if it is a weak sub- and supersolution.
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Denote by S n the set of symmetric n × n matrices. In order to introduce the concept of viscosity
solution, let us recall the definition of jets.

Definition 2.8. The superjet J2,−u(x) of a function u : Ω → R at x ∈ Ω is defined as the set of pairs
(η, X) ∈ (Rn \ {0}) × S n satisfying

u(y) ≥ u(x) + η · (y − x) +
1
2

X(y − x) · (y − x) + o(|x − y|2)

as y → x. The closure of a superjet is denoted by J
2,−

u(x) and it is defined as the set of pairs (η, X) ∈
Rn × S n for which there exists a sequence (ηi, Xi) ∈ J2,−u(xi), with xi ∈ Ω so that

(xi, ηi, Xi)→ (x, η, X) as i→ ∞.

The subjet J2,+u(x) and its closure J
2,+

u(x) are defined in a similar fashion.

Observe that the operator can be written as

∆p(x)ϕ(x) = tr
(
A(x,Dϕ(x))D2ϕ(x)

)
+ B(x,Dϕ(x)),

where

A(x, ξ) := |ξ|p(x)−2
(
I + (p(x) − 2)

ξ

|ξ|
⊗
ξ

|ξ|

)
,

and

B(x, ξ) := |ξ|p(x)−2 log |ξ|ξ · Dp(x).

We can now precise the notion of viscosity solution.

Definition 2.9. A lower semicontinuous function u : Ω → R is a viscosity supersolution of (1.1) if for
any (η, X) ∈ J2,−u(x) there holds

−tr (A(x, X)) − B(x, η) ≥ f (x, u(x), η).

Similarly, an upper semicontinuous function u : Ω→ R is a viscosity subsolution of (1.1) if

−tr (A(x, X)) − B(x, η) ≤ f (x, u(x), η),

for all (η, X) ∈ J2,+u(x). Finally, a viscosity solution is a continuous function which is a viscosity sub-
and a supersolution.

Observe that we do not require anything at jets of the form (0, X) or if J2,−u(x) = ∅. Moreover, the
above definition of viscosity supersolution is equivalently given if we replace the superjet by its closure
or if we take for jets (η, X) pairs of the form (Dϕ(x),D2ϕ(x)) ∈ (Rn \ {0}) × S n, where ϕ is smooth and
touches u from below at x.
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2.3. Infimal convolutions

A standard smoothing operator in the theory of viscosity solutions is the infimal convolution.

Definition 2.10. Given ε > 0 and q ≥ 2 we define the infimal convolution of a function u : Ω→ R as

uε(x) := inf
y∈Ω

(
u(y) +

|x − y|q

qεq−1

)
, x ∈ Ω.

The infimal convolution will be one of the main tools to prove that viscosity solutions are weak
solutions. For the next result see for instance [14, 20] and the references therein.

Lemma 2.11. Let u be a bounded and lower semicontinuous function in Ω. Then:

(i) There exists r(ε) > 0 such that

uε(x) = inf
y∈Br(ε)(x)

(
u(y) +

|x − y|q

qεq−1

)
,

where r(ε)→ 0 as ε→ 0.
(ii) The sequence {uε}ε>0 is increasing as ε→ 0 and uε → u pointwise in Ω.

(iii) uε is locally Lipschitz and twice differentiable a.e. Actually, for almost every x, y ∈ Ω,

uε(y) = uε(x) + Duε(x) · (x − y) +
1
2

D2uε(x)(x − y)2 + o(|x − y|2).

(iv) uε is semiconcave, that is, there exists a constant C = C(q, ε, osc(u)) > 0 such that the function
x 7→ uε(x) −C|x|2 is concave. In particular

D2uε(x) ≤ 2CI, a.e. x ∈ Ω,

where I is the identity matrix.
(v) The set Yε(x) :=

{
y ∈ Br(ε)(x) : uε(x) = u(y) +

|x−y|q

qεq−1

}
is non empty and closed for every x ∈ Ω.

(vi) If x ∈ Ωr(ε) := {x ∈ Ω : dist (x, ∂Ω) > r(ε)}, then there exists xε ∈ Br(ε) such that

uε(x) = u(xε) +
|x − xε|q

qεq−1 .

