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Abstract: As a model for economic and ecological systems, replicator dynamics represent a basic form
of agent competition for finite resources. Here, we investigate the effects of stochastic resetting in this
kind of processes. Random reset events abruptly lead individual resources to a small value from which
dynamics must start anew. Numerical results show that resource distribution over the population of
competing agents develops highly nonuniform profiles, exhibiting clustering and fluctuations with
anomalous dependence on the population size. This non-standard statistical behavior jeopardizes an
analytical treatment based on mean-field assumptions. We propose alternative simplified analytical
approaches which provide a stylized description of entropy evolution for the clustered distribution
of resources and explain the unusually slow decrease of fluctuations.

Keywords: replicator population; stochastic resetting; resource distribution; anomalous fluctuations;
clustering

1. Introduction

In theoretical biology, a replicator is an abstract unit capable of creating copies of itself
through interaction with the environment [1,2]. This very generic concept—which provides
a unified tool for studying evolutionary dynamics at several levels—encompasses such
entities as nucleic-acid molecules (RNA and DNA), genes, cells, and, of course, living
organisms. In the theory of cultural evolution, an analogous notion applies to memes, the
units of cultural information, thus extending the same theoretical framework to social and
economic phenomena [3]. The concept of replicator turned out to be especially fruitful
within evolutionary game theory, as a model for biological evolution under natural selection.
In this context, replicators represent strategies whose individual profit, measured by their
relative reproduction success, depends on both their intrinsic fitness and their mutual
interaction [4].

Replicator dynamics is a mathematical model, used in evolutionary game theory, that
describes how the relative prevalence of different strategies changes in time [5,6]. If, in
a large population, xi(t) is the fraction of players adopting strategy i at time t, replicator
dynamics prescribe that

ẋi = xi

[
fi(x)−

N

∑
j=1

f j(x)xj

]
, (1)

(i = 1, 2, . . . , N), where fi(x) denotes the fitness of strategy i, and generally depends on
all the components of x = (x1, x2, . . . , xN). It can be seen that the N-dimensional sim-
plex, given by ∑i xi = 1 with xi ≥ 0 for all i, is invariant under Equation (1), and also
acts as a global attractor for all non-negative initial conditions. From the perspective of
population dynamics, Equation (1) can be interpreted as the time evolution of N interact-
ing species with fitnesses fi(x), additionally subjected to a global mechanism of growth
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limitation, given by the second term in the brackets, which asymptotically constrains popu-
lations to the subspace where ∑i xi = 1. In this work, we adopt a similar interpretation,
where xi represents the resources (richness) of an economic agent i in a population of N
interacting agents.

In the simplest version of replicator dynamics, all fitnesses are constant: fi(x) = λi for
all i [7]. In this situation, the first term in the right-hand side of Equation (1) induces an
exponential growth of the resources xi, at rate λi. The opposing effect of the second term,
however, limits this growth. For sufficiently long times, in fact, the system approaches the
N-dimensional simplex. The outcome of these contrary trends is that, asymptotically, the
replicator with maximal fitness accumulates all the resources. Namely, for t→ ∞,

xi =

{
1 if λi = max{λ1, λ2, · · · , λN},
0 otherwise.

(2)

Thus, with constant fitnesses, the population always ends in a state where resources are
trivially concentrated in just one agent. If two or more agents have identical maximal
fitnesses, all the resources become shared between them in proportions depending on the
initial values xi(0).

Our aim in this paper is to study the effect of reset events on the replicator dynamics
with constant fitnesses. Resetting is a stochastic mechanism by which a dynamical variable—
in the present case, xi(t)—is occasionally brought to a prefixed value, from which its
dynamics start anew. This mechanism is able to severely modify the statistical behavior
of a dynamical system [8]. In the present case, we expect it to inhibit the accumulation of
resources by a single agent or a small group of agents, bringing about a nontrivial resource
distribution over the replicator population. To gain insight into the overall behavior of
our model, which we present in Section 2, Section 3 is devoted to the numerical and
analytical study of the case of a single replicator. In Section 4, we show that the combined
effect of replicator dynamics and resetting in a large population with identical fitnesses
results in anomalous statistical properties, with an extremely slow decrease of fluctuations
as the population size grows. This unusual feature is accompanied by clustering in the
amount of individual resources, which, over time, sustains a highly heterogeneous resource
distribution over the population. Analytical arguments based on a toy two-cluster model
are proposed to explain these numerical observations. Finally, Section 5 is devoted to
discussing our main results.

