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We present the �rst explicit global conformal diagram of Kerr spacetime and discuss some implications
on the causal structure.

For this construction we use a new double null coordinate system for Kerr spacetime, which we have
recently presented. These null coordinates are smooth everywhere and are naturally adapted to the horizons
and to the null in�nities.

In this setting there naturally appears a family of spheres that are parameterized by rs, which are the
intersections of both null coordinates, and rs can be thought of as the extension of the tortoise coordinate
for the Kerr spacetime.

1 Introduction

The formation of a black hole is normally thought of as the result of the collapse of a previous system. All
observed compact objects have angular momentum; so that it is expected that any possible collapse to a black
hole state will include some �nal angular momentum. Then, since the stationary axisymetric vacuum solution
of the Hilbert-Einstein equations with angular momentum is the Kerr geometry[1]; it is natural to think of this
metric as one of the most important in the study of general relativity.

Very recently these geometries have also acquired observational importance, since the direct observation of
gravitational waves[2, 3]. Most of the observations correspond to binary black hole systems, whose �nal state is
supposed to be represented by a remaining black hole with angular momentum. For this reason the Kerr metric
becomes of relevance in this framework; since perturbations of this geometry could be used to describe the late
time behavior of those systems.

The recent presentation of the �rst image ever generated[4] of a black hole is also related to this geometry.
At the time of writing the Event Horizon Telescope(EHT) Collaboration has presented a second image, in this
case of the supermassive black hole in the center of our own galaxy[5]. The models employed by the EHT
Collaboration to create the image make use of this geometry, as also do other approaches to construct these
type of images[6].

To have a deep physical understanding of a spacetime, it is crucial to know its causal structure. The use
of null coordinates together with conformal diagrams were very useful tools for these purposes. They help to
understand the nature of black holes horizons and are widely used in a variety of studies.

In spherically symmetric spacetimes, it is natural to consider diagrams in which each point corresponds to
one of the spheres of symmetries, leading to the usual causal diagrams of the spacetime, as for example those
presented in [7]. For the Schwarzschild case the use of the tortoise coordinate given by r∗ = r + 2m ln( r

2m − 1)
was useful.

For a black hole with angular momentum, the situation is much more delicate. In the sixties Carter[8]
was able to study in detail the `complete analytic extension of the symmetry axis of Kerr spacetime', and
he presented the now celebrated conformal diagram at the symmetry axis of this spacetime. These type of
diagrams are also reproduced in classic textbooks[9]. At the end of his article Carter conjectured that it was
`probable that the basic topological properties of the 4-dimensional manifold' were essentially the same. Yet,
before the present article, there were no publications of an explicit construction of global conformal diagrams
of a black hole with angular momentum. In many articles and presentations, Carter diagrams are used as if
the Carter conjecture where true without presenting any argument for its support. The conformal diagram we
are presenting in this article is then a useful tool to tackle questions as the above Carter conjecture; which we
explore later in this work.
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Two dimensional conformal, and therefore causal, diagrams are a very useful tool for visualizing the structure
of the spacetime. Could one extend the usual two dimensional conformal diagrams of Schwarzschild geometry,
based on Kruskal coordinates, to the case of a black hole with angular momentum? Yes, fortunately, we have
recently constructed a pair of null coordinates that allows us to extend those techniques to the Kerr geometry.

The term `conformal diagram' can be given slightly di�erent meanings; in particular it is rather easy to
construct a conformal diagram out of a static 2-dimensional Lorentzian spacetime[10], since one can readily �nd
a pair of null functions. Then in particular one could compactify the spacetime to obtain a conformal diagram
of it. But in our case we use the denomination `conformal diagram' in a 4-dimensional sense; that is, one is
hoping that generic points in the 4-dimensional spacetime can be represented in the conformal diagram. In
order to �x the discussion we de�ne: global conformal diagrams of a 4-dimensional spacetime as 2-dimensional

graphs, in which lines at 45◦ represent constant null functions, and generic points of the spacetime can be mapped

through a mathematical function to the 2-dimensional graphs. It is then customary to use compacti�cations so
that in�nities can also be drawn in these diagrams. Typical examples of diagrams that embody this de�nition
are the graphs (i) and (ii) of �gure 24 of Hawking and Ellis textbook[11]. Instead, the graphs shown in the
same reference in �gure 28, for Kerr spacetime, do not clasify as `global conformal diagrams' since they refer to
speci�c points along the axis of symmetry. In this work we provide for the �rst time an explicit construction of
global conformal diagrams of Kerr spacetime.

A natural question that arises is whether the conformal diagrams that we present in this article provide
any advantage for the analysis of the images of the observed black holes, the answer to which needs for some
explanation. To begin with, the standard representation one has in mind as the source for the astrophysical
system that generates the images that EHT Collaboration have published, is that surrounding material close
to the black holes emits electromagnetic radiation that is captured by the radiotelescopes. That is, all the
physical observed system is thought to be located outside the event horizon. From this point of view then our
contribution would not add to the known structure, outside the horizon, of black holes with angular momentum.
A second representation that one could consider is to include the possibility that the astrophysical black hole
has also a past event horizon, and that null geodesics could reach us from past regions of this horizon. In this
case, our construction could help in analysing the behavior of those geodesics, by providing the opportunity to
depict them in our diagrams. Nonetheless, the general belief is that astrophysical black holes are always in the
presence of surrounding material that would complicate this picture in several ways; inducing us to take the
�rst standard representation, considered above, as the realistic one.

Note that one of the great bene�ts of the construction presented here is that now one can easily make any
computation across the event horizon and the Cauchy horizon, either for particles or �elds. This contributes on
the physical studies in a broad spectrum of topics and results.

We use the standard notation for regions of type I, II and III to correspond respectively to the situations[8]
r > r+, r+ > r > r− and r− > r.

We will show below that the noncausal zone in region III can not be represented in global conformal diagrams.
We can only draw its boundary. Throughout this work we assume the standard situation a2 < m2; where the
geometric parameters are de�ned below in the metric.