(vii) If (η, X) ∈ J2,−uε(x) with x ∈ Ωr(ε), then

η =
(x − xε)
εq−1 |x − xε|q−2 and X ≤

q − 1
ε
|η|

q−2
q−1 I.

Remark 2.12. For later purposes (see the proof of Lemma 3.3) we will choose

q ≥ 2 such that p− − 2 +
q − 2
q − 1

≥ 0. (2.2)

Mathematics in Engineering Volume 5, Issue 2, 1–19.



8

3. Viscosity solutions are weak solutions: proof of Theorem 1.1

Let us consider the inf-convolution uε given by Definition 2.10. We can summarize the strategy to
prove Theorem 1.1 in several steps. Assuming that u is a viscosity supersolution, we will identify what
problem is satisfied by uε in a pointwise sense, and later on in a weak sense. We will finish from here
by passing to the limit in ε, obtaining the weak problem satisfied by u.

We thus start by identifying the problem fulfilled by uε.

Lemma 3.1. Assume p satisfies (1.3). Let u : Ω → R locally Lipschitz, and let f = f (x, t, η) be
continuous in Ω × R × Rn and non increasing in t. If u is a viscosity supersolution of (1.1) then

∆p(x)uε(x) ≥ fε(x, uε(x),Duε(x)) + E(ε) a.e. in Ωr(ε), (3.1)

where
fε(x, s, η) := inf

y∈Br(ε)(x)
f (y, s, η),

and E(ε)→ 0 as ε→ 0+. Here E(ε) depends only on p, q and ε.

Notice that, differently from the constant case (see [19, Lemma 3.3]), when we identify the problem
satisfied by uε in a pointwise sense, an error term E(ε) arises. We expect it that to disappear when
passing to the limit in the final step. To prove this lemma we borrow some computations from [17, proof
of Proposition 6.1], where they are used to prove a comparison-type result.

Proof. Fix x ∈ Ωr(ε) and let (η,Z) ∈ J2,−uε(x), with η , 0. Then, by Lemma 2.11, there is xε ∈ Br(ε)(x)
such that

uε(x) = u(xε) +
|xε − x|q

qεq−1 and η =
(xε − x)
εq−1 |xε − x|q−2. (3.2)

Let ϕ ∈ C2(Rn) such that ϕ touches uε from below at x and

Dϕ(x) = η, D2ϕ(x) = Z.

Then, by definition of uε,

u(y) − ϕ(z) +
|y − z|q

qεq−1 ≥ uε(z) − ϕ(z) ≥ 0, (3.3)

for all y, z ∈ Ωr(ε). Since by (3.2) we have

u(xε) = ϕ(x) −
|xε − x|q

qεq−1 ,

it follows from (3.3) that

u(y) − ϕ(z) +
|y − z|q

qεq−1

has a minimum at (xε, x). Thus,

−u(y) + ϕ(z) −
|y − z|q

qεq−1

attains its maximum over Ωr(ε) ×Ωr(ε) at (xε, x). Let us consider

Φ(y, z) :=
|y − z|q

qεq−1 .
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By the Maximum Principle for semicontinuous functions (see [4, Theorem 3.2]), there exist symmetric
matrices (Y,Z) such that

(η,Y) ∈ J
2,−

u(xε), (η,Z) ∈ J
2,+
ϕ(x),

and (
−Y 0
0 Z

)
≤ D2Φ(xε, x) + εq−1

(
D2Φ(xε, x)

)2
, (3.4)

with

D2Φ(xε, x) = ε1−q|xε − x|q−4
[
|xε − x|2

(
I −I
−I I

)
+(q − 2)

(
(xε − x) ⊗ (xε − x) −(xε − x) ⊗ (xε − x)
−(xε − x) ⊗ (xε − x) (xε − x) ⊗ (xε − x)

)]
.

Inequality (3.4) implies that, for any ξ, η ∈ Rn,

Zξ · ξ − Yη · η ≤ ε1−q
[
(q − 1)|xε − x|q−2 + 2(q − 1)2|xε − x|2(q−2)

]
|η − ξ|2. (3.5)

By the equivalence of the definition of viscosity solutions between tests functions and the closure of
jets for continuous operators (recall η , 0), we deduce

f (xε,u(xε), η) ≤ −tr (A(xε, η)Y) − B(xε, η)
= tr (A(x, η)Z) − tr (A(xε, η)Y) − tr (A(x, η)Z) + B(x, η) − B(xε, η) − B(x, η).

