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Abstract
Quinoa (Chenopodium quinoa), an Andean pseudocereal, attained global popularity
beginning in the early 2000s due to its protein quality, glycemic index, and high

fiber, vitamin, and mineral contents. Pitseed goosefoot (Chenopodium berlandieri),

Assigned to Associate Editor Agnieszka quinoa’s North American free-living sister species, grows on disturbed and sandy

Golicz.
substrates across the North America, including saline coastal sands, southwestern
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deserts, subtropical highlands, the Great Plains, and boreal forests. Together
with South American avian goosefoot (Chenopodium hircinum) they comprise
the American tetraploid goosefoot complex (ATGC). Superimposed on pitseed
goosefoot’s North American range are approximately 35 AA diploids, most of
which are adapted to a diversity of niche environments. We chose to assemble
a reference genome for Sonoran A-genome Chenopodium watsonii due to fruit
morphological and high (>99.3%) preliminary sequence-match similarities with
quinoa, along with its well-established taxonomic status. The genome was assembled
into 1377 scaffolds spanning 547.76 Mb (N50 = 55.14 Mb, L50 = 5), with 94%
comprised in nine chromosome-scale scaffolds and 93.9% Benchmarking Universal
Single-Copy Orthologs genes identified as single copy and 3.4% as duplicated.

Abbreviations: ATGC, American tetraploid goosefoot complex; BUSCO, Benchmarking Universal Single-Copy Orthologs; COG, cluster of orthologous

genes; MLE, maximum likelihood estimation; NADH, non-adhering pericarp; TE, transposable element.
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1 | INTRODUCTION

Quinoa (Chenopodium quinoa Willd.) is an Andean-origin
pseudocereal having excellent seed protein for human con-
sumption (Wu, 2015). Aside from this and its other nutritional
benefits, such as high fiber, essential mineral content, and
excellent fatty acid profile, quinoa is recognized for its tol-
erance to drought, salinity, and cold stresses (Azurita-Silva
et al., 2015; Bhargava & Srivastava, 2013; Biondi et al.,
2015). On the other hand, quinoa’s poor heat tolerance
has presented an impediment to its successful introduc-
tion into lowland tropical and subtropical environments
(Zurita-Silva et al., 2014). Fortunately, quinoa produces
mostly fertile hybrids when cross-pollinated with its free-
living, heat-tolerant North American (pitseed goosefoot,
Chenopodium berlandieri Moq.) and South American (avian
goosefoot, Chenopodium hircinum Schreb.) sister species,
which together constitute the American tetraploid goosefoot
complex (ATGC, 2n = 4x = 36, AABB subgenomes; Jellen
et al., 2019; Wilson & Manhart, 1993). The ATGC also
includes the Mesoamerican domesticated vegetable and pseu-
docereal forms of huauzontle (C. berlandieri Moq. Subsp.
Nuttaliae (Saff.) H. D. Wilson & Heiser; Cepeda-Cornejo
et al., 2016; Wilson & Heiser, 1979).

Since the ATGC’s AA and BB 18-chromosome diploid
ancestors are potential genetic resources for improving quinoa
and huauzontle, their characterization is an important step
in determining the tertiary gene pool for these cultivated
species. At the diploid level, the ATGC’s subgenome B is
believed to only exist among Eurasian diploids C. ficifolium
Sm., C. suecicum Murr., and C. ucrainicum Mosyakin &
Mandak (Mandék et al., 2018; Mosyakin & Mandak, 2020;
Walsh et al., 2015). Significantly, Subedi et al. (2021) recently
reported on the potential of C. ficifolium as a model system
for studying quinoa’s molecular biology and physiology. In
contrast, the A genome is found throughout the New World
in a wide array of diploids that are adapted to mostly dis-
turbed environments including highlands and subtropical to

A high degree of synteny, with minor and mostly telomeric rearrangements, was
found when comparing this taxon with the previously reported genome of South
American C. pallidicaule and the A-subgenome chromosomes of C. quinoa. Phy-
logenetic analysis was performed using 10,588 single-nucleotide polymorphisms
generated by resequencing a panel of 41 New World AA diploid accessions and
the Eurasian H-genome diploid Chenopodium vulvaria, along with three AABB
tetraploids previously sequenced. Phylogenetic analysis of these 32 taxa positioned
the psammophyte Chenopodium subglabrum on the branch containing A-genome
sequences from the ATGC. We also present evidence for long-range dispersal of
Chenopodium diploids between North and South America.

temperate steppes, deserts, alkaline basins, seashores, and
forests (Table S1, Figure S1; Aellen, 1960; Aellen & Just,
1943; Benet-Pierce & Simpson, 2010, 2014, 2017, 2019;
Clemants & Mosyakin, 2004; Giusti, 1970; Mosyakin & Cle-
mants, 1996; WCVP, 2022). This pattern of species radiation
(Gavrilets & Losos, 2009; Schluter, 1996) in the AA diploids
appears to be unusual within the genus Chenopodium and
elucidation of the mechanism responsible for this variation
invites further study.

Whole-genome assemblies can serve as powerful resources
for assessing phylogenetic relationships (Eisen & Fraser,
2003), allelic diversity (The 100 Tomato Genome Sequenc-
ing Consortium et al., 2014), domestication pathways (Xie
et al., 2019), and evolution of chromosome structural varia-
tion (Kamal et al., 2022). Mangelson et al. (2019) reported
a short read-based, Hi-C scaffolded whole-genome assem-
bly for the domesticated Andean A-genome diploid kafiiwa
or cafiahua (Chenopodium pallidicaule Aellen). Various phy-
logenic studies (Brown et al., 2015 ; Jarvis et al., 2017,
Storchov4 et al., 2015 ; Walsh et al., 2015), however, indi-
cated that the North American AA diploids are a distinct clade
relative to the AA diploids of South America (including C.
pallidicaule). In order to provide a suitable reference genome
that is more closely related to the broad group of North
American AA diploids, we selected Watson’s stinking goose-
foot (Chenopodium watsonii A. Nelson) for whole-genome
sequencing. Watson’s stinking goosefoot is a primarily auto-
gamous annual forb native to the Upper Sonoran Zone,
Colorado Plateau, and High Plains, particularly on high-
fertility, disturbed, semi-arid sites. A preliminary analysis of
read matches with quinoa A-genome sequences (Jellen et al.,
2019) revealed 99.31% similarity between this subgenome
and C. watsonii, higher match values than were measured with
quinoa versus Chenopodium sonorense (99.23%) or quinoa
versus Andean C. pallidicaule (98.53%). In addition, Wat-
son’s stinking goosefoot is a well-characterized taxonomic
entity within an otherwise poorly characterized genus (Benet-
Pierce & Simpson, 2014, 2017, 2019). This whole-genome
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assembly was then used to determine phylogenetic relation-
ships within a panel of mostly North American AA diploid
taxa but including several South American A-genome diploid
samples.

