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Abstract: Assuming that there is no way of sending signals propagating faster than light and that
free will exists, the loophole-free observed violation of Bell’s inequalities demonstrates that at least
one of three fundamental hypotheses involved in the derivation and observation of the inequalities
is false: Locality, Realism, or Ergodicity. An experiment is proposed to obtain some evidence about
which one is the false one. It is based on recording the time evolution of the rate of non-random series
of outcomes that are generated in a specially designed Bell’s setup. The results of such experiment
would be important not only to the foundations of Quantum Mechanics, but they would also have
immediate practical impact on the efficient use of quantum-based random number generators and
the security of Quantum Key Distribution using entangled states.

Keywords: quantum randomness; proposal of experiments on foundations of quantum mechanics;
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1. Introduction

It is well known that the violation of Bell’s inequalities is incompatible with the intu-
itive ideas of Locality and Realism. During the decades-long discussion on the experimental
observations of that violation, it was argued that technical imperfections left space for the
existence of some conspiratorial mechanisms, which received the general name of loopholes.
These mechanisms were able to reproduce the observed results without contradicting Local-
ity and Realism. However, loophole-free experiments [1–6] were performed and confirmed
the violation of Bell’s inequalities. Therefore, at least one of the hypotheses necessary to
derive and observe the violation must be false.

At this point, interpretations diverge. Some say that Locality and Realism mean
essentially a single hypothesis, and what is false is “Local Realism” [7,8]. Others claim that
only Realism is falsified, and that Locality plays no role in the problem [9]. In opposition,
the expression quantum non-locality has become part of “popular knowledge”. Others argue
that Quantum Mechanics (QM) is strictly Local [10–12], and that the violation of Bell’s
inequalities is a consequence of the wavy nature of matter [13].

There is an additional twist: Locality and Realism suffice to derive Bell’s inequalities,
but, in order to test them experimentally, an additional hypothesis is necessary. This was
originally shown by V. Buonomano in 1978, who named it Ergodicity [14]. The necessity
of the additional hypothesis was rediscovered during the years with different names:
homogeneous dynamics, uniform complexity, experiments’ exchangeability, counter-factual
stability [15–18], and there are probably more that escaped my attention. The many
versions of this hypothesis have subtle differences, but, at the end of the day, they all
mean the following: that it is possible to insert data measured with different angle settings
(see Figure 1), which are unavoidably recorded at different values of time, into a single
theoretically derived expression (i.e., the Bell’s inequality). Details on the necessity and
meaning of this hypothesis are discussed in Section 2. I stress that it is not necessary to
derive Bell’s inequalities, but that it is unavoidable to insert measured data into them.
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necessary to derive Bell’s inequalities, but that it is unavoidable to insert measured data 
into them. 

In order to avoid confusion, the meanings of “Locality” and “Realism” as they are 
understood in this paper are also defined in Section 2. I do not claim they are the “correct” 
or “best” definitions. They are just the ones used in this paper. According to these defi-
nitions, Locality, Realism, and Ergodicity are separate hypotheses, all of them necessary 
to derive and observe Bell’s inequalities. 

 
Figure 1. Sketch of a Bell’s setup and the proposed experiment. Source S emits pairs of photons 
maximally entangled in polarization, analyzers are set at angles {α,β} at stations A and B placed at 
distance L; single-photon detectors are placed at the output gates of the analyzers, producing bi-
nary time series. In the proposed experiment, pairs are emitted during well-separated pulses of 
duration ≈2L/c, settings {α,β} are changed just before the arrival of each pulse and remain fixed 
during the pulses’ duration. Hence, Local (i.e., spatially isolated) measurements in A and B are 
enforced during the first half of the pulses (t < L/c), but not during the second half (t > L/c). Meas-
urements during the first (second) half of the pulses are hence performed in loophole-free (not 
loophole-free) condition. Therefore, observing the violation of Bell’s inequalities during the first 
half implies that at least one of the three hypotheses (Locality, Realism, and Ergodicity) necessary 
to derive and use Bell’s inequalities must be false. On the other hand, observing the violation dur-
ing the second half is possible even if the three hypotheses are true. Depending on which one of the 
three hypotheses is false, the level of randomness of the series recorded in the first and second 
halves may be different. 