In what follows we present the basic tools that are used to construct the most general explicit conformal
diagram of a black hole with angular momentum. In section 2 we review the basic geometry and de�nition
of a pair of null coordinates, that are adapted to the horizons. The null coordinates in regions II and III
are presented in section 3. In section 4 we recall the conformal diagram at the axis of symmetry. With our
construction, we are able in section 5 to present a numerically generated graph of three timelike curves in a
conformal diagram. In section 6 we present graphs that depict the boundary of the noncausal region in Kerr
spacetime. The conformal diagram of regions I, II and III is discussed in section 7 . An ending section is devoted
to �nal comments.

2 The Kerr geometry

2.1 The basic pair of null coordinates

The Kerr metric in terms of Boyer-Lindquist[12] coordinates can be expressed as:

ds2 = (1− Φ) dt2 + 2Φa sin2(θ)dtdφ− Σ

∆
dr2 − Σdθ2 −

(
r2 + a2 + Φa2 sin2(θ)

)
sin2(θ)dφ2; (1)

with inverse(
∂

∂s

)2

=
Υ

Σ∆

(
∂

∂t

)2

+
4amr

Σ∆

(
∂

∂t

)(
∂

∂φ

)
− ∆

Σ

(
∂

∂r

)2

− 1

Σ

(
∂

∂θ

)2

− ∆− a2 sin2(θ)

Σ∆ sin2(θ)

(
∂

∂φ

)2

; (2)
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where

Σ = r2 + a2 cos2(θ), ∆ = r2 + a2 − 2mr, Υ =
(
r2 + a2

)2 −∆a2 sin2(θ), Φ =
2mr

Σ
; (3)

and where m denotes de mass while the angular momentum of the black holes is given by J = am. In their
work, Boyer and Lindquist were able to study the analytic extensions of the Kerr geometry.

Let us note for future reference that

gφφ =−
(
r2 + a2 + Φa2 sin2(θ)

)
sin2(θ) = −Υ

Σ
sin2(θ); (4)

that is, this component of the metric is proportional to Υ; which we will study below.
To build the outgoing congruence we make use of the Carter constant K on each geodesic, which in our

construction becomes a function of the coordinates (r, θ). But often, it is useful to refer instead to a related
scalar that we call k(r, θ) and is de�ned by:

K(r, θ) = a2 sin(θ)2 + k2(r, θ). (5)

The details for the construction of the null congruence and the de�nition of the null coordinates are given in
[13]; we here just recall some of the most important equations. These auxiliary scalars must satisfy the equation√

(r2 + a2)2 −K∆
∂K

∂r
± |h

√
K −

(
a sin(θ)

)2 ∂K
∂θ

= 0; (6)

with boundary condition
lim
r→∞

K = a2 sin(θ∞)2; (7)

where θ∞ is the value of the coordinate θ at future null in�nity; or equivalently

∂k

∂ξ
=

a2 sin(θ) cos(θ) + k ∂k∂θ√
(1 + ξ2a2)2 − ξ4∆

(
a2 sin(θ)2 + k2

) ; (8)

where

ξ =
1

r
, (9)

with boundary condition
lim
ξ→0

k = 0; (10)

and we are assuming k > 0 in the northern hemisphere[13].
In our previous work [13] we have presented a pair of null functions that are smooth everywhere and therefore

can be used as coordinates for the spacetime. Moreover, they are adapted to the horizons, as we will review
here. These null functions were constructed in terms of particular congruences of null geodesics. We de�ned
the outgoing congruence to be orthogonal to the center of mass sections[14, 15] at future null in�nity. This
construction has the advantage that it can be generalized to spacetimes, which are not exactly Kerr, but instead
a perturbed spacetime that is decaying to a remaining black hole with angular momentum.

One can express the integral form of these functions in several ways[13], and we choose:

u(t, r, θ, φ) = t− r −
( 2mr+

r+ − r−
ln(

r

r+
− 1)− 2mr−

r+ − r−
ln(

r

r−
− 1)

)
−
∫ θ

0

k(r, θ′) dθ′. (11)

And for the other function we choose

v(t, r, θ, φ) = t+ r +
( 2mr+

r+ − r−
ln(

r

r+
− 1)− 2mr−

r+ − r−
ln(

r

r−
− 1)

)
+

∫ θ

0

k(r, θ′) dθ′. (12)

Starting from the metric in Boyer-Lindquist coordinates (1), and expressing it in terms of the center of mass

null coordinates, one obtains:

dt =
dv + du

2
, (13)

dr =

[
(dv − du)

2
− k dθ

]
∆√
R
. (14)
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where R = (r2 + a2)2 −K∆; from which, the metric is expressed as

ds2 =
1

4

(
1− 2mr

Σ
− Σ∆

R

)(
du2 + dv2

)
+

1

2

(
1− 2mr

Σ
+

Σ∆

R

)
du dv

+ dv

(
2amr sin2(θ)

Σ
dφ+

Σ∆

R k dθ

)
+ du

(
2amr sin2(θ)

Σ
dφ− Σ∆

R k dθ

)
− Υ Σ

R dθ2 − Υ

Σ
sin2(θ) dφ2.

(15)

Similarly, the inverse metric can be expressed as:(
∂

∂s

)2

= 4
Υ

Σ∆

(
∂

∂u

)(
∂

∂v

)
− 1

Σ

(
∂

∂θ

)2

+ 2

(
∂

∂u

)[
2amr

Σ∆

(
∂

∂φ

)
+
k

Σ

(
∂

∂θ

)]
+ 2

(
∂

∂v

)[
2amr

Σ∆

(
∂

∂φ

)
− k

Σ

(
∂

∂θ

)]
− ∆− a2 sin2(θ)

Σ∆ sin2(θ)

(
∂

∂φ

)2

.