2 | Materials and Methods

2.1 | DNA collection and long-read
sequencing

The C. watsonii accession BYU 873 (Table S1, Figure S1),
collected in rural Yavapai County, Arizona, was grown hydro-
ponically in a growth chamber set to a photoperiod of 11 h
with broad-spectrum lighting. Temperature controls were set
between 18 and 20°C. The hydroponics solution was made
using 27 g of MaxiGrow Hydroponics Plant Food (General
Hydroponics, Sevastopol, CA) dissolved in 16 L of deionized
water. The hydroponics solution was replaced every 2 weeks.

Prior to extraction, the C. watsonii plant was dark treated
for 72 h. Young leaf tissue was harvested and DNA extracted
using a modified protocol from Oxford Nanopore Technolo-
gies (Oxford, UK), “High Molecular Weight gDNA Extrac-
tion from Spinach Leaves,” using the QIAGEN (Hilden,
Germany) Genomic-top 500/G kit (Supplement 1). Following
extraction, DNA quality was analyzed using the Thermo Sci-
entific (Waltham, MA) NanoDrop One Microvolume UV-Vis
Spectrophotometer to check 260/280 and 260/230 absorbance
ratios and Invitrogen' (Waltham, MA) Qubit 3 fluorometer to
estimate DNA concentration. Non-fragmented samples were
prepared using the DNA Clean & Concentrator-5 kit (ZYMO
Research, Irvine, CA). The protocol included with the ZYMO
kit was followed to produce fragmented samples. Long-read
library preparation was done using the SQK-LSK1009 kit from
Oxford Nanopore Technologies with Quick T4 DNA Lig-
ase (NEB, M2200L) and 1D Genomic DNA by the ligation
MinION protocol (Oxford Nanopore Technologies). Long-
read sequencing of the C. watsonii genome was completed
using R9 flow cells from Oxford Nanopore Technologies
on the MinION sequencing machine. Short-read sequencing
was performed using the same DNA on an Illumina (San
Diego, CA) HiSeq platform with 350-bp libraries and 150-bp
paired-end sequencing.

2.2 | Whole-genome assembly of C. watsonii
Long-read sequence data quality was checked using Min-
IONQC (Lanfear et al., 2018). Nanopore reads were trimmed
and filtered using NanoFilt (De Coster et al., 2018) using the
following options: —q = 8, headcrop = 25, and —1 = 2000.
Adaptor sequences were trimmed using Porechop v.0.2.3
(Wick, 2017) with the verbosity option set to 2.

Core Ideas

* We report the genome assembly for a North
American A-genome Chenopodium diploid quinoa
relative, Chenopodium watsonii.

* The genome of C. watsonii is similar to cultivated
Chenopodium pallidicaule and the A genome of
quinoa.

* Resequencing of 41 mostly North American
diploids identified Chenopodium subglabrum as
being closest to quinoa’s A-subgenome.

Illumina short-read data was trimmed, removing remnant
adapter sequences, using the ILLUMINACLIP option from
Trimmomatic v0.39 (Bolger et al., 2014). The following
options were used within the pipeline: leading and trailing set
to 20 bp; a sliding window of 4:20; and a minimum length of
75 bp.

A preliminary genome (BioProject PRINA922607; acces-
sion SRR23112393) was assembled using CANU v.1.8
(Koren et al., 2017). Celera Assembler NU (CANU) param-
eters were set with normal corMhapSensitivity, 40 corOut-
Coverage, and parallel ovsMethod. The CANU-assembled
genome was polished using two rounds of RACON (Vaser
et al., 2017); the first round used the ONT long reads
and the second round with trimmed Illumina reads. Phase
Genomics (Seattle, WA) produced the scaffolded assembly
using the polished CANU assembly and Hi-C data from
dark-treated, liquid nitrogen flash-frozen leaf tissue. Contam-
inant reads were identified and removed using BlobTools
(Laetsch & Blaxter, 2017). Chloroplast and mitochondrial
DNA was identified and removed using NCBI BLAST
against the quinoa chloroplast and mitochondrial genomes
(Maughan et al., 2019). The HiC-based assembly is avail-
able under NCBI BioProject PRINA922607 as accession
SRR23112395.

2.3 | Transcriptome assembly

Leaf, root, and stem tissues from the hydroponically grown
C. watsonii plant, in addition to a whole seeding, were used
for RNA extraction using Trizol (Invitrogen"") and QITAGEN
RNeasy spin column per the manufacturers’ instructions.
RNA from each tissue and the whole seedling were combined
in equal parts to create a single bulk sample. Library prepa-
ration and transcriptome sequencing was completed using the
PacBio (Menlo Park, CA) Iso-Seq platform on the Sequel II
instrument at the BYU DNA Sequencing Center (Provo, UT).
cDNA was prepared from the total RNA using a NEBNext®
single cell/low input cDNA synthesis and amplification kit
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(E6421L) which uses a template switching method to gener-
ate full length cDNAs (New England BioLabs, Ipswich, MA).
IsoSeq libraries were prepared from the cDNA according to
standard protocols using the SMRTbell v3.0 library prep kit
(Menlo Park, CA).

The transcriptome was assembled using the Iso-Seq reads
and the IsoSeq v3 pipeline from the PacBio SMRT®
Tools software. The Iso-Seq reads were aligned to the
Hi-C scaffolded assembly using the pbmm?2 pipeline,
another tool from SMRT® Tools. Lastly, the transcripts
were collapsed using IsoSeq v3. Transcriptome data is
available in NCBI BioProject PRINA922607 as accession
SRR23112394.