Strictly speaking, two other hypotheses are also necessary: freedom of choice (which is 
relevant here in choosing the angle settings in Figure 1 by the observer) and non-signaling 
(i.e., the impossibility of sending signals that propagate faster than light). I assume these 
two hypotheses are valid. I also assume that all loopholes are closed. 

In these conditions, a relevant question is: which one of the three remaining fun-
damental hypotheses involved (Locality, Realism, and Ergodicity) is false when Bell’s 
inequalities are experimentally violated? Of course, more than one can be false. The cases 
where only one of them is false are considered here. Therefore, in the situation the falsity 
of (f.ex.) “Locality” is considered, it is implicitly assumed that “Realism” and “Ergodici-
ty” are true. The aim of this paper is to propose an experiment to reveal (or, at least, to 
obtain some evidence to indicate) the false hypothesis. The key is the relationship be-
tween falsity of each one of the three hypotheses and randomness of the series of outcomes 
produced in a Bell’s setup. The problem of the definition and testing of randomness is 
reviewed at the end of Section 2. In Section 3, it is reviewed that the falsity of Locality 
implies the series must be “truly” random, and that the falsity of Realism leaves the se-

Figure 1. Sketch of a Bell’s setup and the proposed experiment. Source S emits pairs of photons
maximally entangled in polarization, analyzers are set at angles {α,β} at stations A and B placed at
distance L; single-photon detectors are placed at the output gates of the analyzers, producing binary
time series. In the proposed experiment, pairs are emitted during well-separated pulses of duration
≈2L/c, settings {α,β} are changed just before the arrival of each pulse and remain fixed during the
pulses’ duration. Hence, Local (i.e., spatially isolated) measurements in A and B are enforced during
the first half of the pulses (t < L/c), but not during the second half (t > L/c). Measurements during the
first (second) half of the pulses are hence performed in loophole-free (not loophole-free) condition.
Therefore, observing the violation of Bell’s inequalities during the first half implies that at least one of
the three hypotheses (Locality, Realism, and Ergodicity) necessary to derive and use Bell’s inequalities
must be false. On the other hand, observing the violation during the second half is possible even if
the three hypotheses are true. Depending on which one of the three hypotheses is false, the level of
randomness of the series recorded in the first and second halves may be different.

In order to avoid confusion, the meanings of “Locality” and “Realism” as they are
understood in this paper are also defined in Section 2. I do not claim they are the “correct” or
“best” definitions. They are just the ones used in this paper. According to these definitions,
Locality, Realism, and Ergodicity are separate hypotheses, all of them necessary to derive
and observe Bell’s inequalities.

Strictly speaking, two other hypotheses are also necessary: freedom of choice (which is
relevant here in choosing the angle settings in Figure 1 by the observer) and non-signaling
(i.e., the impossibility of sending signals that propagate faster than light). I assume these
two hypotheses are valid. I also assume that all loopholes are closed.

In these conditions, a relevant question is: which one of the three remaining fundamen-
tal hypotheses involved (Locality, Realism, and Ergodicity) is false when Bell’s inequalities
are experimentally violated? Of course, more than one can be false. The cases where only
one of them is false are considered here. Therefore, in the situation the falsity of (f.ex.)
“Locality” is considered, it is implicitly assumed that “Realism” and “Ergodicity” are true.
The aim of this paper is to propose an experiment to reveal (or, at least, to obtain some
evidence to indicate) the false hypothesis. The key is the relationship between falsity of
each one of the three hypotheses and randomness of the series of outcomes produced in a
Bell’s setup. The problem of the definition and testing of randomness is reviewed at the
end of Section 2. In Section 3, it is reviewed that the falsity of Locality implies the series
must be “truly” random, and that the falsity of Realism leaves the series’ randomness
undecided. Also in that Section, I claim that the falsity of Ergodicity implies the series
must be non-random. In consequence, an experiment testing the series’ randomness is, in
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principle, able to reveal the false feature. However, several problems must be considered.
An attainable experiment is described in Section 4.

To avoid any confusion, the proposed experiment does not affect the validity of QM. It
is not the proposal of a new test of QM. What is proposed to test here is which hypothesis
among Locality, Realism, or Ergodicity (or some hypothesis with the same consequences as
Ergodicity) is false. The results of the proposed experiment may affect the interpretation
of QM (f.ex., the Copenhagen interpretation assumes that Realism is false), but not the
validity of QM or its predictions.

