
European Journal of Operational Research 312 (2024) 978–995 

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

Production, Manufacturing, Transportation and Logistics 

A branch-cut-and-price algorithm for the time-dependent electric 

vehicle routing problem with time windows 

Gonzalo Lera-Romero 

a , b , Juan José Miranda Bront c , d , ∗, Francisco J. Soulignac 

a , b 

a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Computación, Ciudad de Buenos Aires, C1428EGA, Argentina 
b CONICET-Universidad de Buenos Aires, Instituto de Investigación en Ciencias de la Computación (ICC), Ciudad de Buenos Aires, C1428EGA, Argentina 
c Universidad Torcuato Di Tella, Ciudad de Buenos Aires, C1428BCW, Argentina 
d Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina 

a r t i c l e i n f o 

Article history: 

Received 24 May 2022 

Accepted 21 June 2023 

Available online 14 July 2023 

Keywords: 

Routing 

Electric vehicle routing problem 

Time-dependent times 

Branch cut and price 

Labeling algorithms 

a b s t r a c t 

The adoption of electric vehicles (EVs) within last-mile deliveries is considered one of the key transfor- 

mations towards more sustainable logistics. The inclusion of EVs introduces new operational constraints 

to the models such as a restricted driving range and the possibility to perform recharges en route. The 

discharge of the typical batteries is complex and depends on several variables, including the vehicle travel 

speed, but most of the approaches assume that the energy consumption depends only on the distance 

traveled. This becomes relevant in different logistics contexts, such as last-mile distrubtion in large cities 

and mid-haul logistics in retail, where traffic congestion affects severely the travel speeds. In this paper, 

we introduce a general version of the Time-Dependent Electric Vehicle Routing Problem with Time Win- 

dows (TDEVRPTW), which incorporates the time-dependent nature of the transportation network both 

in terms of travel times and the energy consumption. We propose a unifying framework to integrate 

other critical variable times arising during the operations previously studied in the literature, such as the 

time-dependent waiting times and non-linear charging times. We propose a state of the art branch-cut- 

and-price (BCP) algorithm. Based on extensive computational experiments, we show that the approach is 

very effective solving instances with up to 100 customers with different time dependent configurations. 

From a managerial standpoint, our experiments indicate that neglecting the travel speeds can affect the 

quality of the solutions obtained, where up to 40 percent of the infeasibilities induced by neglecting the 

time dependency can be caused by exceeding the battery capacity. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

One of the key environmental challenges nowadays relies in the 

se of cleaner and more sustainable energy resources to reduce 

missions and pollution worldwide. Providing access to new and 

ustainable transportation solutions appears as one of the urgent 

opics to be addressed from a logistics perspective. As of 2010, it 

s estimated that 20% of the emission of greenhouse gas (GHG) in 

hat region stemmed from transportation activities. 

In the last decade, many companies have been shifting to- 

ards more environmentally friendly transportation alternatives. 

ne area of significant impact is last-mile logistics, where tradi- 

ional internal combustion engine vehicles (ICEVs) are being re- 

laced by electric vehicles (EVs) and cargo bikes, especially in 
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ighly congested areas. For instance, UPS aims to have 25% of its 

ehicles running on alternative fuel by 2020, including 10,0 0 0 EVs 

 UPS, 2019 ). From a technical perspective, EVs offer several benefits 

ompared to the ICEVs, such as less noise contamination, reduced 

O 2 emissions, and a high energy conversion efficiency. They are 

sually combined with other methods such as the regenerative 

raking system, which produces electrical energy from movement. 

s a counterpart, the restricted battery capacity influences the op- 

rations of EVs by reducing the so-called driving range. Then, rout- 

ng plans for EVs should incorporate these new operational con- 

traints explicitly, preventing vehicles from running out of battery 

uring the distribution by making intermediate stops at recharging 

tations. Recent advances have increased the driving range in the 

ast few years, and current implementations suggest it is reach- 

ng reasonable levels for distribution within cities. However, the 

attery capacity declines over time and their continuous replace- 

ents represent significant investments. Other aspects such as the 

se of air conditioning or heating systems also reduce the driving 

https://doi.org/10.1016/j.ejor.2023.06.037
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2023.06.037&domain=pdf
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ange, which can be up to 30% of the original capacity according 

o Restrepo et al. (2014) . 

The Electric Vehicle Routing Problem (EVRP) introduced by 

chneider et al. (2014) extends the classical Vehicle Routing Prob- 

em (VRP) by incorporating explicitly the battery of the vehicle. 

t is modeled as an additional resource where the energy is con- 

umed when the vehicle moves along the network and can be 

echarged en route. Most of the literature considers a simplified 

odel where the battery discharge is proportional to the distance 

raveled, assuming the consumption rage remains constant during 

he planning horizon. A similar observation holds for the charg- 

ng times at the fueling stations. In practice, according to Goeke 

 Schneider (2015) and as observed in Schneider et al. (2014) the 

ehicle load, the travel speed, and the gradient of the terrain are 

mong the most important variables affecting the energy con- 

umption. 

These parameters become relevant in practice when imple- 

enting the routing plans. For instance, within last-mile logistics 

n large cities, variations traffic variations impact directly on the 

ravel speeds at different moments of the day, which in turn af- 

ect the battery discharge. In this context, the packages to be dis- 

ributed are usually rather small and the load is not as important 

s the timing decisions. If the driving range represents a limita- 

ion, either because of the available technology or degradation of 

he battery, using the distance as a proxy for energy consumption 

ay be misleading. Another relevant area regards mid-haul logis- 

ics, where the transition to an electrified fleet includes some ad- 

itional challenges compared to last-mile operations, as discussed 

n Schiffer et al. (2021) . A standard mid-haul route naturally ex- 

eeds the driving range of nowadays EVs, making the operations 

ore complex as en-route recharges may not be avoided. Conges- 

ion effects also play an important role in this case as, depending 

n the geographical location of the warehouses, distribution cen- 

ers, and stores, the travel times and speeds can be heavily affected 

uring rush hours, especially if considering large urban areas. We 

cknowledge that the total load of the truck, and how this impacts 

he operations, would be also an important factor to evaluate, not 

ncluded as part of our research. Overall, these two scenarios indi- 

ate that en route battery levels could be wrongly estimated under 

he classical linear discharge model, leading to tactical plans that 

ay not be applicable in practice due to battery depletion. 