2.4 | Repeat analysis and gene annotation
RepeatModeler2 v.2.0.1 (Flynn et al., 2020) identified novel
repeats in the assembled genome and RepeatMasker v.4.1.2
(Smit et al., 2013) classified the identified repeats using the
RepBase/RepeatMasker database. MAKER v.2.31.0 (Bow-
man et al.,, 2017; Holt & Yandell, 2011) was used to
annotate the final assembly in conjunction with AUGUSTUS
(Stanke & Morgenstern, 2005) ab initio gene predications, the
uniprot_sprot database from UniProtKB, sugar beet (Dohm
et al., 2012), and quinoa protein sequences from Jarvis et al.
(2017) for expressed sequence tags (EST) and protein homol-
ogy. Genome completeness of the Hi-C scaffold assembly
was estimated using Benchmarking Universal Single-Copy
Orthologs (BUSCO) v5 (Simio et al., 2015) and two orthol-
ogous gene sets, the Embryophyte (embryophyta_obd10)
and Viridiplantae (viridiplantae_obd10). A Circos plot of
the assembled genome was created using Circa (https://
omgenomics.com/circa) with concentric ring diagram ele-
ments consisting of chromosome sizes, gene density, GC
content, and repeat distributions. The consensus sequence
for telomeric repeats in plants was identified as TTTAGGG
(Richards & Ausubel, 1988). The positions of the telomeric
repeats within the assembly were determined using BLAST,
as previously described (Jarvis et al., 2017).

2.5 | Genome comparison

Synteny plots comparing the coding sequences of diploid C.
watsonii and C. pallidicaule, as well as allotetraploid quinoa,
were generated using CoGe SynMap (https://genomevolution.
org/coge). DAGchainer (Haas et al., 2004) output file from
the C. watsonii versus C. pallidicaule SynMap with the
MCScanX toolkit (Wang et al., 2012) generated a collinearity
file which was visualized using SynVisio (Bandi & Gutwin,
2020).

2.6 | Resequencing, variant detection, and
phylogenetic analysis

Seeds from 41 A-genome Chenopodium diploid accessions,
one H-genome diploid, and three AABB tetraploid accessions
from the germplasm collection at BYU and from small collec-
tions in South America (Table S2) were sterilized with 10%
bleach, manually scarified, and germinated on filter paper in
9 cm Petri plates. Samples were treated with 1 mL of 30
MM potassium nitrate, 1 mL of 100 ppm gibberellic acid,
and sprayed with Hi-Yield Captan 50 W Fungicide. Young
leaf tissue from the established plants was collected, freeze-
dried, and DNA was extracted using a modified mini-salts
extraction protocol (Supplement 2) (Dellaporta et al., 1983;
Todd & Vodkin, 1996). Quality control parameters for con-
centration (<300 ng/mL) and contamination (260/280 and
260/230 = 2.0) were followed before sequencing. All DNA
samples were sent to Novogene Corporation, Inc. (San Diego,
CA) for Illuming NovaSeq 6000 whole-genome sequencing
with 10x coverage of 150-bp paired-end reads from a 500-bp
insert library. The three tetraploid samples were previously
sequenced by Jarvis et al. (2017).

Raw data in File ASsembly Tool Q (FASTQ) files, approx-
imately 500 Mb per accession, were trimmed using the
ILLUMINACLIP option from Trimmomatic v0.39 (Bolger
etal., 2014) with the same parameters as previously described.
The trimmed reads were subsequently mapped to the C. wat-
sonii reference genome using Minimap2 v2.17 (Li, 2018)
with a minimum read coverage depth of two and a minimum
allele frequency of 51%. The output SAM files were sorted,
duplicate reads were removed using fixmate and markdup
and filtered for quality MAPping Quality (MAPQ > 45)
using SAMtools v1.9 (Li, 2009). The filtered SAM files were
subsequently converted to BAM files using the view tool
from SAMtools. All DNA sequence files are publicly avail-
able under NCBI BioProject PRINA922607 as accessions
SRR23112388-SRR23112435.

2.7 | SNP calling and phylogenetic analyses

Single-nucleotide polymorphisms (SNPs) were identified
using the BAM files and InterSNP, a program within the
BamBam v1.4 pipeline (Page et al., 2014) which produced
a SimpleSNP file containing the SNP and genomic location
for each of the accessions relative to the reference genome.
Parameters for InterSNP included a minimum read coverage
of 5, missing data <10%, and since these species are highly
autogamous, heterozygous SNPs were excluded from down-
stream analyses. The SNPhylo v20160204 pipeline (Lee et al.,
2014) was used to filter representative SNPs using 500,000 bp
sliding windows. SNPs were removed that had >10% missing
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data, a minor allele frequency <15%, and subject to a linkage
disequilibrium threshold equal to 0.3. The IQ-TREE (Nguyen
et al., 2015) pipeline in conjunction with the PHYLIP SNP
dataset (Felsenstein, 1989) produced by SNPhylo was used
to generate a phylogenetic tree based on maximum likelihood
estimation (MLE) with a bootstrap of n = 1000 and correcting
for ascertainment bias using the +ASC option. SplitsTree5
(Huson, 1998) and FigTree v1.4.4 (Rambaut, 2010) were
used for tree visualization. Loci were also assumed to be
homozygous, as these species are primarily autogamous.

A MLE phylogenetic tree was generated using 1600
single-copy orthologous genes identified with BUSCO and
subsequently concatenated into whole-gene alignment super
matrices for either complete genomes (if diploid) or the sep-
arated subgenomes (if allopolyploid) from whole-genome
assemblies of six species: three Chenopodium diploids (C.
pallidicaule, C. suecicum, C. watsonii); two Chenopodium
polyploids ([Chenopodium formosanum Koidz., BBCCDD
genome composition; Jarvis et al., 2022] and C. quinoa
[AABB genome composition; Jarvis et al., 2017]); and one
Atriplex diploid (Atriplex hortensis L.; Hunt et al., 2020).
The 1600 genes were aligned with MAFFT v7.490 (Katoh
et al.,, 2002). ALISCORE (Misof & Misof, 2009) and Ali-
CUT (Kueck, 2017) were used to remove regions of the
alignments that were indistinguishable from random noise.
The alignments were concatenated using the FASconCAT-G
v1.11 software (Kueck & Longo, 2014) and a tree generated
using IQ-TREE v2.1.3 (Nguyen et al., 2015) with n = 1000
bootstrap support, which was then visualized using FigTree
v1.4.4 (Rambaut, 2010). To ensure that our phylogeny was
not biased by incomplete lineage sorting, we also created a
multi-species coalescent tree by first estimating1600 individ-
ual gene trees using IQ-TREE (v. 2.1.3), then using ASTRAL
(v. 5.7.1) to estimate the species tree from this dataset.