2. Definitions Used in This Paper
2.1. Realism

There are many definitions of Realism. The issue is subtle and complex [19]. In
this paper, Realism means that it is possible to write the probability of observing a given
outcome in Figure 1 as an average over classical probabilities and distributions on a hidden
(but classical, counterfactually definite) variable λ. F.ex, the probability of observing the
outcome “1” in station A when the setting is α, is assumed to be

PA
(1)(α)assumed =

∫
dλ.ρ(λ).PA

(1)(α,λ) (1)

where both the distribution ρ(λ) and the probability PA
(1)(α,λ) hold to the axioms of

classical (Kolmogorov’s) theory of probability, and the integral is a Lebesgue or Riemann
one. Expressions such as Equation (1) are at the basis of the derivation of Bell’s inequalities.

2.2. Locality

It is worth mentioning here that “Locality” is often defined as the assumption that the
probabilities of coincidences (at the hidden variables level) are statistically independent, f.ex.:

PAB
(1,0)(α,β,λ) = PA

(1)(α,λ) × PB
(0)(β,λ) (2)

Equation (2) uses classical probabilities, so that this definition of Locality presupposes
the definition of Realism above. That is why the term “Local Realism” is appropriate if
Equation (2) is chosen to define Locality.

In this paper, instead, “Locality” is defined simply as the non-existence of effects
propagating faster than light. If a perturbation is introduced by Bob in the system at B,
that perturbation cannot be the cause of changes (neither observable nor hidden) in the
system at A before a time longer than L/c has elapsed (the stations are in the same system
of reference, so that “time” is well defined). Nothing is said about hidden variables or
probabilities. This definition of Locality is hence independent of Realism as it is defined in
Section 2.1. Yet, if Realism is assumed valid, then this definition of Locality implies that
Equation (2) is valid.

2.3. Ergodicity

There are several ways to see the necessity of a hypothesis additional to Locality and
Realism in order to use Bell’s inequalities in experiments [14–18]. F.ex., in the derivation
of the Clauser–Horne (CH) inequality, an algebraic relationship leads to the following
inequality (the super index is dropped here, for the CH inequality involves one detector
per station only):

−1 ≤ PA(α,λ).PB(β,λ) − PA(α,λ).PB(β’,λ) + PA(α’,λ).PB(β,λ)
+ PA(α’,λ).PB(β’,λ) − PB(β,λ) − PA(α’,λ) ≤ 0

(3)
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This equation is then multiplied by the classical distribution ρ(λ) and integrated over
the space of the hidden variable as in Equation (1) to obtain the final expression of the
CH inequality:

−1 ≤ PAB(α,β) − PAB(α,β’) + PAB(α’,β) + PAB(α’,β’) − PB(β) − PA(α’) ≡ J ≤ 0 (4)

However, all real measurements occur during time. The expression of the observable
probabilities are (f.ex., for PA in Equation (1))

PA(α) = (1/∆t)
θ+∆t∫
θ

dt.ρ(t).PA(α, t) (5)

This equation represents the result of the following real process: set A = α during
the time interval [θ,θ + ∆t], sum up the number of photons detected after the analyzer,
and obtain PA(α) as the ratio of detected over incident photons. Note that Equation (5) is
equivalent to Equation (1) if “time” is interpreted as the hidden variable. Following the
usual reasoning leading to the CH inequality, time is now integrated to obtain

−T ≤
T∫
0

dt.ρ(t).PAB(α, β, t)−
T∫
0

dt.ρ(t).PAB(α, β′, t)+
T∫
0

dt.ρ(t).PAB(α
′, β, t) +

T∫
0

dt.ρ(t).PAB(α
′, β′, t)

−
T∫
0

dt.ρ(t).PB(β, t)−
T∫
0

dt.ρ(t).PA(α
′, t) ≤ 0

(6)

where T is the total time of observation. This inequality is certainly valid, but it does not
correspond to what is actually measured, as it is impossible measuring with two different
settings (say, α and α’) at the same time. In most experiments on Bell’s inequalities, the
measuring time is distributed in a way similar to the following: the analyzer A is set to
α between t = 0 and t = T/2 and to α’ between t = T/2 and t = T, B = β between t = T/4
and t = 3T/4, and B = β’ between t = 0 and t = T/4, and also between t = 3T/4 and t = T.
A different distribution (f.ex.: a random fast variation of the settings) requires a more
involved notation of the integration intervals, but the result is the same. The value of J (see
Equation (4)) that is actually measured in an experiment is then:

(1/∆T)
T/2∫

T/4
dt2.ρ(t2).PAB(α, β, t2)− (1/∆T)

T/4∫
0

dt1.ρ(t1).PAB(α, β′, t1) + (1/∆T)
3T/4∫
T/2

dt3.ρ(t3).PAB(α
′, β, t3)

+(1/∆T)
T∫

3T/4
dt4.ρ(t4).PAB(α

′, β′, t4)− (1/2∆T)
3T/4∫
T/4

dt′′ .ρ(t′′ ).PB(β, t′′ )− (1/2∆T)
T∫

T/2
dt′.ρ(t′).PA(α

′, t′)
(7)

(∆T = T/4) which is different from Equation (6), breaking the logical chain in the
derivation of the inequality. In order to retrieve the validity of the usual CH inequality in
the experiments, it is necessary to assign (hypothesize) numerical values to counterfactual
results, that is, the values of the integrals that would have been observed, during a certain
time interval, if the settings had been different from the ones that were actually used [15,20].
The hypothesis that is tacitly made in the experiments is that the values of measured
averages (f.ex.):

PA(α)measured = (1/T).

θi+T∫
θi

dt.ρ(t).PA(α, t) (8)

are independent of θi (for sufficiently long T). In other words: that the value obtained with
θi, when detections were recorded with actual setting α, is equal to the one that would
have been obtained with θ’i, when the actual setting was α’. This tacit hypothesis (or an
equivalent one, as many authors independently found) is unavoidable when inserting
measured data into the derived expressions of Bell’s inequalities.
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Buonomano realized that the tacit hypothesis could be justified in a physically sound
way by assuming Ergodicity. The argument can be briefed as follows: Note that Equation (1)
is an integral over the space of states of the hidden variable. It is an ensemble average.
Equation (8), instead, is a time average. Ergodicity valid means that ensemble and time
averages are equal, i.e., that Equations (1) and (8) are equal. As there exist only one
PA(α)assumed, then all PA(α)measured have the same value, regardless of the values of θi that
are recorded. Therefore, assuming Ergodicity valid implies, in physically meaningful terms,
the validity of the tacit assumption, and allows the use of Bell’s inequalities in experiments.
Be aware that Ergodicity has no relationship with the memory or any other loophole
(supposing the opposite was an error in Buonomano’s paper). In this paper, all loopholes
are assumed closed.

2.4. About Randomness

There is no unanimously accepted definition of randomness. It is only agreed that
“predictable” (even partially predictable) implies “not random”. Nevertheless, levels of
randomness have been established [21]:

Uniformity, or Borel-normality means that the statistical average rate of strings of length
n (say, 110100 for n = 6) in the series is the same as would be obtained by tossing an ideal
coin. Uniformity is a necessary, but not sufficient, condition for randomness [22]. Yet,
certifying this property is difficult. Other statistical tests of randomness involve the decay
of the self-correlation or the mutual information. They all involve measuring probabilities,
and hence require the series to be stationary. The battery of tests provided by the National
Institute of Standards and Technology (NIST) is mostly based on this approach.

A series can pass the statistical tests just mentioned and still be predictable, then, not
random. A well-known example is the series of the binary digits of π, which is generated
by an algorithm. A series is algorithmically random if there is no algorithm able to generate
the series using a number of bits shorter than the said series. Note that this definition
does not involve probabilities. It applies even to series that are not statistically stationary.
Algorithmic randomness is related to Kolmogorov’s complexity [23]. The complexity K of a
binary series of length N is the length of the shortest program, running on a classical Turing
machine, whose output is the said series. Therefore, a series is algorithmically random if
K ≈ N. This definition is intuitive, free of ambiguities, and appealing, but has a serious
drawback: K cannot be actually computed, for one can never be sure that there is no shorter
program able to generate the series. It can be only estimated from the compressibility of the
series by using, f.ex., the algorithm devised by Lempel and Ziv [24].