(3.6)

Observe that since η , 0, A(·, η) is symmetric and positive definite, and hence the square root A(x, η)1/2

exists and is symmetric. We define

A(x)1/2 := A(x, η)1/2 and A(xε)1/2 := A(xε, η)1/2.

Now,

tr (A(x, η)Z) = tr
(
A(x)1/2A(x)1/2Z

)
=

n∑
k=1

ZAk(x)1/2 · Ak(x)1/2, (3.7)

where Ak(·)1/2 is the k-th column of A(·)1/2. Hence, (3.5), (3.6), and (3.7) give

f (xε, u(xε), η) ≤
n∑

k=1

ZAk(x)1/2 · Ak(x)1/2 −

n∑
k=1

YAk(xε)1/2 · Ak(xε)1/2 − tr (A(x, η)Z)

+ B(x, η) − B(xε, η) − B(x, η)
≤Cε1−q|xε − x|q−2‖A(x)1/2 − A(xε)1/2‖22 + B(x, η) − B(xε, η)
− tr (A(x, η)Z) − B(x, η).

(3.8)

Proceeding as in [17, proof of Proposition 6.1], it can be seen that

‖A(x)1/2 − A(xε)1/2‖22 ≤
‖A(x) − A(xε)‖22

(λmin(A(x)) + λmin(A(xε)))2 . (3.9)
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and, using that p ∈ C1,

B(x, η) − B(xε, η) ≤ |η|p(x)−1| log |η|||Dp(x) − Dp(xε)| + C|η|s−1 log2
|η||p(x) − p(xε)|. (3.10)

for some s in the interval connecting p(x) and p(xε). Furthermore,

‖A(x, η) − A(xε, η)‖2 ≤ C
(
(p+ + 1)| log |η|||η|s−2 + |η|p(xε)−2

)
|x − xε|, (3.11)

and

λmin

(
A(x)1/2

)
=

(
min
|ξ|=1

A(x, η)ξ · ξ
)1/2

≥ min
{
1,

√
p(x) − 1

}
|η|

p(x) − 2
2 . (3.12)

Thus, combining (3.8), (3.9), (3.10), (3.11) and (3.12), we deduce

f (xε, u(xε), η) ≤ C|η|p(x)−1| log |η|||x − xε| + C|η|s−1 log2
|η||x − xε|

+ Cε1−q

(
| log |η|||η|s−2 + |η|p(xε)−2

)2

min {1, p− − 1}

|η|
p(x) − 2

2 + |η|

p(xε) − 2
2


2 |x − xε|q

− tr (A(x, η)Z) − B(x, η).

(3.13)

By Lemma 2.11 ((i) and (vi)), and since u is locally Lipschitz,

|x − xε|q ≤ qεq−1|uε(x) − u(xε)| ≤ qεq−1|u(x) − u(xε)| ≤ Cεq−1|x − xε|. (3.14)

Hence,
|η| = qε1−q|x − xε|q−1 ≤ C. (3.15)

Consequently, the terms
|η|p(x)−1| log |η|| and |η|s−1 log2

|η|

remain bounded, and so the first two terms in (3.13) tend to 0 as ε→ 0+. For the third term, we obtain
by (3.15) that

ε1−q


| log |η||η|s−2|

|η|

p(x) − 2
2 + |η|

p(xε) − 2
2


2

|x − xε|q ≤ C log2
|η||η|2s−p(x)−2|η||x − xε|

≤ Cε log2
|η||η|2s−p(x)−1.