2. Replicators with Resetting

Stochastic resetting was initially introduced as a mechanism of unbounded growth
limitation in the context of demographic dynamics [9,10]. Remarkably, when combined
with multiplicative (exponential) growth, it gives rise to long-time power-law distributions
for the relevant variables [10,11]. It can therefore be used as a model for the emergence
of such distributions in the broad class of phenomena where they are observed [12], rang-
ing from biological taxon abundances [13] to economic resource sharing [14]. Since its
introduction more than two decades ago, the statistical effects of stochastic resetting have
been studied in a wide variety of dynamical processes, such as transport on networks [15],
hydrologic phenomena [16], RNA kinetics [17], and active-particle motion [18], among
many others [8].

As described in the Introduction, stochastic resetting acts on a variable x(t), whose
evolution is otherwise governed by certain dynamical rules, instantaneously bringing its
value to a prefixed level u. Reset events are distributed at random along time, and the
evolution of x(t) begins de novo after each resetting. Such events emulate the effect of
sudden crises or catastrophic occurrences, where the state of the system under study suffers
an abrupt change in a short time [19]. This kind of phenomenon is not uncommon in social
and economic contexts [11,20,21].
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In replicator dynamics with constant fitnesses λi, we introduce reset events by proposing

ẋi = xi

(
λi −

N

∑
j=1

λjxj

)
+ (ui − xi)Pi(t), (3)

(i = 1, 2, . . . , N; cf. Equation (1)). Here,

Pi(t) = ∑
k

δ(t− ti,k) (4)

represents a Poisson (or shot [22]) noise signal, δ(t) being the Dirac delta function. For
each i, the reset times ti,k (k = 1, 2, . . . ) are randomly distributed with uniform frequency
qi, so that the average lapse between ti,k and ti,k+1 is q−1

i for all k. The prefactor ui − xi in
the last term of Equation (3) insures that each reset event brings xi(t) to the reset value
ui. The Markovian stochastic Equation (3) can be dealt with by means of a series of
standard methods, notably, the Chapman-Kolmogorov equation, which governs the joint
probability distribution of the resources xi(t) [22]. It can also be treated numerically, by
a rather intuitive implementation of the Poisson process along discretized time [23]. In
the following sections, we use these techniques to study the collective dynamics of the
replicator population with resetting.

3. Dynamics of a Single Replicator with Resetting

As a first step in the analysis of our model, it is instructive to study the case of a single
replicator, N = 1. Equation (3) becomes

ẋ = λx(1− x) + (u− x)P(t), (5)

with P(t) = ∑k δ(t− tk). The random reset times tk have frequency q. The first term in the
right-hand side of Equation (5) makes it clear that, for a single replicator, the deterministic
contribution to the dynamics is equivalent to logistic growth [24]. Due to arbitrariness in
the choice of time units, the system has two independent parameters only: the ratio q/λ,
and the reset value u.

Figure 1 shows a pair of realizations of x(t), for u = 0.01 and two values of q/λ, exhibit-
ing qualitatively different behavior. For a relatively small resetting frequency, q/λ = 0.1
(upper panel), x(t) usually has enough time to reach the zone of logistic saturation, just
below the level of maximal resources (x = 1). The evolution is only occasionally punctu-
ated by reset events to x = u. On the other hand, when the resetting frequency is larger
(q/λ = 2.5, lower panel), x(t) barely transits the zone of exponential growth before it is
interrupted by a reset event. In this latter situation, the evolution is very similar to the
case where the deterministic part of the dynamics is purely multiplicative, which we have
analyzed in detail in a recent contribution [19].