On the other hand, Martin-Löf’s theorem ensures that there exists a universal algorithmic
test that determines if a given series is random, at least in the typical and algorithmic
senses [25]. Unfortunately, the expression of this universal test is unknown. An approach
at hand is as follows: a given series can be demonstrated non-random. This occurs when
it is rejected by one of the many existing tests of randomness, both statistical (f.ex., the
NIST battery of tests) and algorithmic (f.ex., estimators of Kolmogorov’s complexity). As
the number of applied tests is increased, the result that would be obtained by applying
the unknown universal test is approached, say, asymptotically. This is known as Ville’s
principle, and is used to evaluate the reliability of random number generator (RNG) codes
or devices in practice. A high rate of rejected series, or rejection rate, means a low level
of randomness. The rejection rate does not properly measure randomness, as the set of
applied tests is arbitrary. Yet, it is evident that it cannot be completely unrelated from “actual”
randomness, as defined by the (unknown) universal algorithmic test. As it will be shown, a
coarse relationship between the rejection rate and “actual” randomness is all that is needed
for the aims of this paper.
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3. Consequences of Non-Validity of Each Hypothesis
3.1. Non-Locality and Randomness

According to the idea of Quantum Certified Randomness (QCR), the binary series
of outcomes produced in the Figure 1 setup are intrinsically random. As “random” is a
difficult feature to define, the idea of QCR is most appealing. The setup in Figure 1 would
provide then not only series to be used in practice, but also a definition: random series is what
is produced by this setup. To my knowledge, QCR is supported by three different arguments:

(i) Because of a numerical relationship, the parameter SCHSH (which is a usual measure
of entanglement) puts a lower bound to the series’ minimum entropy Hmin [26]. If SCHSH
reaches its maximum value 2

√
2, then Hmin= 1, which is the minimum entropy of an ideally

uniform series.
(ii) Arguments of the Kochen–Specker type show that the outcomes of some quantum

experiments cannot be assigned by a program running on a classical Turing machine [27,28].
That is, they are Turing non-computable.

(iii) If the existence of non-Local effects is taken as an axiom (i.e., if Locality as defined
in Section 2.2 is false) then the series of outcomes produced by measurements on a spatially
spread entangled state cannot be predicted by any method. Otherwise, faster than light
signaling would be possible [29].

The argument (i) above guarantees a minimum level of uniformity of the series, but,
as said, a series can be ideally uniform (Hmin = 1) and still be predictable and hence, not
random. Regarding (ii), a series can be Turing non-computable and still not algorith-
mically random. Incomputability is a necessary, but not sufficient “symptom” of “true
randomness” [28]. The argument (iii) is the strongest; it ensures that no algorithm can
predict the series. I will assign “random” to this strongest condition only.

In short, if Bell’s inequalities are violated because Locality (as defined in Section 2.2)
is false, then, according to the arguments in [29], the series produced in Figure 1 must be
(algorithmically) random.

3.2. Non-Ergodicity and Randomness

Let us hypothesize that the series of outcomes in Figure 1 are caused by the evolution
of an underlying classical dynamical system. I find intuitive the relationship between
Ergodicity and randomness in this context. A classical system that evolves ergodically fills
the phase space evenly. If the evolution is non-Ergodic instead, then the system spends
more time in some regions of phase space than in others of the same measure (because,
time and ensemble averages are supposed not equal). Hence, at a given time, the system
is more probably found in some regions than in others. Its future state can be partially
predicted. Therefore, an evolution that is non-Ergodic is (at least partially) predictable and
hence non-random, for all definitions of “random”.

In more formal terms, attempts to explain the violation of Bell’s inequalities within
classical Physics assume that the evolution of an underlying classical dynamical system
causes the outcomes in Figure 1. Let us partition the phase space of this system as follows:
Label “1”(“0”) the regions where the system causes a “1”(“0”) in the series. Inside these
regions, there are sub-regions where the system causes the strings 11, 10 (01, 00). Following
this partition up to some arbitrary large number n (n is nevertheless much shorter than the
total length of the series), the phase space is divided into 2n sub-regions. Actual series are
finite, so that there is always a finite value of n. When the system evolves into one of these
sub-regions, the corresponding string appears in the series.

Birkhoff’s theorem ensures that Ergodicity is valid if and only if the phase space is
metrically un-decomposable. Therefore, if Ergodicity is not valid, then the phase space is
metrically decomposable. This means that it can be divided into two regions of measure
different from 0 or 1 that are invariant during the system’s evolution [30]. The system’s
evolution is then trapped into one of these regions, and it never enters into the other
one. The invariant regions have measures different from 0 or 1, hence they include a
finite number of the 2n labeled sub-regions, which are never visited by the system. In
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consequence, there are a finite number of strings of length n that do not appear in the
complete series. The complete series is then, by definition, not uniform. As uniformity is a
necessary condition for randomness, a non-Ergodic evolution (of the assumed underlying
classical dynamical system) causes non-random series.