(16)

It is easy to verify that `a ≡ (du)a and na ≡ (dv)a are null forms, which is consistent with our de�nition. We
occasionally use Latin letters in this article to denote abstract indices.

2.2 Regular coordinates at the horizon

From observing the variation of the derivative of the Boyer-Lindquist coordinate φ with respect to the a�ne
parameter[13] λ, one �nds that φ has a divergent behavior as the horizon is approached. In order to avoid this
bad behavior we choose to de�ne

dϕ±pf = dφ−±pf
a

∆
dr; (17)

which has an integral expression given by

ϕ±pf = φ−±pf
a

2
√
m2 − a2

ln

∣∣∣∣r − r+

r − r−

∣∣∣∣; (18)

where we are using the notation (±pf = +) for the choice p and (±pf = −) for the choice f . That is, ϕ+ is well
behaved as one approaches the past horizon Hp, and ϕ− is well behaved as one approaches the future horizon
Hf .

It can be proved[13] that the function U = − exp(−κu) is well behaved across the future horizon Hf when
κ = κ+, where

κ+ =
(r+ − r−)

2(r2
+ + a2)

=

√
m2 − a2

2mr+
; (19)

which is customary referred to as the surface gravity of the black hole. In particular one can see that, near the
horizon one has U ∝ ∆; where the proportionality factors are smooth functions on the horizon. In order to
have a double null system that is smooth across the outer past event horizon we also de�ne the null function V
in a similar way; so that we have

U = − exp(−κ+u), (20)

and
V = exp(κ+v). (21)

Up to now, we have been studying the asymptotic behavior approaching the horizon from the outside region
where λ < λ+. In the inner region, U > 0 and one should use the relation

U = exp(κ+uII); (22)

where uII is the analogous inner version of the null coordinate u in the outer region.
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Then, the metric becomes

ds2 =
1

4

(
1− 2mr

Σ
− Υa2 sin2(θ) + Σ2∆

ΣR − ±pf4mra2 sin2(θ)

Σ
√
R

)
1

κ2U2
dU2

+
1

4

(
1− 2mr

Σ
− Υa2 sin2(θ) + Σ2∆

ΣR ±pf
4mra2 sin2(θ)

Σ
√
R

)
1

κ2V 2
dV 2

− 1

2

(
1− 2mr

Σ
+

Υa2 sin2(θ) + Σ2∆

ΣR

)
1

κ2UV
dU dV

+

[(
Υa2sin2(θ) + ∆Σ2

)
ΣR ±pf

2mra2sin2(θ)

Σ
√
R

]
k

κU
dUdθ

+

[(
Υa2sin2(θ) + ∆Σ2

)
ΣR − ±pf2mra2sin2(θ)

Σ
√
R

]
k

κV
dV dθ

−
(

2amr sin2(θ)

Σ
±pf

Υa sin2(θ)

Σ
√
R

)
1

κU
dU dϕ

+

(
2amr sin2(θ)

Σ
−±pf

Υa sin2(θ)

Σ
√
R

)
1

κV
dV dϕ

−

[
Σ +

k2
(
Υa2 sin2(θ) + Σ2∆

)
ΣR

]
dθ2

±pf
2Υa sin2(θ)

Σ
√
R

k dθ dϕ− Υ

Σ
sin2(θ) dϕ2,

(23)

where one has to consider κ = κ+ and we are using the new angular coordinate ϕ.
The inverse metric can be expressed as:(

∂

∂s

)2

= − 4κ2 Υ

Σ∆
U V

(
∂

∂U

)(
∂

∂V

)
− 2κk

Σ

[
U

(
∂

∂U

)
+ V

(
∂

∂V

)](
∂

∂θ

)
− 2κ aU

Σ∆

(
2mr −±pf

√
R
)( ∂

∂U

)(
∂

∂ϕ

)
+

2κ aV

Σ∆

(
2mr ±pf

√
R
)( ∂

∂V

)(
∂

∂ϕ

)
− 1

Σ

(
∂

∂θ

)2

− 1

Σ sin2(θ)

(
∂

∂ϕ

)2

,

(24)

where κ = κ+.
The determinant of the metric is given by

g = −∆2Σ2 sin(θ)2

4κ4RU2V 2
. (25)

The future outer horizon Hf is reached following the incoming null geodesic congruence while the past outer
horizon Hp is reached following the outgoing null geodesic congruence but to the past. The behavior of U and
V near the horizon can be seen from the expression of the product of both functions, since one has

UV =
− e2κ+(r+

∫ θ
0
k(r,θ′)dθ′) (r−)

r−
r+

(r+) (r − r−)
r++r−
r+

∆. (26)

From the de�nition of both functions, one can see that U ≈ ∆ at the future outer horizon Hf and V ≈ ∆ at
the past outer horizon Hp.

Let us notice that each one-form dta and dra (normal to a surface t =constant, r =constant respectively)
changes its causal character between region I and II, as we can see from their norms

gabdtadtb =
Υ

Σ∆
, (27)

gabdradrb = −∆

Σ
. (28)

In region I where ∆ > 0, we have that dta is timelike and dra spacelike. In region II where ∆ < 0, we have that
dta changes to spacelike and dra changes to timelike. In region III where ∆ > 0, we have a similar situation as
in region I.