Assuming that the stochastic process represented by Equation (5) reaches a stationary
regime for long times, the stationary distribution for x, f st(x), can be obtained from the
Chapman-Kolmogorov equation

∂

∂t
f (x, t) +

∂

∂x
[v(x) f (x, t)] = qδ(u− x)− q f (x, t) (6)

by fixing ∂t f ≡ 0. In the left-hand side of this equation, the second term represents the
probability drift induced by the deterministic logistic dynamics, with v(x) = λx(1− x).
The two terms in the right-hand side are gain and loss contributions originating in reset
events. The positive gain term is different from zero only at the reset value x = u, while the
negative term represents uniform probability loss at frequency q for all x. On the whole, of
course, the two terms compensate each other. For x 6= u, the effect of the delta-like gain
term can interpreted as a boundary condition which connects the solution in the intervals
x < u and x > u through the relation v(u+) f (u+, t) − v(u−) f (u−, t) = q for t > 0, as
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obtained from integration of Equation (6) around x = u. Using this boundary condition,
the stationary solution reads

f st(x) =
q
λ

(
1− u

u

)−q/λ

x−1−q/λ(1− x)−1+q/λ (7)

for u ≤ x < 1, and f st(x) = 0 otherwise. This time-independent distribution behaves as
a power law both for small and large values of x. For q/λ > 1, the exponent of 1− x is
positive, and the distribution has a maximum at x = u while it decays to zero as x → 1.

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

0 2 0 4 0 6 0 8 0 1 0 0
0 . 0 0
0 . 0 2
0 . 0 4
0 . 0 6
0 . 0 8

 

 

x(t
)
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x(t
)

� t
u

Figure 1. Two realizations of the solution to the stochastic Equation (5), for u = 0.01 and different
values of the ratio q/λ. (a) q/λ = 0.1. (b) q/λ = 2.5. Note different scales in the vertical axes.

For q/λ < 1, on the other hand, f st(x) exhibits a bimodal profile, with a local max-
imum at x = u and a divergence at x = 1. This case is illustrated in Figure 2, where
we plot the distribution as a function of both x (left panel) and 1− x (right panel) for
u = 0.01 and q/λ = 0.1. The log-log axes emphasize the power-law dependence toward
the two ends. Excellent agreement between analytical and numerical results supports the
assumption of a well-defined long-time stationary regime for the stochastic process. The
bimodal concentration of resources at the extreme values, with the ensuing depletion in the
intermediate zone, is a direct consequence of the competing effect of logistic growth, which
favors accumulation near the maximum, and of reset events, which populate the zone of
lower resources.

0 . 0 1 0 . 1 1

1

1 0

0 . 0 1 0 . 1 1

 

 

 f   s t ( x )

x

a b

 

 

1−x
Figure 2. Stationary probability distribution for the solution to the stochastic Equation (5), f st(x),
(a) as a function of x and (b) as a function of 1− x, for u = 0.01 and q/λ = 0.1. The line stands for the
analytical expression (7). Symbols correspond to a 100-column histogram, built from 4× 105 samples
of x(t) taken from a numerical realization of Equation (5) every 10 time units. The numerical solution
was realized by means of a standard finite-difference algorithm with a time step of 10−3 time units.
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4. Fluctuations and Clustering in Large Homogeneous Populations

Turning now the attention to the case with N > 1, we consider homogeneous replicator
populations, in which the parameters ui, λi, and qi in Equation (3) are the same for all
agents. In this situation, agents differ from each other in the individual realizations of the
sequence of stochastic reset events only. This homogeneity implies that none of them has
an a priori advantage based on fitness, or on the frequency and strength of resetting. Thus,
any nontrivial emergent collective behavior should be ascribed to the randomness in the
time distribution of reset events.

For a homogeneous population, Equation (3) reads

ẋi = λxi(1− xT) + (u− xi)Pi(t), (8)

with Pi(t) given as in Equation (4) with the same resetting frequency q for all i. In turn,

xT =
N

∑
j=1

xj (9)

stands for the total resources over the population. Assuming that, as in the case of N = 1,
the system attains a well-defined stationary state for long times, we expect that xT reaches
a constant value if N is large enough. Of course, this requires that resource fluctuations are
self-averaging over time and over the ensemble. If these conditions are fulfilled, the station-
ary distribution for individual resources satisfies Equation (6) with, now, v(x) = λx(1− xT).
The solution is

f st(x) =
quq/λ(1−xT)

λ(1− xT)
x−1−q/λ(1−xT), (10)

for u ≤ x < 1 and 0 otherwise. The absence of a logistic nonlinearity in Equation (8)
determines that f st(x) is now a pure power law; cf. (7).