3 | RESULTS AND DISCUSSION

3.1 | Whole-genome assembly of C. watsonii

Oxford Nanopore long-read sequencing produced 45.5 Gb of
data included in 3.67 million reads, representing a genome
coverage of ~82x. The N50 from the sequencing reads was
13,761 bp with an average read length of 12,383 bp with a
maximum read size of 190 kb and average quality score of
13. The primary contig assembly consisted of 3517 contigs
with a total assembly length of 551.37 Mb. The contig N50
was 553.04 kb with an L50 of 231. The contig assembly con-
tained 3520 gaps and 3533 Ns (Table 1). Five unincorporated
contigs determined to be derived from contaminating insect
DNA (Thysanoptera and Coleoptera) were identified using
Blobtools and subsequently removed; one of these contigs
spanned 29,766 bp while the others were less than 7000 bp.

TABLE 1
primary contig and Hi-C scaffold assemblies.

Assembly statistics for the Chenopodium watsonii

Assembly statistics Primary Hi-C

Assembly size (Mb) 551.37 547.76
Number of contigs/scaffolds, respectively 3517 1377
N50 (Mb) 0.553 55.14
L50 231 5
Longest (Mb) 5.17 64.48
N count 3533 187907
Gaps 3520 5338
N90 (Mb) 0.062 53.65
L90 1399 9

The Blobplot produced by Blobtools showed an average GC
content of 37% with read coverage averaging around 80X
(Figure S2).

Chromatin-contact mapping using 163 million read pairs
(48.0 Gb) of 2 x 150 bp paired-end Illumina Hi-C data
yielded nine chromosome-length pseudomolecule scaffolds,
representing 94% of the total contig sequence data. These
pseudomolecules presumably correspond to the nine (n = 9)
haploid chromosomes of C. watsonii (Figure 1). An additional
1368 contigs/scaffolds were also present in the final assem-
bly. They represented <6% of the total, were small (averaged
24 kb), and had a high repeat content making them difficult
to reliably place with Hi-C data. The Hi-C chromosome-
scale assembly produced a total genome length of 547.76
Mb and an N50 of 55.14 Mb with an L50 of 5 (Table 1).
Each chromosome-scale scaffold contained a range of clus-
tered contigs from 171 to 240, representing a total of 1844
contigs (52.2%) from the primary assembly. Chromosome
lengths varied from 64.46 to 54.81 Mb, with an average length
of 57.14 Mbp. The N count was 188 kb with 5364 assem-
bly gaps. All gaps introduced by scaffolding with the Hi-C
data consist of 100 Ns. Interestingly, while both the primary
contig assembly (551.37 Mb) and Hi-C pseudochromosome
assembly (547.76 Mb) genome-size estimates are concordant
with each other, they are somewhat lower than the published
flow cytometry-based genome size estimate of 645.48 Mb
(Mandék et al., 2016), presumably due to incomplete coverage
of highly repetitive regions containing ribosomal and satellite
repeats.

3.2 | Repeat analysis

Repeat Modeler identified 942,183 repetitive sequences, com-
prising 60.4% (330 Mb) of the assembled genome. Repeat-
Masker categorized the repetitive sequences as follows: DNA
transposons made up 6.7% of the repetitive sequences; of
these, 1.7% were classified as long interspersed elements
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(A) Chenopodium watsonii chromosomes. Nine ring bivalents at diakinesis stage of prophase I. (B) Hi-C linkage density heat map

with nine distinct scaffolds. (C) BUSCO assembly statistics against the Embryophyta and Viridiplantae orthologous gene sets for the assembled

genome, transcriptome, and protein annotation.

(LINEs) and 32.7% were classified as long terminal repeats
(LTRs), specifically Copia (14.9%) and Gypsy (17.6%) retro-
transposons. In contrast, the C. pallidicaule genome was only
8.5% Copia elements, a significant decrease that is possibly
due to an even less complete assembly of the C. pallidicaule
genome (Mangelson at al. et al., 2019), which was based
on Illumina short-read sequencing technology. We note that
the C. pallidicaule assembly (452 Mb) was also substantially
smaller than the C. watsonii genome assembly (551 Mb) pre-
sented here, suggestive that the use of long-read technology in
the C. watsonii assembly produced a more contiguous assem-
bly. As mentioned above, Mandék et al. (2016) reported four
AA diploids as having haploid genome sizes ranging from 597
to 637 Mb, along with the calculated size of the A-subgenome
of quinoa (524 Mb; Jarvis et al., 2017). Alternatively, it is
possible that the C. watsonii genome has had an expansion
of the LTR elements since the divergence of the two species,

resulting in the observed discrepancy. Another salient compo-
nent of the C. watsonii repeatome is the 16.9% of the genome
that remains unclassified. The high percentage of unclassified
repeats is not unexpected as there is little representation of the
Amaranthaceae in the Repbase database, thus, these elements
are potentially unique to the chenopods. Low-complexity ele-
ments, including simple sequence repeats (SSRs), microsatel-
lites, and rRNA, comprised an additional 2.2% of the genome
(Table S3).

A spatial distribution of key genetic elements along the
nine chromosomes of C. watsonii is provided in Figure 2. As
expected, GC content (37.3%), Gypsy and Copia retroelement
concentrations, and 12-13P centromeric repeats (Kolano
etal.,2011) are elevated in the repeat-rich, gene-poor pericen-
tromeric regions and are less abundant distally. Chromosomes
2,3,4,6,7, and 9 show clear peaks of telomeric sequence
distributed at the ends of one or both arms (Richards &
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FIGURE 2 Genome overview of Chenopodium watsonii in 500 kb windows. Track 1 (outside): Chromosome and sizes; Track 2: GC content
with mean (blue line = 37.3%; scale 33%-43%); Track 3: Annotated gene density; Track 4: LTR-Gypsy TE distribution; Track 5: LTR-Copia TE
distribution; Track 6: Telomeric sub-repeat distribution; Track 7: Centromere specific repeat (12-13p; reference) density; Track 8: 5S rRNA gene

distribution.