Since 2s − p(x) − 1 → p(x) − 1 ≥ p− − 1 > 0, the term log2
|η||η|2s−p(x)−1 is uniformly bounded for ε

sufficiently small and thus

ε1−q


| log |η||η|s−2|

|η|

p(x) − 2
2 + |η|

p(xε) − 2
2


2

|x − xε|q → 0 as ε→ 0+.
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Regarding the term

ε1−q

(
|η|p(xε)−2

)2

min {1, p− − 1}

|η|
p(x) − 2

2 + |η|

p(xε) − 2
2


2 |x − xε|q,

by (3.15) it may be bounded by

ε1−q|η|p(xε)−2|x − xε|q = q−1|η|p(xε)−1|x − xε| → 0

as ε→ 0+. Therefore, we get from (3.13) that

f (xε, uε(x), η) = f (xε, u(xε), η) ≤ −tr (A(x, η)Z) − B(x, η) + E(ε),

with E(ε) → 0 as ε → 0+. Thus, uε is a viscosity supersolution of (3.1) and, since it is twice
differentiable almost everywhere, (3.1) holds a.e. in Ωr(ε). �

Remark 3.2. Observe that the Lipschitz condition on u was used to prove (3.14). If u is merely
uniformly continuous, there exists a modulus of continuity ω so that |u(x) − u(y)| ≤ ω(x − y) for all
x, y ∈ Ω. Hence, by Lemma 2.11 ((i) and (vi)), we get

|xε − x|q ≤ Cεq−1ω(r(ε))

and so
|η| ≤ Cε1−q|xε − x|q−1 ≤ Cε−(q−1)/q.

Consequently, the converges in (3.13) may not hold.

Let us pass now from the pointwise formulation in Lemma 3.1 to a weak inequality. We will use in
the proof some computations from the proof of [20, Lemma 5.5].

Lemma 3.3. Assume f = f (x, t, η) uniformly continuous in Ω × R × Rn and Lipschitz continuous in η,
satisfying (1.4). Suppose in addition that f (x, r, 0) = 0 for all (x, r) ∈ Ω × R. If u is a locally Lipschitz
viscosity solution of (1.1), then for any non-negative ϕ ∈ C∞0 (Ω) there holds∫

Ωr(ε)

|Duε|p(x)−2Duε · Dϕ dx ≥
∫

Ωr(ε)

fε(x, uε,Duε)ϕ dx + E(ε)
∫

Ωr(ε)\{Duε=0}
ϕ dx,

for all ε > 0 small enough.

Proof. Let ϕ ∈ C∞0 (Ω), ϕ  0. Let ε be small enough so that ϕ ∈ C∞0 (Ωr(ε)). Since uε is semi-concave,
there is a constant C(q, ε, u) > 0 so that

φ(x) := uε(x) −C(q, ε, u)|x|2

is concave in Ωr(ε). Hence, by mollification, there is a sequence of smooth concave functions φ j so that

(φ j,Dφ j,D2φ j)→ (φ,Dφ,D2φ) a.e. Ωr(ε).
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Define
uε, j(x) := φ j(x) + C(q, ε, u)|x|2.

Given δ > 0, by integration by parts we obtain∫
Ωr(ε)

−div
[(
δ + |Duε, j|2

) p(x)−2
2 Duε, j

]
ϕ dx =

∫
Ωr(ε)

(
δ + |Duε, j|2

) p(x)−2
2 Duε, j · Dϕ dx. (3.16)

Observe that, since uε is locally Lipschitz, there exists a constant M > 0, independent of j, so that

sup
j
‖Duε, j‖L∞(suppϕ), sup

j
‖Dp j‖L∞(suppϕ) ≤ M. (3.17)

Hence, by the Dominated Convergence Theorem, the right-hand side of (3.16) converges, as j → ∞,
to ∫

Ωr(ε)

(δ + |Duε|2)
p(x)−2

2 Duε · Dϕ dx.

Let us treat now the left-hand side of (3.16). Observe that∫
Ωr(ε)

−div
[(
δ + |Duε, j|2

) p j(x)−2
2 Duε, j

]
ϕ dx

= −

∫
Ωr(ε)

(
δ + |Duε, j|2

) p j(x)−2
2

(
∆uε, j +

p j(x) − 2
δ + |Duε, j|2

∆∞uε, j

)
ϕ dx

−
1
2

∫
Ωr(ε)

(
δ + |Duε, j|2

) p j(x)−2
2 log(δ + |Duε, j|2)Duε, j · Dp jϕ dx

=: I1 + I2.

(3.18)

By (3.17) and the Dominated Convergence Theorem we obtain that, when j→ ∞,

I2 → −
1
2

∫
Ωr(ε)

(
δ + |Duε|2

) p(x)−2
2 log(δ + |Duε|2)Duε · Dpϕ dx.