The value of xT in Equation (10) must be obtained self-consistently, requiring that it
coincides with the total resources calculated from the distribution f st(x), namely

xT = N
∫ 1

u
x f st(x)dx =

Nqu
q− λ(1− xT)

. (11)

The only positive solution to this self-consistency equation is

xT =
λ/q− 1 +

√
(λ/q− 1)2 + 4Nuλ/q

2λ/q
. (12)

For a given value of Nu, the total resources vary monotonically from xT ≈ 1− q/λ ≈ 1
for q � λ to xT ≈ Nu for q � λ. In the first limit, when the resetting frequency is
negligible, the population is driven by almost purely replicator dynamics, and one single
agent typically concentrates all the resources. When, on the other hand, reset events
are dominant, the N agents always have resources close to the minimal value u. The
corresponding distributions are

f st(x) ≈


(u−1 − 1)−1x−2 for q� λ,

(u−q/λ − 1)−1x−1−q/λ for q� λ.
(13)

In the remaining of this paper, we fix the attention on the case q < λ. Indeed, much as
in the case of N = 1 analyzed in Section 3, for q > λ—when reset events dominate over
resource growth—the replicator dynamics hardly manifests itself, and evolution does not
essentially differ from that of a system of non-interacting multiplicative elements with
resetting ([19], cf. Figure 1b). For brevity, numerical results are presented for just a few
parameter sets, which we have found to be representative of more general situations.
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Following the same numerical techniques used in the case of a single replicator,
we have computed the stationary distribution of individual resources for populations
of different sizes, with Nu = 0.01 and q/λ = 0.1. According to the analytical result of
Equation (12), all these systems have the same total resources, xT ≈ 0.901. Symbols in
Figure 3 show histograms of f st(x) for three values of N, analogous to those presented in
Figure 2 for N = 1. Lines stand for the corresponding analytical prediction (10).

It is apparent that, although numerical and analytical results follow the same general
trend in the distribution of resources, there are important systematic deviations along the
whole interval of the variable x. The deviations decrease in magnitude as the population
grows, but are still non-negligible for a large system of 105 replicators. For this size and
large x, the slopes of the power-law tails in the numerical estimation and the analytical
prediction are very similar but, as for the values of the distributions, the former are about
one order of magnitude above the latter. The difference has the opposite sign at small x, as
shown in the inset. We show in the following paragraphs that these discrepancies originate
in the anomalous statistical behavior of the total resources xT(t). Its fluctuations along
time, in fact, decay very slowly with the system size N. This indicates that our assumption
that xT is constant, used to solve the stationary Chapman-Kolmogorov equation, may only
hold for extremely large populations, drastically limiting the usefulness of the analytical
approach in this kind of systems.

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100
10−6

10−3

100

103

106

 

 

 f   s t ( x )

x

 N  =1 0
 N  =1 0 3

 N  =1 0 5

10−7 10−6 10−5 10−4 10−3 10−20

1 x 1 0 7

x 1 0 4

 

 

x 1 0 2

Figure 3. Symbols: Numerical estimation of the stationary distribution f st(x) for three values of
N, with Nu = 0.01 and q/λ = 0.1. Lines: Analytical solution (10) to the stationary Chapman-
Kolmogorov equation, for the same parameters. Inset: The same data in log-linear scales, for a better
appraisal in the upper part of the vertical axis. The data for N = 10 and 103 have been scaled by the
factors indicated in the plot.

4.1. Anomalous Fluctuations of Total Resources

Figure 4a presents numerical estimations of the stationary distribution of xT along
time, in realizations of Equation (8) for different system sizes N. In all cases, f st(xT) is
sharply peaked around a large value xT ≈ 0.93, and exhibits a broad shoulder for smaller
xT . Overall, this behavior is compatible with the analytically predicted value, xT ≈ 0.901,
obtained from Equation (12). Note however the rather slow change of the shoulder at small
xT as N grows: a variation by a factor of 103 in the size of the population leads to a decrease
of just above one order of magnitude in the height of the distribution in that zone.
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N
Figure 4. (a): Stationary distribution f st(xT) of total resources xT , for four values of N, Nu = 0.01,
and q/λ = 0.1. (b): Coefficient of variation CV as a function of N. The dashed curve is a B-spline
approximation included as a guide to the eye. All results are estimations obtained from numerical
solutions of Equation (8) along 2× 108 time steps.