Ausubel, 1988). However, the telomeric sub-repeat track
apparently shows redistribution of these sequences inter-
stitially on chromosomes 1, 5, 8, and possibly 9, with
chromosome 8 having two telomeric interstitial peaks: one
close to the centromere and the other farther out in the
chromosome arm. The 5S rDNA sequence located using
BLASTn is found on Cw8 and is consistent with the location
on Cp8 in C. pallidicaule (Kolano et al., 2011; Mangelson
et al., 2019).

3.3 | Gene annotation

The MAKER program identified 30,725 gene models
and 2254 tRNA genes. The average gene length was
3653 bp. Completeness was assessed using BUSCO with
the Embryophyta and Viridiplantae BUSCO gene sets.
The final assembly contained 1569 (97.2%) complete clus-
ters of orthologous genes (COGs), which included 1515
(93.9%) single-copy and 54 (3.3%) duplicated COGs with
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FIGURE 3

Comparison of Chenopodium watsonii and Chenopodium pallidicaule (Mangelsen et al., 2019) A-genome diploid assemblies. (A)

Synteny dot plot between C. pallidicaule (y-axis, Cp) and C. watsonii (x-axis, Cw); darker colors reflect high homology. (B) Ribbon plot comparing

alignments of domesticated, Andean C. pallidicaule (bottom row, Cp) and wild, North American C. watsonii (top row, Cw) pseudochromosomes;

synteny between Cp1-9 and Cw1-9, respectively.

the embryophyta_obd10 set. Similarly, 419 (98.6%) com-
plete COGs, including 396 (93.2%) single-copy and 23
(5.4%) duplicated COGs were identified with the Viridiplan-
tae_odb10 gene set (Figure S2). The low duplication rate
is expected for a diploid species, while the high detec-
tion rate of complete single-copy COGs is indicative of
a high-quality and complete genome. Annotation qual-
ity was assessed using annotation edit distance (AED)
which considers specificity, sensitivity, and accuracy of
the annotation. Eighty-nine percent of the annotated genes
had AED values <0.50 with an overall mean AED value
of 0.23, suggesting a high-quality annotation (Holt &
Yandell, 2011).

3.4 | Genome comparison and features

A high degree of synteny between C. watsonii and C. pal-
lidicaule orthologous chromosomes was evident from the
DAGChainer output generated by the SynMap (Haas et al.,
2004), which included 16,521 syntenic coding sequences
within 583 syntenic blocks, averaging 28 genes per block
(Figure 3). Similarly high levels of synteny were observed
between C. watsonii and the two subgenomes of C. quinoa,
including 16,539 and 15,708 syntenic coding sequences
shared with the A- and B-subgenomes of C. guinoa, respec-

tively (Figure 4). The larger number of shared syntenic
coding sequences between the C. watsonii genome and the A-
subgenome of quinoa is likely reflective of shared ancestry.
This shared ancestry is also observed in the larger syntenic
block size shared between C. watsonii and the A-subgenome
of C. quinoa, where the average gene count within a block is
35 and 32, respectively, for the A- and B-subgenome of C.
quinoa.

A comparison of mapped interstitial telomeric sequences
(Figure 2) with the synteny plots of the A-genome diploid C.
pallidicaule (Figure 3) suggests the potential of a subtelom-
eric paracentric inversion on Cw1 with telomeric inversions
on Cw5 and Cw8 and a potential telomeric inversion on
Cp3 that does not show up as an internal telomeric sequence
on Cw3. However, we must caution that Mangelson et al.
(2019) noted that their PGA2 assembly algorithm had dif-
ficulty in correctly placing the canonical telomeric repeat
on the Illumina short-reads assembled into C. pallidicaule
pseudochromosomes. The comparison of C. watsonii with C.
quinoa subgenome A (Figure 4) identified a potential chromo-
some 4A telomeric inversion in C. quinoa in addition to the 1,
5, and 8 inversions also observed with C. pallidicaule. Mech-
anisms besides inversion that lead to interstitial migration of
telomeric sequences—a relatively common phenomenon in
plants—include translocation, transposition, gene amplifica-
tion, and so on (Maravilla et al., 2021). Interstitial telomeric
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FIGURE 4 Comparison of Chenopodium watsonii with Chenopodium quinoa cv. “QQ74.” (A) Synteny dot plot between quinoa (x-axis, Cq)

and C. watsonii (y-axis, Cw); darker dots represent high homology, almost exclusively with quinoa subgenome A. (B) Ribbon plot between quinoa
(Cq) and C. watsonii (Cw) pseudochromosomes; synteny between CqlA-9A (top), Cw1-9 (middle), and Cq 1B-9B (bottom).

inversions have previously been ascribed to chromosome
instability in microsatellite-enriched regions in yeast (Aksen-
ova et al., 2013). We note that these putative rearrangements
on chromosomes 1, 5, and 8 need to be verified as they could
alternatively represent assembly (specifically scaffolding)
errors.

3.5 | Phylogenetic analysis of Chenopodium
A-genome diploids

A maximum likelihood phylogenetic tree of 41 New World
A-genome Chenopodium diploid accessions rooted by the
Eurasian H-genome outgroup Chenopodium vulvaria L. was
generated using SNPs identified by comparing the 10X rese-
quencing data with the C. watsonii reference (Figure S3).
InterSNP called 1,010,399 SNPs across the mapped reads
with a minimum requirement of <10% missing data. The final
SNP dataset analyzed by 1Q-Tree consisted of 10,588 SNPs,
with an average of 1176 SNPs per chromosome. This analy-
sis yielded robust bootstrap values with 90% of nodes having
values >95% and resolved the set of AA diploids into eight
well supported, monophyletic subgroups (Figure S3).