Be aware that this reasoning applies only to the case of interest here, that is, a classical
system with a bounded phase space which produces a binary series as it enters different
regions of its phase space. In this case, and in this case only, if the evolution of the system
is not Ergodic, then the produced series is not uniform (and hence, not random). The
relationship not Ergodic ⇒ not random is not claimed to be general. For example, the
(unbounded) random walk is random (by definition) and non-Ergodic.

3.3. Non-Realism and Randomness

The Copenhagen interpretation of QM is the most important of the descriptions of the
violation of Bell’s inequalities that hypothesizes Realism to be false. Contrarily to usual
belief, this interpretation says nothing about the series’ randomness. Born’s rule allows
calculating probabilities (defined as the limit of frequencies), but is silent about the features
of the series that underlie the measurement of such probabilities. The only explicit opinion
on this subject is von Neumann’s axiom. It states that quantum measurements violate
Leibniz’s principle of sufficient reason: the outcome “1” or “0” in Figure 1 have no cause. A
series of such outcomes is intuitively random, but this intuition is difficult to formalize [22].
In addition, von Neumann’s axiom can be understood in two ways, or strengths. Its
“strong” form means that Leibniz’s principle is violated in quantum experiments. The
“weak” form means that the axiom is part of a user’s guide or warning about what QM can
or cannot predict, but not necessarily a feature to be experimentally observed. In addition,
algorithmic randomness of quantum produced series has not been established [28].

In short, if Bell’s inequalities are violated because Realism is false, then, according to
the arguments in [22,28], there is no reason to say that the produced series are (algorithmi-
cally) random, or not.

4. Proposed Experiment
4.1. Basic Scheme

As discussed in the previous sections, the falsity of each of the three main hypotheses
(as they are defined in Section 2) implies different randomness of the series produced in
the setup of Figure 1. Locality false implies the series must be algorithmically random,
Ergodicity false implies that they must be non uniform (hence, not random), and Realism
false leaves the series’ randomness undecided. This result opens a way to decide which
hypothesis is false. However, nothing can be assumed about the validity of any of the three
involved hypotheses (otherwise one would fall into a logical inconsistency) so that the rate
of rejected series (Ville’s principle) appears as the available method to evaluate randomness.

In practice, the rejection rate can be affected by many “technical” causes. The challenge
is to find an experimental approach that gets rid of these causes, leaving only the effect of
the falsity of one of the hypotheses. As always, the relative variation of a magnitude (in this
case, randomness) is much easier to measure than its absolute value.

Suppose then that the source in Figure 1 emits maximally entangled states during
square pulses of total duration twice longer than L/c, where L is the distance between
stations and c is the speed of light. Time between pulses is adjusted to be much longer
than the pulses’ duration. Intensity is adjusted such that much less than one photon
per pulse is recorded in average. Trigger signals are sent to each station to indicate the
start of each pulse and synchronize the clocks. Angle settings {α,β} in each station are
“randomly” (see Section 4.5) changed (as in the loophole-free experiments) just before
the arrival of each pulse, and then they are left fixed during each pulse. Time-to-digital
converters record the time elapsed from the start of each pulse until the detection of each
photon. This is repeated for many (typically, tens of millions) pulses during an experimental
run. After the run has ended, data processing identifies the coincidences between A and
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B. Single detections are discarded. Binary series for each time interval within the (say,
stroboscopically reconstructed) pulse are obtained in this way. The size of the time intervals
depends in practice on the number of recorded coincidences (see the end of Section 4.3). In
the discussion that follows, only two time intervals are considered: the pulses’ first half
and the pulses’ second half.

Suppose now that the violation of Bell’s inequalities is constant during the pulse
duration, as predicted by QM and also observed [31,32]. During the pulses’ first half,
detections at A and B are spatially isolated. Therefore, during the pulses’ first half, the
violation of Bell’s inequalities is possible only because Locality, or Realism, or Ergodicity is
false. We know that one of them must be false. During the pulses’ second half instead, there
has been enough time for classical information to propagate between the stations, and Bell’s
inequalities can be violated even if the three hypotheses are true. This experimental feature
implies that the level of randomness during the first half may vary with respect to the one
in the second half, and that this occurs in a time typically too short for other perturbations
(mechanical or thermal) to affect the results. The type of variation to be expected depends
on which hypothesis is false, as it is discussed next.