This weak dependence on N is remarkably apparent in the coefficient of variation of
xT , defined as

CV =
1
〈xT〉

√
1
T

∫ T

0
[xT(t)− 〈xT〉]2dt, (14)

where

〈xT〉 =
1
T

∫ T

0
xT(t)dt (15)

is the time average of xT(t), and T is a sufficiently long averaging interval. The coefficient
CV encompasses overall statistical properties of f st(xT) in a single quantity, as a measure
of the fluctuations of xT(t) relative to its average. Figure 4b is a log-log plot of CV as
a function of N. Across the five orders of magnitude covered by the system sizes, the
coefficient of variation only decreases by a factor of 3, and there is no clear indication that
it might approach zero as N → ∞. In fact, within this rather wide interval of N, it lacks
the typical power-law trend that characterizes the system-size dependence of fluctuations
in self-averaging statistical systems (usually, N−z with 0 < z < 1) [25]. This hints at a
strongly heterogeneous behavior within the population, and calls for a closer look at the
time evolution of individual replicators.

4.2. Heterogeneity and Clustering in the Evolution of Resources

The darkest curve in Figure 5a shows the evolution of total resources xT(t) in a
population of N = 104 replicators, with Nu = 0.01 and q/λ = 0.1. At the initial time,
all the replicators have identical resources, x(0) = u. We see that, most of the time, xT(t)
fluctuates close to its maximum value. Intermittently, however, total resources exhibit sharp
collapses where xT(t) suddenly drops to a small value, followed by a rapid recovery.

Other curves in Figure 5a show xi(t) for the three agents with highest resources at
each time. These curves demonstrate the typically heterogeneous resource distribution
over the population: most of the time, these three replicators accumulate a large fraction
of the total resources. Comparison with xT(t), moreover, illustrates how collapses in total
resources usually coincide with a reset event of the richest replicator.
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Figure 5. (a): Evolution of total resources, xT(t), and of individual resources for the three replicators
with largest xi(t) at each time, in a realization with N = 104, Nu = 0.01, and q/λ = 0.1. (b): Entropy
of individual shares, Equation (16), for the same realization. The dashed segment has the slope
analytically predicted for the decrease of H(t) with the two-cluster model of Section 4.3.

As a more compact characterization of heterogeneity in the distribution of resources
over the population, we have computed the entropy of the individual shares xi/xT as a
function of time:

H(t) = −
N

∑
i=1

xi(t)
xT(t)

ln
xi(t)
xT(t)

. (16)

This quantity is depicted in Figure 5b for the same realization as in the upper panel. It
shows that, in the intervals between collapses of xT(t), resources progressively accumulate
in less and less replicators. Resetting of one of the replicators with high resources, in
turn, entails a sudden growth of H(t), with an ensuing decrease as resources become
increasingly concentrated.

During the intervals between collapses, we expect the population to be divided into at
least two groups with different resource distributions inside each group. Those replicators
that have undergone a reset event since the latest collapse should have low resources, close
to the resetting level u. On the other hand, replicators that have evolved without resource
resetting in the same period should possess, on the average, relatively higher resources,
with a distribution closer to the equilibrium profile of Equation (10). In a succession of
several consecutive collapses, the same mechanism may generate more than two groups,
leading to a clustered, markedly heterogeneous resource distribution.

Clustering in the resource distribution is well illustrated by a Zipf plot, in which
individual resources are represented against the rank of each replicator in a list sorted by
decreasing values of xi. Figure 6 shows snapshots of this kind of plot at four times, in a
system of N = 5000 replicators. Other parameters are as in Figure 5. For λt = 89, the first
collapse has not taken place yet. In this situation, except for the first-rank replicator which
already monopolizes practically all resources, the distribution over the population closely
follows the equilibrium profile, whose slope is shown by the dashed line. As time elapses,
the occurrence of collapses creates clusters, which in the Zipf plots appear as more or less
flat plateaus separated by much sharper steps. In the Supplementary Video S1, which
shows an animation of the Zipf plots for the same realization along time, the appearance,
evolution, and fading of these plateaus is apparent.
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Figure 6. Four snapshots of a Zipf plot of individual resources versus rank in a decreasing list of
resources, in a population of N = 5000 replicators with Nu = 0.01 and q/λ = 0.1. The dashed
segments show the slope that the plot should exhibit if the population had reached the equilibrium
distribution of Equation (10). Plateaus of different sizes at different times reveal the formation of
groups and, thus, clustering in the resource distribution.