A second, midpoint-rooted tree was also produced to
investigate position of three members of the AABB species

complex (two C. quinoa and one C. berlandieri) within the
context of the A-subgenome phylogenetic tree (Figure 5). In
this analyses, 10X resequencing reads (Jarvis et al., 2017) that
mapped specifically to the A-subgenome of the C. quinoa
reference were mapped, filtered, and called as previously
described relative to the C. watsonii reference to produce
genotypic calls at the same 10,588 SNP loci used in the previ-
ous phylogenetic analysis. As expected, this analysis largely
reflected the previous tree, except for an additional species
clade housing the A-subgenomes of the three tetraploid
accessions belonging to the ATGC (Figure 5). Below we
systematically describe characteristics of the nine identified
groups based on their order in the phylogenetic tree in Figure
S3, from top to bottom. We note that while the goal was to
survey all of the North American native AA taxa, we were
unable to obtain samples for seven AA diploids identified
in the scientific literature, namely Chenopodium flabelli-
folium Standl.; Chenopodium foggii Wahl; Chenopodium
incanum (S.Wats.) Heller; Chenopodium lineatum Benet-
Pierce; Chenopodium luteum Benet-Pierce; Chenopodium
parryi Standl.; and Chenopodium simpsonii Benet-Pierce. We
also included two samples of C. pallidicaule and five other
putative A-genome diploids of South American origin to help
provide perspective and context on geographic insularity of
the North American species.

85U8017 SUOWWIOD AIIR.D 3(edl|dde ayy Aq peusenob ke sap e YO 8sn 0 $e|ni Joj Akeiq T 8uIIuO AB]IM UO (SUORIPUOD-PUR-SLLIBI WD A8 | 1M Afe.d 1 jBulUOy/SdhLf) SUORIPUOD pue S 1 8L 88S *[£202/50/2T] Uo Ariqi8ulluo 8|1 BIfES 8p eUOEN AlUN - YSNIN AQ 67202 2601/200T 0T/I0p/Woo A8 |1 Afe.d jpul [U0'SSesde//Scy o4 pepeojumod ‘0 ‘2LEE0V6T



10 of 17 The Plant Genome .0

YOUNG ET AL.

Group III

WAHL 19280

WAHL 19269
WAHL 19274

AURE 19136 AURE 19140

AURE 19111

Group II

LITT 1902

NADH 2073 HOWE 1959

NADH 835
BAEU125h ADH 20123

ATRO 1989

NADH 1816-1

PALE 2072
STAN 1310

CYCL 2067
CYCL 2064

SUBG 2127

NITE 20156

BERL 937
FREM 408

QUIN CV
QUIN REAL

ATGC Group Group VIII (Ij@m&ﬂ HIAN 872 SONO 17220

FIGURE 5

FREM 410

SAND 19291

TWIS 19112

Group I

CORD 1748
PETI 1723
ALBE 1816-2
RUIZ 1749

CARN 562

PALL B32
PALL P4

Group VI

INCO 19192
VULV 919 LENT 17152

REF
WATS 873

Group \}Hi
NEOM 869

PALM 17231
ARIZ 17238

Midpoint-rooted tree with colored clades and with Chenopodium vulvaria (VULV 919) as outgroup. The maximum likelihood tree

was generated using SplitsTree and 10,588 SNPs after filtering using the following parameters: <10% missing data, minor allele frequency <15%,

and linkage disequilibrium <30%. Bootstrap values are provided in Figure S3.

3.6 | South American group (Group I)

Beginning at the top of the tree, all but one of the samples from
South America formed a unified clade that was supported
by a robust bootstrap value (>95%). As expected, domes-
ticated Andean C. pallidicaule (PALL) samples grouped
together and were closely related to a Pacific-slope sample
of Chenopodium carnosolum Moq. (BYU 562) from over
3100 m elevation on the Andean Cordillera Occidental of
Tarapaca, Chile (Jarvis et al., 2017). Also grouping together
were samples of Chenopodium cordobense Aellen (BYU
1748) and Chenopodium petiolare Kunth (BYU 1723) from
Huascha, Cérdoba Province, and Agua de las Palomas, Cata-

marca Province, Argentina, respectively. The other samples
falling into this group were BYU 1816-2, an accession of
Chenopodium albescens Small from Laguna Salada in Brooks
Co., Texas and a very similar sample of Chenopodium ruiz-
lealii Aellen (BYU 1749) from Chaiiar, La Rioja Province,
Argentina.

3.7 | Lejosperma-Leptophylla group 1
(Group II)

The next group consisted of five narrow-leaved samples from
North America and one from South America, designated
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for Aellen’s Section Chenopodia Subsection Lejosperma that
grouped strict-sense Chenopodium taxa having narrow leaves,
mostly smooth testas, and mostly non-adhering (NADH) peri-
carps (Aellen & Just, 1943) and Mosyakin and Clemants’
(1996) designation of these species as subsection Lepto-
phylla. All of the samples falling in this genetic group except
for BYU 1959 (Chenopodium howellii Benet-Pierce, from
Adel, Oregon) have NADH and are morphologically simi-
lar to Chenopodium leptophyllum (Moq.) Nutt. ex S. Wats.
In the case of C. howellii there is an adhering pericarp
(achene) and rugose testa. Sample BYU 835 (Chenopodium
desiccatum A. Nels. from Elko, Nevada) was closest to C.
howellii. Overall plant morphology of these two taxa was
very similar; however, the fruit of the former is a utri-
cle while the latter has achenes. Accession BYU 20123
(C. leptophyllum from Colorado Springs) formed a group
with BYU 1816-1 (Chenopodium pratericola Rydb. from
Brooks Co., Texas), Chenopodium papulosum Moq. (BYU
1755 from Matagusanos, San Juan Province, Argentina),
and BYU 2073 (C. pratericola from Palo Pinto Co.,
Texas).

3.8 | Atrovirens and ‘““California Hians
Aggregate” group (Group III)

Containing several species recently reclassified by Benet-
Pierce and Simpson (2019), this group of accessions included
six taxa, all from California: Chenopodium atrovirens Rydb.
(BYU 1989 from Monitor Pass, Alpine Co.); Chenopodium
littoreum Benet-Pierce & Simpson (BYU 1902, a pros-
trate psammophyte from coastal dunes in San Luis Obispo
Co.); Chenopodium aureum Benet-Pierce (BYU 19111,
19136, 19140, all from the Sierra Nevada Mountains);
Chenopodium twisselmannii Benet-Pierce (BYU 19112 from
the Kern River Plateau); Chenopodium sandersii Benet-
Pierce (BYU 19291 from the San Gabriel Mountains);
and Chenopodium wahlii Benet-Pierce (BYU 19269, 19274,
19280, all from the Peninsular Ranges of Riverside Co.
and San Diego Co.). The fruits of C. atrovirens are
the only ones of this group having utricles rather than
achenes.