For I1 we will use Fatou’s Lemma. Observe that by concavity of φ j,

D2uε, j ≤ C(q, ε, u)I.

Hence, the integrand in I1 is bounded from below by a constant independent of j if Duε, j = 0. On the
other hand, if Duε, j , 0, it can be checked (see [20, Lemma 5.5]) that(

δ + |Duε, j|2
) p j(x)−2

2

(
∆uε, j +

p j(x) − 2
δ + |Duε, j|2

∆∞uε, j

)
≤ C(ε, q, u,M, δ).

Taking lim inf as j→ ∞ in (3.18), we obtain

−

∫
Ωr(ε)

(
δ + |Duε|2

) p(x)−2
2

(
∆uε +

p(x) − 2
δ + |Duε|2

∆∞uε

)
ϕ dx

−
1
2

∫
Ωr(ε)

(
δ + |Duε|2

) p(x)−2
2 log(δ + |Duε|2)Duε · Dpϕ dx

≤

∫
Ωr(ε)

(δ + |Duε|2)
p(x)−2

2 Duε · Dϕ dx.

(3.19)

Mathematics in Engineering Volume 5, Issue 2, 1–19.



13

By the Dominated Convergence Theorem, as δ→ 0 we have∫
Ωr(ε)

(
δ + |Duε|2

) p(x)−2
2 log(δ + |Duε|2)Duε · Dpϕ dx→ 2

∫
Ωr(ε)

|Duε|p(x)−2 log |Duε|Duε · Dpϕ dx

(3.20)

and ∫
Ωr(ε)

(δ + |Duε|2)p(x)−2Duε · Dϕ dx→
∫

Ωr(ε)

|Duε|p(x)−2Duε · Dϕ dx. (3.21)

Moreover, using (2.2) and proceeding as in the proof of [20, Lemma 5.5], we can apply Fatou’s lemma
in the integral ∫

Ωr(ε)\{Duε=0}

(
δ + |Duε|2

) p(x)−2
2

(
∆uε +

p(x) − 2
δ + |Duε|2

∆∞uε

)
dx.

Thus, from (3.19)–(3.21), and Lemma 3.1 we conclude that∫
Ωr(ε)

|Duε|p(x)−2Duε · Dϕ dx

≥ lim inf
δ→0

∫
Ωr(ε)\{Duε=0}

−
(
δ + |Duε|2

) p(x)−2
2

(
∆uε +

p(x) − 2
δ + |Duε|2

∆∞uε

)
ϕ dx

+ lim inf
δ→0

∫
Ωr(ε)\{Duε=0}

−
1
2

(
δ + |Duε|2

) p(x)−2
2 log(δ + |Duε|2)Duε · Dpϕ dx

≥ −

∫
Ωr(ε)\{Duε=0}

∆p(x)uεϕ dx

≥

∫
Ωr(ε)\{Duε=0}

fε(x, uε,Duε)ϕ dx + E(ε)
∫

Ωr(ε)\{Duε=0}
|Duε|max{p(x)−2,0}ϕ dx

=

∫
Ωr(ε)

fε(x, uε,Duε)ϕ dx + E(ε)
∫

Ωr(ε)

ϕ dx.

�

The proofs of the following lemmas follow the strategy in [20, Lemma 5.6, Lemma 5.7] for the
homogeneous case, so we will only highlight the differences coming from the non-homogeneous term.

Lemma 3.4. Under the assumptions of Lemma 3.3, u ∈ W1,p(x)
loc (Ω) and, for each Ω′ b Ω, we have that,

up to a subsequence, uε → u weakly in W1,p(x)(Ω′) as ε→ 0.

Proof. Let Ω′ b Ω and let ξ ∈ C∞0 (Ω) be such that 0 ≤ ξ ≤ 1 and ξ = 1 in Ω′. Assume that

K := supp ξ ⊂ Ωr(ε),

and define
ϕ := (L − uε)ξp+

, with L := sup
ε,Ω′
|uε(x)|.