4.2. If Locality Is False

Let us suppose that the violation of Bell’s inequalities observed during the pulses’
first half occurs because Locality is false. Therefore, as reviewed in Section 3.1, series
recorded during the first half must be algorithmically random. Instead, series recorded
during the pulses’ second half may be random, or maybe not. It is natural to expect the
level of randomness, averaged over a large set of data, to decrease when passing from an
enforced random regime to a non-enforced one. Therefore, the rejection rate averaged over
large statistical samples should increase from a value near to zero for the sample recorded
during the pulses’ first half (loophole-free enforced), to a non-negligible value for the
sample recorded during the pulses’ second half (loophole-free not enforced). Note that
only a coarse relationship between the rejection rate and “actual” randomness (as defined
by the unknown universal algorithmic test) is assumed, that is, that they either increase or
decrease together (not necessarily in the same amount) in the average.

4.3. If Ergodicity or Realism Are False

Let us suppose now that the violation of Bell’s inequalities observed during the pulses’
first half occurs because Ergodicity is false. Series recorded during the first half must be
non-uniform now. The rejection rate should be close to 100%. Instead, series recorded
during the second half may be uniform, or maybe not. Following the same reasoning than
in the previous Section, the rejection rate in the sample of series recorded during the pulses’
second half should now decrease.

Finally, let us suppose that the violation of Bell’s inequalities observed during the
pulses’ first half occurs because Realism is false. Series recorded in the pulses’ first half
may be random or maybe not. The same applies to the series recorded in the second half.
Therefore, the rejection rate averaged over large samples should remain constant during
the pulse duration.

Usual sources of non-randomness, like different detectors’ efficiencies, are of course
constant during the pulse duration. If the pulses are short enough (see Section 4.5), any
thermal or mechanical perturbation will affect the rejection rate in the same way during
the whole pulse duration. The variation of the rejection rate between the first and second
halves, caused exclusively by the falsity of one of the hypotheses, should then be detectable
in a statistically meaningful sample of series.

In summary, the consistent observation of an increasing (decreasing) rejection rate
during the pulse duration suggests Locality (Ergodicity) is false. A constant rate suggests
Realism is false instead. Conceivably, the latter result can also be caused in practice by a
high level of noise masking the actual trend. In the case that the trend is in fact observed
to be constant within statistical deviation, the influence of sources of noise existing in
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the actual setup should be carefully analyzed. In order to help estimate the statistical
deviation, the rejection rate should be calculated for different choices of the sets of tests
(see next Section).

If sufficient data are available, the pulses can be sliced in more than two parts (i.e., more
than two time intervals, see the end of Section 4.1) and a curve of evolution of the rejection
rate during the pulse duration can be plotted. This would allow the study of statistical
correlation in a complete way and the reaching of more reliable conclusions.

4.4. Tests of Randomness and a Practical Consequence

A usual choice to apply Ville’s principle is the NIST battery of 16 statistical tests. As
said, it is convenient using a set of tests as large and diverse as possible. It is possible to
add estimators of Kolmogorov’s complexity [33] and tools of nonlinear analysis to identify
a compact object in phase space (Takens’ theorem) [34]. Entropies can be calculated. This is
just an example of the set of tests that can be used.

For the aims of the proposed study, evaluating randomness according to the Ville’
principle has the crucial advantage that no assumption about the validity of Locality,
Realism, or Ergodicity is made. On the other hand, the measured rejection rate depends on
the set of tests chosen, which is arbitrary. For this reason, I claim the consistent observation
of a trend in the time variation of the rejection rate to provide some evidence about the falsity
of one of the hypotheses, not a proof.

In spite of this limitation, the result of the proposed experiment has an immediate
practical impact. Pulsed sources are useful in QKD to reduce signal-to-noise ratio and to
synchronize the clocks, which is a technical problem of main concern. If the rejection rate
was shown to increase with time, then QKD using entangled states would be safer if pulses
shorter than L/c were used to generate the key. If the rejection rate was shown to decrease
instead, the final part of long pulses (duration > L/c) should be preferred. Finally, if the
rejection rate was shown to be constant, then both the pulse duration and the pulse’s part
used would be irrelevant. Similar advice would apply to the most efficient way (i.e., with
the lowest number of non-random series delivered) to operate a pulsed quantum RNG.
Note that this practical advice would be valid even if the foundational issue remained not
fully decided.