IThere were several plant morphological discrepancies that
should be noted within this group. First, plants of BYU
19269 (Supplemental Figure S1I) and 19280 were relatively
tall (>5dm) and very weakly branched laterally and were
therefore initially classified as C. simpsonii Benet-Pierce. In
contrast, BYU 19274 (Supplemental Figure S1J) perfectly fit
the description of C. wahlii in the taxonomic key of Benet-
Pierce and Simpson (2019), but its fruits more closely fit the
description of C. simpsonii.

3.9 | Fremontii group (Group IV)

The two samples of Chenopodium fremontii S. Wats., BYU
408 (San Gabriel Mts., CA) and BYU 410 (Sierra Nevada
Mts., CA) grouped together into a single clade. This taxon has
large, warty to smooth seeds that are NADH and have broad
triangular to ovate leaves with a distinct, earthy odor due to
the presence of geosmin.

3.10 | Lejosperma-Leptophylla group 2
(Group V)

This group encompasses five diploid taxa, four of which
were classified previously in subsections Lejosperma or Lep-
tophylla: Chenopodium cycloides A. Nels., Chenopodium
nitens Benet-Pierce & Simpson, Chenopodium pallescens
Stand., Chenopodium standleyanum Aell., and Chenopodium
subglabrum (S. Wats) A. Nels. Our samples of C. cycloides
(BYU 2064 and 2067) were collected in the gypsiferous
sand hills and along disturbed roadsides of the Permian
Basin of West Texas. The taxon C. pallescens (BYU 2072,
Eastland Co., Texas) is an episodic and apparently declin-
ing species that used to be widespread on disturbed, sandy
tallgrass prairie (typical vegetation, Andropogon gerardii)
soils from Northeast Texas and through Oklahoma, Eastern
Kansas, Missouri, Eastern Nebraska, Iowa, and Southern Illi-
nois. The psammophytic species C. subglabrum (BYU 2127,
Seminoe Sand Dunes, Wyoming) is characterized by having
very narrow leaves which range from fleshy to non-fleshy
and are minimally farinose. The testa of the characteristi-
cally large seeds (~1.5 mm) ranges from rugose to pitted
with an adhering pericarp. Our sample of C. standleyanum
(BYU 1310, Scott Co., Missouri) is from sandy oak-hickory
woodlands of central North America. In contrast to these
Great Plains species, C. nitens (BYU 20156, Mogollon
Plateau, Arizona) characteristically grows on dry volcanic
lake beds in Pinus ponderosa forests of Western North
America.

The midpoint-rooted tree (Figure 5) includes three samples
of AABB tetraploids, which group on a distal branch within
Group V. Accession BYU 2127 occupies a position at the base
of this branch and therefore must be considered the best can-
didate donor of subgenome A in the C. berlandieri—quinoa
allotetraploid group.

3.11 | Cellulata-Favosa group (Group VI)

Aellen and Just (1943) assigned alveolate, honeycombed,
achene-fruited species to Sect. Chenopodia Subsect. Cellu-
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lata while Mosyakin and Clemants (1996) designated these
as subsect. Favosa. This group of taxa similar morphologi-
cally to Chenopodium neomexicanum Stand. was expanded
by Benet-Pierce and Simpson (2017) included seven diploid
species: Chenopodium arizonicum Stand. (BYU 17238 from
Arivaca, Arizona);, Chenopodium lenticulare Aell. (BYU
17152 from the Davis Mts. in West Texas), C. neomexicanum
(BYU 869 from Coconino Co., Arizona), Chenopodium
palmeri Stand. (BYU 17231 from Arivaca, Arizona), C.
sonorense Benet-Pierce & Simpson (BYU 17220 from Tubac,
Arizona), and C. watsonii (BYU 873 from Yavapai Co.,
Arizona). All of the samples in this group have the charac-
teristic alveolate fruit with adhering pericarps (achenes) and
leaves ranging from broadly elliptic to campanulate. Because
of their similar fruit morphology to the AABB tetraploids
and a lack of developmental abnormalities in quinoa X C.
neomexicanum triploid hybrids, Wilson (1980) suggested the
Cellulata diploid group as most likely containing the AA
ancestor of the AABB tetraploids. However, as noted above
these tetraploids did not fall out in Group VI with the diploid
Cellulata species.

3.12 | Hians group (Group VII)

This group consisted of two samples of Chenopodium hians
Stand.: BYU 872 (Yavapai Co., Arizona) and BYU 877
(Catron Co., New Mexico). This species is found mostly in
mountainous terrain of the Southwestern United States in and
around the Colorado Plateau and is characterized by narrow,
farinose, fleshy leaves. The fruits vary in appearance, having
smooth testa and adhering to semi-adhering pericarps that are
alveolate.

3.13 | Nevadense group (Group VIII)
Chenopodium nevadense Stand. grouped by itself as a basal
position in the tree. Found mainly in the sodic clay pans of
the Western Great Basin and valleys of the Eastern Sierra
Nevada Mountains, C. nevadense is a highly episodic taxon
having fleshy, farinose leaves that are rhombate to ovate in
shape. The adherent pericarp is papillate and typically a pale
white color (Standley, 1916). The sample included here, BYU
816, was collected on the Soda Lakes Playa in Churchill Co.,
Nevada.

3.14 |
species

Homoplasy in AA Chenopodium

It is interesting to note that several key morphological charac-
ters appear in multiple clades, presumably due to convergent

evolution. One obvious trait that apparently evolved in at least
two lineages is narrow versus broad leaf blades, possibly in
response to hydric stress and/or as an adaptation to sandy
soils (Subbarao et al., 1995) since all of the narrow-leaved
species are either obligate psammophytes (e.g., C. cycloides,
C. littoreum, C. pallescens, C. subglabrum, and the NADH
taxa C. desiccatum, C. leptophyllum and C. pratericola) or are
adapted to seasonally dry mountains (e.g., the C. hians com-
plex) and playas (C. nevadense and C. nitens). While all taxa
in Groups II, II1, V, VII, and VIII have narrow leaves, all the
others in Groups I, IV, and VI have broad leaf blades. The fact
that all the taxa in Group V, which is most closely allied to the
ATGC, have narrow leaves while all of the AABB tetraploids
are broad leaved suggests that broad, toothed leaves might
have been contributed by the B-genome ancestor, a ratio-
nal assumption given that all three extant B-genome diploid
species—C. ficifolium, C. suecicum, and C. ucrainicum—also
have broad, toothed leaves.