Intermittent collapses of total resources and the consequent clustering of resource
distribution, leading to an overall highly non-uniform behavior inside the population, are
likely determinants of the differences observed between analytical and numerical results,
as illustrated by Figure 3, and the slow decay of fluctuations of Figure 4b. In the following,
under a few simplifying assumptions, we provide a stylized description for the behavior
of the entropy H(t) and a prediction for the typical time between collapses, as well as an
argument which explains the extremely slow decay of fluctuations in total resources as the
system size grows.

4.3. Two-Cluster Model and the Decay of Fluctuations

As a simplified analytical approach to heterogeneity in the replicator population,
we propose a toy model in which, at all times between collapses, total resources have
the value xT given by Equation (12), and the ensemble is divided into just two clusters.
The first cluster contains the Nr(t) replicators whose resources have been reset after the
latest collapse, occurred at time tc. The second cluster comprises the N − Nr(t) remaining
replicators. Moreover, we assume that the individual resources in the first cluster are all
equal to the reset level u, while the remaining resources are homogeneously distributed
over the second cluster. This implies that the total resources in each cluster are Nr(t)u and
xT − Nr(t)u, respectively. With these assumptions, Equation (16) yields

H(t) = −
[

1− Nr(t)u
xT

]
ln

1− Nr(t)u
xT

N − Nr(t)
− Nr(t)u

xT
ln

u
xT
≈ ln[N − Nr(t)], (17)

where the approximation of the rightmost side holds for u� xT .
As successive reset events occur, replicators from the cluster of high resources are

transferred to the other cluster at rate q so that, on the average, the number of replicators in
the former satisfies the equation

d
dt
[N − Nr(t)] = −q[N − Nr(t)], (18)
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with N − Nr(tc) = N at the time of the latest collapse. Namely,

N − Nr(t) = Ne−q(t−tc). (19)

Replacing into the approximation for the entropy in Equation (17), we find

H(t) ≈ ln N − q(t− tc), (20)

which predicts an approximate linear decay between collapses. The slanted dashed segment
in Figure 5b has the slope predicted by this result, displaying very good agreement with
the behavior of the numerically obtained signal for H(t).

Our approximation for the entropy H(t) makes it also possible to estimate the typical
time between collapses, τ. In fact, in the two-cluster model a collapse will occur when
just a single replicator remains in the high-resource cluster, N − Nr(t) = 1, accumulating
essentially all the resources. In this case, H = 0 which, according to Equation (17), is the
entropy attained at time t = tc + q−1 ln N. On the average, the last replicator will be reset
after an additional time q−1. Thus, we have

τ =
1 + ln N

q
. (21)

In our simplified picture, τ is nothing but the period of the successive decays of H(t)
between its maximum and its minimum. Figure 7a shows the power spectrum P(ν) of an
actual numerical calculation of H(t) in a system with N = 1000, Nu = 0.01, and q/λ = 0.1.
Its broad profile exposes the stochastic nature of the mechanisms at play in the variation of
the entropy, but shows a clear peak at a well-defined frequency, which reveals an underlying
time-periodic pattern. The vertical dashed line demonstrates that this frequency coincides
quite sharply with the prediction of Equation (21), ν = τ−1 = q/(1 + ln N). We have
performed this same comparison for different values of N, evaluating the main period of
of numerical signals for the entropy from the position of the highest peak in their power
spectra. In Figure 7b, results are compared with Equation (21), represented by the dotted
line, with very good agreement.
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P(ν
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1 0 2 1 0 4 1 0 6
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��

N
Figure 7. (a): Power spectrum of a time signal for the entropy H(t), numerically obtained in a
replicator population with N = 1000, Nu = 0.01, and q/λ = 0.1. The vertical dashed line is the
frequency predicted for H(t) by the two-cluster model, in the approximation Nu� 1. (b): Average
time between collapses estimated from the power spectrum of the entropy (symbols) and from the
analytical prediction ((21), dashed line), as a function of N, with the same parameters as in panel (a).
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Finally, along the same lines of approximation, we are able to give an explanation
for the extremely slow decay of fluctuations in the total resources xT as the system size
N grows, revealed by the weak dependence on N of the stationary resource distributions
f st(x) and f st(xT) (Figures 3 and 4a) and explicitly illustrated in Figure 4b. The time
signal of xT(t) shown in Figure 5a suggests that fluctuations in total resources are mainly
dominated by the collapses associated with resetting of the replicators that accumulate
most of the resources. In a highly stylized model for the signal xT(t), we can assume that
the statistical distribution of total resources is given by a dichotomic process, where—in the
interval between collapses—xT stays at its minimum value Nu during a “recovery time”
tR, and at its (approximate) equilibrium value 1− q/λ during the (average) remaining time
τ − tR. Namely,

f st(xT) =
tR
τ

δ(xT − Nu) +
(

1− tR
τ

)
δ
(

xT − 1 +
q
λ

)
. (22)