By Lemma 3.3, we have∫
Ωr(ε)

|Duε|p(x)ξp+

dx ≤
∫

Ωr(ε)

|Duε|p(x)−1ξp+−1(L − uε)p+|Dξ| dx

+

∫
Ωr(ε)

| fε(x, uε,Duε)ϕ dx + |E(ε)|
∫

Ωr(ε)

ϕ dx.
(3.22)
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By using Young’s inequality it can be seen that∫
Ωr(ε)

|Duε|p(x)−1ξp+−1(L − uε)p+|Dξ| dx ≤ δ
∫

Ωr(ε)

|Duε|p(x)ξp+

dx + C(δ, p, , L,Dξ), (3.23)

and, using (1.4),∫
Ωr(ε)

| fε(x,uε,Duε)|ϕ dx

≤ γ∞

∫
Ωr(ε)

|Duε|p(x)−1ξp+−1(L − uε)ξ dx +

∫
Ωr(ε)

φ(x)(L − uε)ξp+

dx

≤ γ∞δ

∫
Ωr(ε)

|Duε|p(x)ξp+

+ γ∞

∫
Ωr(ε)

(
2
δ

Lp+

)p(x)

dx + C(φ, L,Ω)

≤ γ∞δ

∫
Ωr(ε)

|Duε|p(x)ξp+

+ C(φ, δ, p, L, γ,Ω).

(3.24)

Finally, it is easy to check that

|E(ε)|
∫

Ωr(ε)

ϕ dx ≤ |E(ε)|C(L, p,Ω). (3.25)

Combining (3.22)–(3.25) and recalling that ξ = 1 in Ω′, we obtain the uniform boundedness of Duε in
Lp(x)(Ω′). Therefore, up to a subsequence, uε → u weakly in W1,p(x)(Ω′) as ε→ 0. �

Lemma 3.5. Under the assumptions of Lemma 3.3, for each Ω′ b Ω, we have that, up to a subsequence,
uε → u in W1,p(x)(Ω′) as ε→ 0.

Proof. Let Ω′ b Ω and let ξ ∈ C∞0 (Ω) be such that 0 ≤ ξ ≤ 1 and ξ = 1 in Ω′. Consider the test function

ϕ := (u − uε)ξ,

and choose ε small enough so that K := suppϕ ⊂ Ωr(ε). Observe that ϕ ∈ W1,p(x)(Ω) and has compact
support. By Lemma 3.3 and (1.4), we have∫

Ωr(ε)

(
|Du|p(x)−2Du − |Duε|p(x)−2Duε

)
· (Du − Duε)ξ dx

≤

∫
Ωr(ε)

|Du|p(x)−2Du · (Du − Duε)ξ dx +

∫
Ωr(ε)

| fε(x, uε,Duε)|(u − uε)ξ dx

+ |E(ε)|
∫

Ωr(ε)

(u − uε)ξ dx +

∫
Ωr(ε)

|Duε|p(x)−2Duε · Dξ(u − uε)dx

≤

∫
Ωr(ε)

|Du|p(x)−2Du · (Du − Duε)ξ dx

+ ‖u − uε‖L∞(K)

(
γ∞

∫
K
|Duε|p(x)−1dx +

∫
K
φ(x) dx

)
+ ‖u − uε‖L∞(K)

(
|E(ε)||K| +

∫
K
|Duε|p(x)−1Dξdx

)
.

(3.26)
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Since uε → u locally uniformly and, by Lemma 3.4, uε → u weakly in W1,p(x)(K), the right-hand
side of (3.26) converges to 0, up to a subsequence, when ε → 0. By Theorem 2.6, the operator
L : W1,p(x)(Ω′)→ [W1,p(x)(Ω′)]∗ given by

〈L(v),w〉 =

∫
Ω′
|Dv|p(x)−2Dv · Dw dx, v,w ∈ W1,p(x)(Ω′)

is a mapping of type (S +). Then, it follows from (3.26) that uε → u strongly in W1,p(x)(Ω′) as ε→ 0. �

We can already prove that viscosity solutions of (1.1) are also weak solutions.

Proof of Theorem 1.1. Let ϕ ∈ C∞0 (Ω) and take Ω′ b Ω such that

supp ϕ ⊂ Ω′.

Let us fix ε0 > 0 such that 0 < ε < ε0 implies

Ω′ ⊂ Ωr(ε).