One can see that something similar happens with

(drs)a =

√
R

∆
dra + k dθa, (29)
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which norm is

gab (drs)a (drs)b = − Υ

Σ∆
, (30)

so that drs is spacelike in region I where ∆ > 0, and becomes temporal in region II where ∆ < 0. In order to
keep the same causal meaning of the null functions u, v, we need to de�ne new ones. There are several reasons
that induce us to de�ne the new coordinate rs. The function rs is the analog to the tortoise coordinate in
Schwarzschild spacetime. These can be seen, as it already appears in the integral form of the coordinates u
and v, in equations (11) and (12). It has the meaning of a function that is constant on the 2-surfaces that are
the intersections of the hypersurfaces u =constant and v =constant. These 2-surfaces are topologically spheres,
and are the natural closed surfaces that appear in our construction of the double null coordinate system. The
coordinate rs also has the convenient property that is constant in each point of the conformal diagrams we are
presenting in this article. Note that, as we have explained in [13], rs can explicitly be given in the exterior
region by

rs(r, θ) =r +
2mr+

r+ − r−
ln(

r

r+
− 1)− 2mr−

r+ − r−
ln(

r

r−
− 1) +

∫ θ

0

k(r, θ′) dθ′. (31)

This equation shows the relation between rs with the standard Boyer-Lindquist coordinates (r, θ). If we call
rKS the Kerr-Schild radial coordinate, that is, r2

KS = x2
KS + y2

KS + z2
KS; then, we have to recall that r4 − (r2

KS −
a2)r2 − a2z2

KS = 0. Therefore, one could replace above the appearance of r with the corresponding functional
relation r(rKS, zKS), to �nd the relation of rs in terms of the radial Kerr-Schild coordinate. To have a qualitative
comparison of the surfaces rs =const., r =const. and rKS =const. we have made the graph shown in �gure
1; where we can see that for these parameters, the rs =const. is located between the other two. We have

Figure 1: Comparison of di�erent radial functions maintained constant, with respect to Kerr-Shild coordinates.

emphasized the Kerr coordinate1 r with the notation r = rKerr in this graph. Whenever necessary, to make
an explicit numerical calculation, we assume m = 1 and a = 0.8. We have chosen the value of r to triple the
mass, which taking into account that for our choice of parameters r+ = 1.6m, one can see that it is smaller
than double the value of r+.

Before continuing with the other regions let us also note that dv = du+ 2drs, so that, for example, the Kerr
metric in the (u, rs, θ, φ) coordinate system, can be obtained from (15) by this replacement; namely

ds2 = (1− Φ) du2 + 2 (1− Φ) du drs + 2a sin2(θ)Φdu dφ+

(
1− Φ− Σ∆

R

)
dr2s + 2k

Σ∆

R drs dθ

+ 2a sin2(θ)Φdrs dφ−
Υ Σ

R dθ2 −
(
r2 + a2 + a2 sin2(θ)Φ

)
sin2(θ) dφ2.

(32)

1Although r is normally understood as the radial Boyer-Lindquist coordinate, it already appeared in the original paper[16] of
Kerr.
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It is probably worthwhile to point out that the grsrs component of the metric is not identical to zero; while
if one were to write the Schwarzschild metric in the corresponding coordinates (u, rT , θ, φ), where rT is the
tortoise coordinate, one would obtain grT rT = 0. The point is that in Schwarzschild case, demanding du = 0,
dθ = 0 and dφ = 0, characterizes outgoing null geodesics; but in Kerr spacetime this is not the case, so that an
increment of rs, maintaining the other three coordinates constant, provokes a motion on the null hypersurface
u =constant, but not along a null direction.

3 Null coordinates in regions II and III

To understand how to de�ne smooth functions at the Cauchy horizons, let us study the behavior of the null
functions in a neighborhood of CR and of CL (See �gure 2.). We will begin with the study of vII in a
neighborhood of CR, along the null geodesics contained in the congruence uII =constant.

One can see that in region II dtII plays the role of a spacelike one form, while drs has the role of a timelike
one form that grows towards r− in the causal diagram 2. So that the relations between the null functions uII
and vII with the interior Boyer-Lindquist coordinate system (tII , r, θ, φII) is given by

duII =− dtII + drs = − dtII +

√
R

∆
dr + k dθ, (33)

where we are using drs as given by (29) and

dvII = dtII + drs = dtII +

√
R

∆
dr + k dθ; (34)

so that in the causal (uII , vII) diagram of region II, one also has that uII increases to the upper left and vII
increases to the upper right.

It is useful to remark that in order to obtain the metric in the {uII , vII , θ, φ} coordinate system one has to
replace in (15): (du→ −duII) and (dv → dvII).

We can now proceed with the main purpose of this part, which is to de�ne a regular function Ṽ in the
vicinity of the Cauchy horizon CR (r = r−). Let us start by studying the behavior of vII along the null
geodesics contained in the congruence uII =constant, which is determined by

v̇II =2

√
R

∆
ṙ + 2k θ̇ = −2

R
∆Σ
− 2

k2

Σ
. (35)

Note that in this congruence one has that ṙ = −
√
R

Σ and θ̇ = − k
Σ .

To see the behavior of the �rst term as a function of the a�ne parameter λ, let us recall that at the Cauchy

horizon CR one has −Σ(r−,θ)dr√
R(r−)

= dλ; so that, approaching the Cauchy horizon CR in region II, to �rst order

one has

∆ =(r − r+)(r − r−) =

√
R(r−)

Σ(r−, θ)
(λ− λ−)(r+ − r−) + O((λ− λ−)2); (36)

with λ < λ−. Then, the integration of the divergent term of (35), close to the Cauchy horizon CR, is

−2
(r2
− + a2)2

∆Σ(r−, θ)
dλ =− 2

(r2
− + a2)2

(r+ − r−)
√
R(r−)

dλ

(λ− λ−)
= −2

(r2
− + a2)

(r+ − r−)

dλ

(λ− λ−)
= − dλ

κ−(λ− λ−)
; (37)

where

κ− =
(r+ − r−)

2
√
R(r−)

=
(r+ − r−)

2(r2
− + a2)

=

√
m2 − a2

2mr−
; (38)

which we call κ− because of its analogy with κ+. This means that in this asymptotic region one has v u
−1
κ−

ln(λ−−λ). So that the function that cures this logarithmic behavior must be an exponential; for this reason

we de�ne
Ṽ = − exp(−κ− vII); (39)

which by construction, satis�es, as one approaches the Cauchy horizon CR, along the null geodesics contained
in the null congruence U =constant, that

dṼ ≈ dλ. (40)

Similarly, we also de�ne
Ũ = − exp(−κ− uII); (41)
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which, for analogous reasons, is a regular null function close the Cauchy horizon CL.
The behavior of uII , vII near r = r− is

lim
r→r−,v=v0

uII =∞, (42)

lim
r→r−,u=u0

vII =∞. (43)

which is consistent with our de�nitions (39) and (41).
It is important to remark that with these de�nitions we obtain the same metric functional expression as (23)

and (24), with the only di�erence being that in region II, one has to choose (κ = κ−), (±pf = −) and take an
opposite sign in gUIIθ, gUIIϕ, gVIIθ and gVIIϕ.