Chenopodium taxonomists have long considered the peri-
carp (fruit wall) as a paramount morphological trait, with
species delineated into adhering (achene), semi-adhering,
and non-adhering (utricle) forms (Benet-Pierce & Simpson,
2014; Mosyakin & Clemants, 1996). The Lejosperma and
Cellulata subsections proposed by Aellen and Just (1943)
divided species based on seed coat texture and pericarp adher-
ence, with Lejosperma housing taxa with smooth to wavy
seed coats and NADH and Cellulata housing taxa with pit-
ted seeds and adhering pericarps. Mosyakin and Clemants
(1996) further divided subsection Lejosperma into Lepto-
phylla, Chenopodium, Fremontiana, and Standleyana based
on additional morphological characteristics including leaf,
seed, and plant morphology. In our phylogenetic analysis,
however, pericarp morphology was homoplastic. In Group I,
all samples except BYU 562 had NADH. In Group II, the
same was true for all samples except BYU 1959. In Group III,
BYU 1989 and BYU 1902 were the only samples with NADH
although BYU 19291 and possibly BYU 19112 have semi-
adhering pericarps (Benet-Pierce & Simpson, 2019). Group
V was a mixture of adhering (C. cycloides and C. pallescens)
and NADH (BYU 20156, BYU 1310, and BYU 2127) sam-
ples. The Group IV C. fremontii samples were both NADH
while all the samples in Groups VI, VII, and VIII had adhering
pericarps. Wentland (1965) hypothesized that the adhering
pericarp trait in Chenopodium album L. might be associ-
ated with enhanced seed dormancy. If this is supposition is
true, and our data indicate this trait varies in multiple AA-
diploid lineages, then pericarp adherence would have been
under strong selective pressure and its historic considera-
tion by taxonomists as a key species-delineation trait should
be reconsidered. However, after working with thousands of
free-living samples, we have never observed an association
between pericarp adherence and dormancy, either in Eurasian
or North American native Chenopodium accessions.
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3.15 | North-south reciprocal long-range
dispersal

The grouping of an Argentine Pampa sample of C. papulo-
sum (BYU 1755) with Group II from North America indicates
the potential for an ancient north—south intercontinental dis-
persal event. Similarly, the placement of the Texas endemic
species C. albescens (BYU 1816-2) squarely amid the South
American Group containing C. cordobense (BYU 1748), C.
petiolare (BYU 1723), the C. pallidicaule samples, and C.
ruiz-lealii (BYU 1749) suggests a reciprocal south—north dis-
persal between Texas and the South American Pampas. On
an April 2018 seed collection expedition to South Texas, our
group found 10 populations of C. albescens spread across
Brooks, Dimmit, Duval, Jim Hogg, Karnes, La Salle, and
Webb Counties, indicating this is a well-established species
between San Antonio and the Rio Grande Valley (Jellen et al.,
2019). Cruden (1966) provided an overview of seed dispersal
via avian migration, postulating that bird populations carry
seeds, stuck to the mud on wings and feet, by “mountain-
hopping” to and from South American via Central America.
Additionally, in controlled experiments involving seed feed-
ing, fecal recovery, and germination, Wongsriphuek et al.
(2008) demonstrated that ducks are capable of dispersing
viable Chenopodium seeds via endozoochory. These data sug-
gest that migrating birds following the Central Flyway could
have carried Chenopodium seeds back and forth between the
temperate climates of North and South America at some point,
or repeatedly, in antiquity (Cain et al., 2000).

3.16 | Gene-based tree analysis

Using all current whole-genome Chenopodium assemblies,
the COG-based tree (Figure S4) showed distinct groupings of
the four different Chenopodium subgenomes with A. horten-
sis L. (Hunt et al., 2020) as the outgroup. IQ-Tree and an input
matrix of 618,448 sites, including 28,912 parsimony informa-
tive and 73,787 singleton sites from within 1600 single-copy
orthologous genes identified with BUSCO from the embry-
phyta_obd10 gene set, generated a high-quality tree backed
up by 100% bootstrap support across all nodes. A COG-based
analysis allows for the inference of relationships based on evo-
lutionary time, data that cannot be inferred from a SNP-based
phylogeny. Based on the assumption that all genes evolve sim-
ilarly, gene-based trees do not consider hybridization, gene
conversion, or gene transfer (Boussau & Scornavacca, 2020;
Heath et al., 2008). Within the three B-genome accessions,
the B-subgenome of the Taiwanese species C. formosanum
Koidz. falls closest to the Eurasian B-genome diploid, C. sue-
cicum, with the B-subgenome of quinoa being at the basal
position of the B-genome group. The C-subgenome of C.

formosanum is the closest relative to the B-genome group, fol-
lowed by the D-subgenome of C. formosanum. The A-genome
accessions form a separate group from the other subgenomes,
with A-diploid C. pallidicaule neighboring the A-subgenome
of quinoa and C. watsonii rooting the A-genome group (Figure
S4). The future assembly and analysis of high-quality genome
sequences from North and South American AA Chenopodium
diploids will clarify radiational speciation mechanisms and
shed further light on the origin of the economically important
AABB species.

3.17 | Conservation considerations

At least six of the taxa included in this study—C. cycloides,
C. howellii, C. lenticulare, C. littoreum, C. pallescens, and
C. subglabrum—appear to be declining in habitat when their
current prevalence is compared with herbarium collections.
Of these, the most critically imperiled taxon is coastal Cal-
ifornian C. littoreum (NatureServe.org, 2023). C. cycloides,
C. pallescens, and C. subglabrum are listed as vulnerable
to critically imperiled across their Western North Ameri-
can native ranges (NatureServe.org, 2023). Another species
not included in this study, C. foggii, is a rare New England
native that is listed as threatened in Maine and endangered
in Massachusetts and New Hampshire by the Native Plant
Trust (2023) and is imperiled to critically imperiled accord-
ing to NatureServe.org (2023). These species should be added
to the list of threatened North American crop wild relatives
compiled by Khoury et al. (2020) and targeted for enhanced
conservation efforts, as the Canadian government has done for
C. subglabrum (COSEWIC, 2006).
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