In view of Lemma 3.3, to prove the theorem, it will be enough to show the following convergences:

(I)

lim
ε→0+

∫
Ω′
|Duε|p(x)−2Duε · Dϕ dx =

∫
Ω′
|Du|p(x)−2Du · Dϕ dx

(II)

lim
ε→0+

∫
Ωr(ε)

fε(x, uε,Duε)ϕ dx =

∫
Ω′

f (x, u,Du)ϕ dx

(III)

lim
ε→0+

E(ε)
∫

Ωr(ε)

ϕ dx = 0.

Proceeding exactly as in the proof of [20, Theorem 5.8], it can be seen that (I) holds, and (III) follows
in a straightforward way.

Let us prove (II). Let ε, ϕ and Ω′ as above. By the uniform continuity of f , for every ρ > 0, there
exists δ > 0 such that

| f (x, uε(x),Duε(x)) − f (y, uε(x),Duε(x))| ≤ ρ, y ∈ Bδ(x).

Choose ε0 > 0 so that r(ε) < δ for every ε < ε0. Thus, from the previous inequality we get

f (x, uε(x),Duε(x)) < ρ + f (y, uε(x),Duε(x)),

for every x ∈ Ω′ and y ∈ Br(ε)(x). In particular,

f (x, uε(x),Duε(x)) < ρ + fε(x, uε(x),Duε(x)),

and therefore
0 ≤ | f (x, uε(x),Duε(x)) − fε(x, uε(x),Duε(x))| < ρ.
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Hence, ∫
Ω′
| f (x, uε,Duε) − fε(x, uε,Duε)|ϕ dx ≤ ρ‖ϕ‖L∞(Ω′)|Ω

′|, (3.27)

for ρ arbitrarily small. Since ‖uε‖L∞(Ω′) ≤ ‖u‖L∞(Ω′) for all ε, it follows

max
[−‖uε‖L∞ ,‖uε‖L∞ ]

|γ(t)| ≤ max
[−‖u‖L∞ ,‖u‖L∞ ]

|γ(t)|,

and then by (1.4) we have

| f (x, uε,Du)| ≤ C|Du|p(x)−1 + φ(x) ∈ Lp′(x)(Ω′) ⊂ L1(Ω′)

for a constant C independent of ε. Then, by the Lebesgue Convergence Theorem,

lim
ε→0

∫
Ω′

f (x, uε,Du)ϕ dx =

∫
Ω′

f (x, u,Du)ϕ dx. (3.28)

Moreover, the convergence Duε → Du in Lp(x)(Ω′) and the Lipschitz continuity of f with respect to the
third variable imply∫

Ω′
| f (x, uε,Duε) − f (x, uε,Du)|ϕ dx ≤ C

∫
Ω′
|Duε − Du| dx→ 0 as ε→ 0. (3.29)

Therefore, combining (3.27)–(3.29) we obtain (II). �

4. Weak solutions are viscosity solutions: proof of Theorem 1.3

To prove this implication we follow the strategy of [19]. As we said in the Introduction, the
argument is strongly connected to the availability of comparison principles. After the proof of the
theorem we will state and prove an example of comparison result that applies here.

Proof of Theorem 1.3. Let u ∈ C(Ω) be a weak supersolution to (1.1). To reach a contradiction, assume
that u is not a viscosity supersolution. By assumption, there exist x0 ∈ Ω and ϕ ∈ C2(Ω) so that
Dϕ(x0) , 0,

u(x0) = ϕ(x0), u(x) > ϕ(x) for all x , x0, (4.1)

and
− ∆p(x0)ϕ(x0) < f (x0, u(x0),Dϕ(x0)). (4.2)

Moreover, the mapping
x→ f (x, u(x),Dϕ(x))

is continuous in Ω, and (4.1) yields

−∆p(x)ϕ(x) − f (x, u(x),Dϕ(x)) < 0, for all x ∈ Br(x0),

for some r > 0 small eunogh. Hence, there exists r0 > 0 so that Dϕ(x) , 0 for all x ∈ Br0(x0) and

− ∆p(x)ϕ(x) ≤ f (x, u(x),Dϕ(x)), x ∈ Br0(x0). (4.3)
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Let
m := min

∂Br0 (x0)
(u − ϕ) .

Then by (4.1), m > 0. Consider
ϕ̃(x) := ϕ(x) + m, x ∈ Ω.