Note that to cover regions I and II with null functions that are smooth across Hf and CR, one can use the

set (U, Ṽ ); which we plan to employ below.
We can de�ne

Ũcompact = arctan(Ũ), (44)

Ṽcompact = arctan(Ṽ ); (45)

and extend the de�nitions of ψ and ξ, as used by Carter[8], accordingly. In this way we can explicitly construct
a conformal diagram where each point represents a �xed value of the pair (Ũcompact, Ṽcompact) or equivalently,

of the pair (Ũ , Ṽ ). It is clear that this technique can be performed in each region.
In region III, each one-form dta and dra, recovers the same causal character as of region I, but with the

di�erence that r and rs decreases to the right. Therefore, we can use a similar de�nition

duIII = dtIII + drs, (46)

dvIII = dtIII − drs. (47)

Then, to build the null tetrad we take `III = duIII, nIII = Σ∆
2Υ dvIII, completing the tetrad in an analogous

way, as we did previously; namely, ma
III is tangent to the surfaces rs=constant, and the usual null tetrad

metric conditions are satis�ed. In this case, for each surface rs =constant, we also obtain the same functional
expressions of Extrinsic and Gaussian curvature.

It is useful to remark that in order to obtain the metric in the {uIII, vIII, θ, φ} coordinate system one has to
replace in (15): (du→ dvIII) and (dv → duIII).

Note also that the functional expressions of Ũ and Ṽ are good coordinates for region III.

4 Conformal diagram at the axis of symmetry

Let us note that at the axis of symmetry, the right hand side of equation (8) is zero, so that k = 0 and K = 0
along the axis. Therefore, the calculation of the null functions at the axis is trivial.

Once one has the appropriate de�nition of the extended coordinates, the causal diagram of �gure 2 is
straightforward to construct; following the ideas already presented in [8].
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Figure 2: Carter conformal diagram of Kerr spacetime at the axis of symmetry. One can extend in a natural
way this diagram to future and past regions.

In region I, we can take Carter functions ψ = Ucompact +Vcompact and ξ = Vcompact−Ucompact, where we can
de�ne

Ucompact = arctan(U), (48)

Vcompact = arctan(V ). (49)

The conformal diagram shown in �gure 2 is constructed by taking (ξ, ψ) as horizontal and vertical coordinates
respectively.

To extend the diagram to future and past regions, one has to deal with the analog coordinates to U and V
so that they are smooth across the corresponding horizons, as we have described.

In the following sections we present conformal diagrams that have meaning away from the axis of symmetry.
Since the construction of conformal diagrams is rather di�cult, some authors have tried other techniques,

as in [17]; where they have introduced projection diagrams.

5 Global conformal diagram with timelike trajectories

5.1 On global conformal diagrams

We can see then that one of the great bene�ts of having constructed a double null coordinate system in Kerr
spacetime is that one can now describe its causal structure. Recall that up to now, the conformal diagrams were
well understood only at the axis, namely for θ = 0 or θ = π; as it is depicted in diagram (a) of �gure 1 in [8], or
in �gure 27 of page 312 in [9], or in �gure 2. However, our construction allows us to extend the validity of those
causal diagrams, where now each point represents the intersection of the null coordinates. For instance, the
intersection of the null hypersurface u =const. with the null hypersurface v =const., determines a particular
topological sphere with rs =constant. On these surfaces, the radial coordinate r has a small range of variability,
but the angular coordinates θ and ϕ vary across their whole respective range of [0, π] and [0, 2π]. This is why
we emphasize the word global in our conformal diagrams. As an example of the typical small variations of the
coordinate r along the surfaces rs=constant we can observe for instance Figure 1. There, one can notice that
when reaching the Equatorial plane, along the rs=constant surface, the r function is a little bit smaller than
3, which is the value at the axis; and in fact numerically we can calculate that it has the value r = 2.960 at
the Equatorial plane. Using the coordinates U and V that allow us to cross the future horizon H = Hf , one
has the same property; so that we can give general validity to the causal diagrams using these type of null
coordinates. In other words, we can construct conformal diagrams as the one shown in �gure 2, where each
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point corresponds to particular values of each of the null coordinates. Alternatively, each point represents a
topological sphere which could be at one of the horizons with r = r+ or r−, or the sphere has rs =constant;
recalling that rs diverges at the horizons, where lim

r→r+
rs = −∞ and lim

r→r−
rs = ∞. The set rs =constant, is a

2-dimensional spacelike surface family(in region I), that corresponds to a well behaved function r(θ) in terms
of Boyer-Lindquist coordinates.

Note that the regular function on CR is Ṽ ; which therefore can also be used in region III. Then, since we
would like to draw curves that go from region I to region II and also to region III, it is more convenient to use
for all these three regions the de�nitions:

ψ = Ucompact + Ṽcompact = arctan(U) + arctan(Ṽ ), (50)

and
ξ = Ṽcompact − Ucompact = arctan(Ṽ )− arctan(U). (51)

Then, in this case, the future horizon Hf is characterized by the condition U = 0, or equivalently the line ψ = ξ,
from −π2 to 0. While the boundary CR is characterized by the line ψ = −ξ, again for ξ in the range [−π2 , 0].
The origin is thus set at i+.