4.5. Conditions for an Attainable Experiment

Unfortunately, the experiment as described is unattainable nowadays. Due to detectors’
efficiency, the loophole-free violation of Bell’s inequalities can be reached with photons only
by using Eberhardt’s states, which produce non-uniform series. Extractors of randomness
are applied [35,36], but their use in this case may mask the trend that it is intended to reveal.
Setups exploiting entanglement swapping between photons and matter do use Bell states,
but produce a rate of detections too low to be suitable.

A simple solution at hand is to accept the fair sampling assumption [37] as valid. This
means that the set of recorded coincidences is an unbiased statistical sample of the whole
set of detected and non-detected photons. Under this assumption, Bell states and existing
photon detectors can be used.

Other problems are achieving fast and random setting changes between the pulses. In
addition to the technical difficulty of fastness, there is the logical problem (a sort of infinite
regress) of performing random setting changes. Both problems can be circumvented by
assuming that any hypothetical correlation between A and B vanishes when the source of
entangled states is turned off. This assumption is supported by the following observation:
in a pulsed Bell’s setup, the SCHSH parameter is observed to decay following a certain
curve if the time coincidence window is increased beyond the pulse duration. This curve
fits the one that is predicted if the detections outside the pulse are assumed to be fully
uncorrelated [31]. Assuming non-correlation implies the curve but, of course, observing
the curve does not necessarily imply non-correlation. Nevertheless, if the latter implication
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(which is most reasonable) is accepted as true, then random settings’ changes become
unnecessary. Only pulses well separated in time are required.

Under these two assumptions (“fair sampling” and, say, “uncorrelated when the source
is turned off”) the proposed experiment is at hand even with limited means. The results
obtained in these conditions may not be considered definitive, but they may still give a clue
about the answer to the main question. They may also help to decide whether or not it is
worth the effort to make the complete experiment. Also important, they would have an
immediate practical impact (see the end of Section 4.4 above).

In order to keep the rate of accidental coincidences low, source intensity or pumping
power must be adjusted such that the probability p of detection per pulse is p << 1 [38]. The
photon down-conversion process is usually so weak, and collection efficiency of radiation
so limited, that this condition is easily reached in practice for the pulse duration of interest
here. In other words, most pulses are “naturally empty”. Choosing p = 0.1 and pulse
repetition rate 1 MHz, series 6 Mbits long are then recorded at each station in a run lasting
300 s. It is not convenient to increase the repetition rate beyond that value, as ≈1 MHz is
the typical threshold of saturation of available single-photon detectors (silicon avalanche
photodiodes). If the stations are separated by 20 m, then the pulse duration is ≈120 ns
and duty cycle is ≈12%. These numbers are easily achievable by pumping the nonlinear
crystals that generate the entangled states with a pulsed diode laser, which typically has a
bandwidth of 20 MHz. Samples of the laser pulses can be sent to each station and recorded
with fast photodiodes to synchronize the clocks of the recording devices. Detectors’ blind
time has been identified to cause non-uniform series in some quantum RNG. But this is not
important in the proposed experiment, because the average number of detections per pulse
is, as said, adjusted to be small (p << 1) and pulses are well separated.

5. Summary

By recording the coarse time evolution of the rate of non-random series obtained in a
suitable pulsed Bell’s experiment, it is possible to obtain some evidence about which one
among three fundamental hypotheses (Locality, Realism, or Ergodicity) is false when the
violation of Bell’s inequalities is observed. This is of obvious interest for the foundations
of QM.

The proposed experiment requires some additional assumptions to be technically
achievable nowadays. This may weaken its impact from the foundational point of view.
Nevertheless, measuring the variation in the rate of non-random series within the pulses
would have immediate practical impact on the best use of quantum RNG and of device-
independent QKD. Depending on the experiment’s result, it may be advisable to use
sources with pulses shorter than L/c, or instead use the end of long pulses (>L/c), or it may
also turn out that the pulses’ duration and selected section are irrelevant.
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