By (4.3), ϕ̃ is a weak subsolution to
− ∆p(x)v = f̃ (x,Dv), (4.4)

in Br0(x0), where f̃ (x, η) := f (x, u(x), η). Observe that f̃ is locally Lipschitz in Ω × Rn. Moreover, in
the weak sense, we have

−∆p(x)u ≥ f (x, u,Du) = f̃ (x,Du),

which shows that u is a weak supersolution to (4.4). In addition, observe that u ≥ ϕ̃ on ∂Br0(x0), and
that (4.5) holds since Dϕ̃ , 0 in Br0(x0). Thus, by the (CPP) we conclude that u ≥ ϕ̃ in Br0(x0). This
contradicts (4.1). �

4.1. Maximum principles

Some comparison principles may be found in the literature for p(x)-Laplace equations. See for
instance [9,17,21]. Here, we provide a comparison principle for a Lipschitz right-hand side depending
on all the lower terms.

Theorem 4.1. Assume that f = f (x, r, η) is locally Lipschitz in Ω × R × Rn. Let u, v ∈ C1(Ω) be weak
sub- and supersolutions, respectively, of (1.1) such that

|Du(x)| + |Dv(x)| > 0, (4.5)

for a.e. x satisfying p(x) > 2. Then, there exists δ > 0 such that for any domain B, B ⊂ Ω, with |B| < δ
and u ≤ v on ∂B, there holds u ≤ v in B.

Proof. Take (u − v)+χB ∈ W1,p(x)
0 (Ω) as a test function in (1.1) to get∫

B

(
|Du|p(x)−2Du − |Dv|p(x)−2Dv

)
· D(u − v)+

≤

∫
B

f (x, u,Du) − f (x, v,Dv)
u − v

[(u − v)+]2.

(4.6)

Now, using the inequality

c(|ξ| + |η|)p(x)−2|ξ − η|2 ≤
(
|ξ|p(x)−2ξ − |η|p(x)−2η

)
· (ξ − η),

the Lipschitz assumption on f and the boundedness of u and v in C1, we get∫
B
(|Du| + |Dv|)p(x)−2|D(u − v)+|2 ≤ C(u, v)

[∫
B
[(u − v)+]2 +

∫
B
|Du − Dv|(u − v)+

]
. (4.7)
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By Poincaré and Hölder inequalities, and the assumption (4.5), we obtain

C(u,v)
[∫

B
[(u − v)+]2 +

∫
B
|Du − Dv|(u − v)+

]
≤ C(B)C(u, v)

∫
B
|D(u − v)+|2 (here, C(B)→ 0 as |B| → 0)

= C(B)C(u, v)
∫

B
(|Du| + |Dv|)2−p(x)(|Du| + |Dv|)p(x)−2|D(u − v)+|2

≤ C(B)C(u, v)
∫

B
(|Du| + |Dv|)p(x)−2|D(u − v)+|2.

(4.8)

Combining (4.7) and (4.8), we obtain∫
B
(|Du| + |Dv|)p(x)−2|D(u − v)+|2 ≤ C(B)C(u, v)

∫
B
(|Du| + |Dv|)p(x)−2|D(u − v)+|2.

Hence, for |B| small enough, we get (u − v)+ = 0 in B and hence u ≤ v in B. �

Remark 4.2. Keeping track of the proof of Theorem 1.3, it is easy to see that Theorem 4.1 allows us
to prove that weak solutions are viscosity. Indeed, it is enough with choosing r0 sufficiently small so
that |Br0(x0)| < δ, with δ > 0 provided by Theorem 4.1.
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15. P. Juutinen, P. Lindqvist, A theorem of Radó type for solutions of a quasi-linear equation, Math.
Res. Lett., 11 (2004), 31–34. https://doi.org/10.4310/MRL.2004.v11.n1.a4

16. P. Juutinen, P. Lindqvist, J. J. Manfredi, On the equivalence of viscosity solutions and
weak solutions for a quasilinear equation, SIAM J. Math. Anal., 33 (2001), 699–717.
https://doi.org/10.1137/S0036141000372179

17. P. Juutinen, T. Lukkari, M. Parviainen, Equivalence of viscosity solutions and weak solutions
for the p(x)-Laplacian, Ann. Ins. H. Poincaré Anal. Non Linéaire, 27 (2010), 1471–1487.
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