5.2 Computing the plot of timelike trajectories in a conformal diagram

In order to show the utility of having an explicit construction of a conformal of Kerr spacetime we compute
here the plot of three timelike curves in such diagram.

The three timelike curves are de�ned in the following way. The starting point is to consider the timelike
geodesic equations for the coordinates (Ṽ , r, θ, ϕ); which are a set of �rst order di�erential equations. This set
of equations involves the requirement that the curve be timelike. Then, although we start from the geodesic
equations, we transform them in order to generate timelike curves which are not geodesics. In the equation

involving Ṽ , the knowledge of the function K is required; but instead of this, we use K0 = (r2+a2)a2 sin(θ)2

(r2+a2 sin(θ)2) ,

which is the limit of the function K when the mass of the spacetime is taken to be very small. This provides
then for a recipe to calculate a timelike curve which for m 6= 0 is not a geodesic. Although we require in one of
the equations that these curves are timelike, they cease to be geodesic, because for geodesics one should use K
instead of K0, that we employ. The reason to calculate these timelike trajectories instead of the geodesics, is
to facilitate the numerical calculations, since to attain a reasonable precision in the trajectories would require
high accuracy in the calculation of K along each point used by method of integration as those of Runge-Kutta
type. We also compute U numerically.

Orbit 1 is calculated with Lz = 0.2, E = 1.2 and Kg = δga
2 cos(θc)

2 + (Ea sin(θc) − Lz/ sin(θc))
2 with

θc = π
6 and δg = 1 for a timelike curve. Orbit 2 uses the constants above but with E = 0.5. While orbit 3 is

like orbit 2 but with Lz = 0.7. All curves pass through the point: Ṽ = tan(−π4 ), U = 0, θ = π
4 and ϕ = 0.

The graph in �gure 3 shows the numerically calculated drawing of these three curves in the conformal
diagram.
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Figure 3: Conformal diagram showing three timelike curves. We use colors in this graph to denote horizons and
in�nities. The blue lines denote future and past null in�nites. The yellow lines denote the Cauchy horizons,
where r = r−. The gray lines denote the horizons, where r = r+. The three timelike curves are drawn in cyan,
magenta and green.

We would like to emphasize that the design of these three timelike curves was chosen just because of numerical
convenience. But even so, the calculations demanded some e�orts on the fourth order Runge-Kutta integrators.
Thus we tried to extend the range as much as possible. The technique to select them was to �x a point in the
U = 0 surface, that is at the future event horizon; and then to pick up three initial conditions covering a fast
`inward' infall, orbit 1, a normal timelike behavior, orbit 2, and a fast `outward' also infall, orbit 3. We call
`inward' a motion with increasing U behavior, and `outward' a motion with increasing Ṽ behavior; which in the
graphs are approximate motions to the left and to the right respectively. It can be seen in Figure 3 that the
timelike trajectory o3 touches the Cauchy horizon CR; and it actually enters into region III, but far away from
the problematic noncausal zone inside region III. We have tried several initial conditions until we found one
whose trajectory enters region III. One should notice that the spacetime is smooth across CR and that geodesics
and smooth timelike curves, as o3, can cross the Cauchy horizon.

It is immaterial which are the three timelike curves; what is important is that one can use a numerical
program to draw the graph of these curves in the conformal diagram. This is only possible if one has the
explicit construction of the conformal diagram, as we present here.

6 The extraordinary noncausal region IIIb

6.1 On the sign of Υ

In his original article Kerr[16] presented the metric also in what is now know as the Kerr-Schild[18] form. Then
Boyer and Lindquist[12] used this form of the metric to express their Boyer-Lindquist coordinates; from which
it is clear that increasing the value of the angular coordinate φ in 2π implies traveling around in a closed loop
in the manifold. Since the sign of gφ,φ is determined by Υ, in the regions where Υ is negative, one has closed
timelike curves, and the causal character of dt and drs changes. All of this occurs inside region III; where we
were using (46) and (47), and more speci�cally in a sector within the zone r < 0.

The region where gφ,φ becomes positive, equivalently Υ change its sign, is depicted in the following �gures.
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Figure 4: Three dimensional graph of the sign of gφ,φ.

Let us observe that

uIII − vIII = 2rs =
1

κ+
ln(U)− 1

κ−
ln(Ṽ ) = ln(U

1
κ+ )− ln(Ṽ

1
κ− ) = ln

(
U

1
κ+

Ṽ
1
κ−

)
; (52)

or

U = Ṽ
κ+
κ− exp(2κ+ rs). (53)

One extreme of the noncausal region is at r = 0 and θ = π
2 ; that is, at the ring singularity. Then, performing

the numeric integration of
∫ π

2

0
k(r = 0, θ)dθ we obtain rs0 =

∫ π
2

0
k(r = 0, θ)dθ = 0.66078; so that one has

U0 = Ṽ
κ+
κ− exp(2κ+ rs0). (54)

The other extreme of the noncausal regions is for approximately r1 = −0.9, and θ = π
2 ; so that rs1 =

r1 + 2mr+
r+−r− ln(1− r1

r+
)− 2mr−

r+−r− ln(1− r1
r−

) +
∫ π

2

0
k(r1, θ)dθ. However, at the moment we do not have a numeric

calculation of k for negative values of r, so we estimate
∫ π

2

0
k(r1, θ)dθ with the above value of rs0. In this way,

for the other extreme one has

U1 = Ṽ
κ+
κ− exp(2κ+ rs1); (55)

with the approximate value rs1 = 0.1651.
So, the natural question is, can one de�ne a continuous uIIIa and vIIIa null coordinates inside the noncausal

region IIIb? In order to construct the null functions in some region, we need to have the function K or k in that
region. It happens that the partial di�erential equation that K or k must satisfy, has problems when Υ becomes
negative, because as we show below the argument in the left square root of equation (6) becomes negative. More
concretely, the null geodesic congruence that we are using, ceases to be integrable. That is, we can not carry out
the construction inside the noncausal region. Moreover, any such construction that relies on a null congruence
coming from null in�nity, will have the same fate. In other words, these type of constructions are not able to
provide a continuous set of null coordinates that enter the noncausal region. In fact, since it is a noncausal
region, it would be unnatural to think that there exists a mechanism such that this type of construction can be
carried out at all.