From this Ansatz, the calculation of the mean value and the standard deviation of xT is
straightforward. In the limit Nu� 1, we find

〈xT〉 =
(

1− tR
τ

)(
1− q

λ

)
, σxT =

√
tR
τ

(
1− tR

τ

)(
1− q

λ

)
, (23)

which yields a coefficient of variation

CV =

√
tR/τ

1− tR/τ
. (24)

If tR is interpreted as the time needed by xT(t) to recover from its small value just after
a collapse up to its equilibrium value, we do not expect tR to depend on N, at least
for sufficiently large systems. Indeed, according to Equation (8), total resources should
approximately obey ẋT = λxT(1− xT)− qxT , which is independent of N. If this is the case,
Equations (21) and (24) imply that the coefficient of variation of xT decays as

CV ∼
1√

ln N
(25)

for N → ∞.
Symbols in Figure 8 correspond to results for CV as a function of ln N for three different

values of q/λ, obtained from numerical solutions of Equation (8) analogous to those of
Figure 4b. Dashed lines stand for the asymptotic behavior predicted by Equation (25).
Numerical results closely follow the prediction, even for relatively small values of N. On
the one hand, Equation (25) shows that CV converges to zero as N grows, which validates
the Chapman-Kolmogorov formulation for sufficiently large systems. On the other, the
same result proves the extremely slow decay of fluctuations with the population size. Just
as an illustration, suppose that one wants to diminish fluctuations in xT by a factor of 10,
starting from results for a system of 104 replicators. The new system should have nothing
less than 10400 replicators (!), a size clearly beyond the reach of any presently available
computational means.
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Figure 8. Coefficient of variation of total resources CV as a function of ln N, for Nu = 0.01 and three
values of q/λ (note log-log scales). Symbols correspond to numerical results, and dashed lines stand
for the asymptotic behavior predicted in Equation (25).

5. Conclusions

Replicator dynamics with constant fitnesses is a basic model of agent competition,
where one or a few agents eventually accumulate all the available resources. In this paper,
we have investigated whether this concentration can be mitigated by stochastic resetting in
the case of a homogeneous population. Reset events are randomly distributed in time, and
force the dynamics of randomly drawn agents to start anew from a small value. Analytical
results based on the Chapman-Kolmogorov equation show that, in fact, the long-time
distribution of individual resources approaches a smooth profile, with a power-law decay
of probability as the amount of resources grows.

However, numerical evidence reveals that—even for long times and large populations—
the analytical prediction is, at most, an approximation to the actually observed resource
distributions. A closer inspection of the dynamics of individual agents shows that the
overall behavior is still governed by a few agents, which occasionally accumulate most
of the total resources. When the resources of one of these wealthier agents are reset, total
resources “collapse”, and the resource distribution suddenly becomes much more even.
Subsequent collapses of this kind lead the distribution to develop clustering, separating
the population into groups of agents with similar individual resources. This heterogeneity
is responsible for the sustained differences between numerical and analytical results. These
collapse-driven dynamics are also responsible for the extremely slow decay of fluctuations
with the system size, which jeopardizes the use of the mean-field approach implicit in the
Chapman-Kolmogorov Equation (6) for any practically attainable number of agents. Such
anomalous statistical behavior is reminiscent of extreme-value statistics, whose relevance
to economic processes has been emphasized in various contexts [20,26,27].

The present study complements recent work on cooperative agents subject to stochas-
tic resetting [19], where we have shown that cooperation leads to resource redistribution,
distorting the power-law distributions derived from the sole effect of reset events. These
contributions represent a first attempt to characterize the collective behavior of interacting
agents under the action of resetting, thus combining deterministic dynamics with stochas-
tic ingredients. Other interactions of economic and ecological interest (e.g., parasitism,
predator-prey, etc.) are worth considering in future work on the subject.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/e25010099/s1, Video S1: Animation of Zipf plots for resource
distribution over the replicator population (cf. Figure 6).
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