All these means that the interior of the noncausal region IIIb can not be represented in a global conformal
diagram of Kerr spacetime.

This point has not been mentioned previously in the literature.

6.2 On the construction of the null congruence

In the previous subsection we have indicated that due to the nature of the calculation of the function K, one
can deduce that our construction for a double null coordinate system can not be extended to the noncausal
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region IIIb. In this subsection instead we will concentrate on the problems related to the construction of the
null geodesic congruence, that we employ in our construction. That is, we will consider each geodesic at a time,
where K is constant along each of them.

The existence of a noncausal region poses the question of what is the extent in the spacetime where one can
construct the reference null geodesic congruence.

First of all, it is worthwhile to recall that Carter has shown in [19] that in extending the manifold to the
future and to the past, one repeatedly encounters regions of type I, II and III, in an arrangement shown in
Figure 2. In particular all regions of type III have the same geometrical properties. For this reason, in this
subsection we will concentrate on the region of type III which can be reached with past directed null geodesics
emanating from future plus in�nity I+.

To study the behavior of the null geodesics let us concentrate in the r and θ motion, which are the coordinates
used by Kerr[16] and Boyer and Lindquist[12].

The r motion is given by:

Σ2ṙ2 =
[
E(r2 + a2)− aLz

]2 −K∆ ≡ RLzE ; (56)

where we have taken the opportunity to de�ne RLzE . The θ motion is given by:

Σ2θ̇2 = K −
[
Ea sin(θ)− Lz

sin(θ)

]2

≡ ΘLzE , (57)

which invites us also to de�ne the function ΘLzE as above. For our congruence we need to consider Lz = 0,
and without loss of generality, we take E = 1. Under these conditions we have that the right hand side of (56)
becomes

R01 = (r2 + a2)2 −K∆ = Υ−∆Θ01; (58)

since
Θ01 = K − a2 sin(θ)2. (59)

Let us note that due to the nature of the θ motion equation, one must have Θ01 > 0, and that in the interior
of region III one has ∆ > 0. In (58) we have rearrange terms so that Υ appears explicitly. Since Υ becomes
negative in the noncausal region IIIb, one can see that R01 turns negative in this region, and therefore indicates
that a geodesic coming from outside this zone will not be able to enter into it.

Let us see this in more detail by studying the behavior of (58) with K = a2 sin(θ∞)2, which is shown in the
next graph. That is, let us study the null geodesics that we use to build the double null coordinate system;
which start at future null in�nity, where θ∞ is the value of coordinate θ at this asymptotic boundary. To
facilitate the presentation we use in the graph the notation θ∞ = δπ, that is we express θ∞ in terms of the
more convenient parameter δ.

Figure 5: R01(r, δ ∗ π) for δ = 0.5, 0.4, 0.3 and 0.29; where it shows negative values as function of r.
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We would like to emphasize that the choice E = 1 is just done for simplicity and does not represent a
restriction, in particular, one can easily see that in the general case, K ′ = K/E2 satis�es equation (6). It can
be seen that for δ� ≈ 0.289 < δ < 0.5 one has that R01 shows negative values for some r's that are negative
and greater than -1. At this point it is worthwhile to recall that Carter[19] has shown that only the geodesics
that strike the singularity are incomplete. Therefore, a null geodesic that reaches a point where R01 becomes
negative, as for example is the case for the null geodesic starting with δ = 0.4, will not stop there, but will
reverse its r motion. That is, in the previous motion one had ṙ < 0, and after the point in which R01 = 0, one
will have ṙ > 0. In other words, one therefore deduces that for the chosen geometrical parameters m and a,
the null geodesics coming from future null in�nity, with values of δ in the range shown in the graph, will invert
the r motion to greater values; with the exception of the critical value of δ� where R01 shows a double root.
This situation is analog to the discussion in classical mechanics of the motion of one particle with conserved
quantities; where for �xed δ, the radial potential energy would be −R01(r, δπ) and the mechanical energy is
zero. Note that there is an equatorial symmetry with respect to this e�ect.

Also, it is observed that for δ / 0.289, the null geodesics in our congruence, coming from future null in�nity
will continue to the asymptotic region r → −∞; so that one can construct our congruence in the neighborhood
of the axis of symmetry. Let us note that the extreme θ� = δ�π has been estimated for the case m = 1 and
a = 0.8. These limiting values can be calculated solving a cubic equation for r� and then calculating θ�; which
are deduced from R = 0 and dR

dr = 0.
It should be noticed that for the geodesics with parameter δ in the range δ� ≤ δ ≤ 1 − δ�, they will cease

to form a hypersurface after the turning points, because from there they will inevitably cross other geodesics
in the congruence; which can also be checked by noticing that the spin coe�cient ρ, which is related to the
divergence of the congruence, blows up when R goes to zero[13]. Of course the special case is δ = 0.5, which
are the geodesics that reach the singularity.

In summary, our construction for a double null coordinate system can not be extended to region IIIb.
Therefore, the noncausal region can not be represented in the conformal diagrams.

6.3 Calculation of the function k

We have been able to integrate k, for all values of θ, up to r = 0, as it is shown in the next graph.

Figure 6: Numerical solution of k in terms of the coordinates (ξ, θ).

In �gure 6 it is shown the graph of the numerical integration of k from r = ∞ up to r = 10−16; which
indicates a smooth behavior of the function for positive r.
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7 General conformal diagram of regions I, II and III

The existence of the extraordinary noncausal zone b in region III poses a number of questions on the physical
reality of the whole region III. As Carter has pointed out[19], one can have closed timelike lines that extend to
any part of region III. It is outside the scope of this work to review the studies on the global causal structure
of Kerr spacetime; instead, we would like to present a useful tool that helps to carryout those studies.

An explicit conformal diagram of the three regions I, II and III is presented here.

Figure 7: Conformal diagram of the three immediate regions. Region III is subdivided in zones a, b and c. Note
that the red line denotes the boundary of the noncausal region, and the ring singularity. The reason for the
curly shape of these curves is that one regular coordinates uses κ+ in its de�nition and the other uses κ−; as
explained in the text. We denote with `r− int' the line in the conformal diagram indicating the value r = r−
in the interior region III, to distinguish it from the Cauchy horizon CR which also satis�es r = r−. We denote
with r = −∞+ and r = −∞− the asymptotic regimes of region III, for r → −∞, to the future and to the
past respectively. The notation CL and CR was introduced before in the text. We denote with `r+ int' the line
in the conformal diagram denoting the value r = r+ in the interior region II, to distinguish it from the future
horizon Hf , de�ned previously. We use I+ to denote future null in�nity of the physical region I. We use I− to
denote past null in�nity of the physical region I. Hp is used as before to denote the past horizon of the black
hole. As explained in the text, we denote with rs0 the value of rs at the ring singularity, where the value of
the r coordinate is 0. Also, we use rs1 to denote the value of rs at the extreme of the noncausal region, for the
smallest value of the coordinate r; estimated to be around -0.9 for our choice of geometrical parameters m and
a. The region IIIa correspond to points in region III where the radial coordinate is larger or equal than zero,
r > 0. The region IIIc correspond to the points in the zone of region III where r < 0 and are outside of the
noncausal region IIIb. As explained, region IIIb can not be drawn in the conformal diagram, but we can draw
the line corresponding to the largest value of r, and the line corresponding to its smallest value in the noncausal
region.

15



Region IIIa is the zone of region III where r− > r > 0.
We have noticed before that the noncausal region IIIb can not be represented in a global conformal diagram

of Kerr spacetime. However we can draw in the conformal diagram, the lines corresponding to the largest and
smallest radius in the boundary of the noncausal region. Those are the red and salmon lines in the graph
of �gure 7 . The b in the graph, is just to indicate that the red and salmon lines are extreme points of the
noncausal region. It should be emphasized however that other points, outside the noncausal region, might be
drawn in the conformal diagram into the two dimensional area in the graph between the red and salmon lines.
This is expected, since one is dealing with a four dimensional spacetime, but one is drawing two dimensional
conformal diagrams. In fact, recall that for regular regions, as those of type I and II, all points in a particular
sphere rs =constant, are plotted in the same point in the conformal diagram.

The zone c is the zone of region III where r is negative and outside the noncausal region. We denote this as
the region IIIc.

The bottom line is that the topological causal properties of the four dimensional manifold can be deduced
from the structure of the conformal diagram that we have just introduced. Therefore, since in region III one is
missing the noncausal zone, the topology implied by the original Carter conformal diagram at the symmetry axis,
can not be extended to the global spacetime. This subtle point is generally missed, since even in textbooks[20],
the introduction of conformal diagrams of Kerr spacetime do not mention this issue. In fact in those diagrams,
one can not draw timelike curves, not even the ring singularity with precision, since the authors do not have or
provide, the set of needed double null coordinates that would allow for those drawings. We solve this situation
with our present work.

8 Final comments

In this article, we have presented for the �rst time, an explicit construction of a conformal diagram for the
spacetime of a black hole with angular momentum, which is valid globally; as opposed to the previous ones that
where only valid at the axis of symmetry.

We have shown how to de�ne appropriate smooth null coordinates across outer and inner horizons, so that
our construction allows us to extend these diagrams to the complete spacetime, where now each point represents
the intersection of the null coordinates.

All previous �ndings on the global causal structure of Kerr spacetime[19] can be reproduced with our choice
of double null coordinates, of type (u, v) and of type (U, V ); with the advantage that now we can visualize
this structure through the global conformal diagrams as that of �gure 7. Although we have concentrated in
this article in regions I, II and III, it is clear that our construction can be naturally extended to the maximal
analytic manifold[12]; so that we give meaning to diagrams of the type shown in �gure 2 outside of the axis of
symmetry.

Previous presentations of conformal diagrams of the extended Kerr geometry[20, 21] were of qualitative
nature and were not able to calculate in the graph speci�c curves or regions. For instance, the graphs in
�gures 11.7 and 11.8 of [21] are not `global conformal diagrams' since they are constructed from demanding
that two coordinates are maintained �xed; so that the curves we computed in this work can not be drawn
on those diagrams. In particular, in [21] the authors erroneously state, copying an error from the MTW
textbook[22], that their function v is null, (which in [22] is called Ṽ ). Since we use these symbols in our article
we rename their function to vK , since Kerr used the retarded version of it. Then one can readily calculate that

gabdvKa dv
K
b = − a2 sin(θ)2

r2+a2 cos(θ)2 ; which is di�erent from zero at generic points, and therefore indicates that it is not

a null coordinate. Note that the contraction is zero at the axis of symmetry. In the MTW textbook the error
appears in point E3, in page 880 of the 1973 edition. This mistake might be the source of the general belief
in the community that Kerr spacetime was almost as easy as Schwarzschild one. But in fact, the subtleties of
Kerr geometry makes all discussions much more di�cult. A confusing fact, for example, is that the function vK

contains the geodesics de�ning the principal null directions; but this null congruence has twist and therefore
does not de�ne a null function. For this reason in [13] we dealt with a null congruence without twist, that
allowed us to de�ne our pair of null coordinates for Kerr spacetime.

In contrast to this, our explicit construction of conformal diagrams for Kerr spacetime, has permitted us
here to numerically draw arbitrary curves, as those shown in �gure 3, and the boundary of the noncausal region,
depicted in �gure 7 .

The possibility to construct these type of global conformal diagrams contributes to the visual understanding
of the global structure of the spacetime.
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