Although congestion is a dynamic phenomenon, where unex- 

ected events may be difficult to predict in day-ahead planning, 

esigning more realistic distribution plans is still a relevant area 

f study. Routing plans for next-day deliveries that are aware of 

he average congestion patterns are expected to translate into im- 

roved operations, possibly with fewer disruptions due to pre- 

ictable traffic variations. Our paper contributes in this direction. 

e study the time-dependent EVRPT W (TDEVRPT W), which incor- 

orates the effects of congestion into the EVRPTW originally pro- 

osed in Schneider et al. (2014) , not only in terms of the timing

ut also on the charge of the battery. Furthermore, we provide a 

eneral framework that naturally integrates other relevant opera- 

ional aspects affecting the applicability of the routing plans, such 

s variable charging times and waiting times at the recharge sta- 

ions. We first provide a discussion on the literature related to the 

VRPTW and the TDVRP to frame our research, and then we out- 

ine our main contributions. 

.1. Literature review 

As described in the next section, our paper contributes by in- 

roducing the TDEVRPTW both in terms of the modeling as well as 

evising a state-of-the-art Branch-Cut-and-Price (BCP) algorithm as 

 solution methodology. Regarding exact algorithms, BCPs are the 

ost effective algorithms, especially for multi-vehicle VRPs. We re- 
979 
er the reader to Toth & Vigo (2014) for a detailed introduction to 

CP algorithms applied to VRPs, and further explore Irnich & De- 

aulniers (2005) and Irnich (2008) regarding advanced labeling al- 

orithms for shortest path problems with resource constraints, in- 

luding the use of Resource Extension Functions (REFs). More re- 

ently, Costa et al. (2019) provide a complete overview of the dif- 

erent components that are usually incorporated in a BCP. 

Environmental aspects within VRPs have been addressed from 

ifferent perspectives. A stream of research related to green logis- 

ics considers, among others, the effects of transportation on the 

nvironment by minimizing fuel consumption and GHG emissions 

nder different congestion conditions (see, e.g. Heni, 2018; Toth & 

igo, 2014 , Chapter 15). To the best of our knowledge, the first ap- 

roach including alternative fueling vehicles with a limited driv- 

ng range is the Green VRP (GVRP) proposed by Erdo ̆gan & Miller- 

ooks (2012) . Although they do not focus on the use of EVs, they 

rovide an initial framework for these types of problems. Davis & 

igliozzi (2013) study the impact of replacing ICEVs by EVs for dis- 

ribution and Felipe et al. (2014) extend the GVRP by introducing 

he partial-recharge policy, allowing vehicles to determine the bat- 

ery charged at each fueling station, as well as multiple recharging 

echnologies by assigning a different recharging speed to each sta- 

ion. 

Recently, a stream of articles considers explicitly distribution 

roblems using a fleet of EVs, where the energy from the battery 

f the vehicle is consumed as the vehicle operates, that may be 

eplenished in order to eventually extend the length of the tour. 

he EVRP with time windows (EVRPTW) is proposed in Schneider 

t al. (2014) , where the GVRP is extended with limited battery con- 

traints and other classical VRP constraints (e.g. time windows and 

ehicle capacities), and tackled via metaheuristics. The discharge 

f the battery is assumed to be linear with respect to the distance 

raveled, a simplification of the real conditions. Desaulniers et al. 

2016) develop a BCP algorithm for a generalization of the EVRPTW 

here full and partial recharge policies are allowed, as well as 

he possibility of limiting the number of en route recharges. Simi- 

arly, Roberti & Wen (2016) tackle the single-vehicle version of the 

roblem. Partial recharges are also considered in Keskin & Çatay 

2016) , while Schiffer & Walther (2017) also incorporates location 

ecisions. We remark that these problems can be formulated as a 

pecial case of VRP with intermediate stops, a more general family 

f VRPs recently surveyed in Schiffer et al. (2019) . 

Another interesting, complementary area of research focuses on 

nriching the EVRPTW and other variants by incorporating charac- 

eristics to reduce the gap with real-world operations. Demir et al. 

2014) present a review of different energy consumption models. 

ore complex and realistic energy consumption models for elec- 

ric batteries, based on tests conducted using real data, are pro- 

osed by Goeke & Schneider (2015) and Wu et al. (2015) . We re-

ark that Goeke & Schneider (2015) extend the EVRPTW to con- 

ider a mixed fleet composed of both EVs and ICEVs. Their model 

ncorporates the dependency on the travel speed, the mass of the 

ehicle, and the weight of the load to be transported into the en- 

rgy consumption, among others. Further interesting results are re- 

orted by Fetene et al. (2017) , where the effect of different factors 

n the energy consumption rate and the driving range is measured 

hrough a detailed analysis of a large-scale dataset of driving pat- 

erns collected from more than 700 EVs over a period of two years. 

he EVs correspond to private vehicles instead heavy-duty vehicles, 

nd several factors are taken into account, such as travel speed, 

river behavior, weather conditions, road type, and others, when 

onsidering their use. Regarding the travel speed, their results sug- 

est that the energy consumption is non-linear and that the opti- 

al driving speed has a sweet spot between 45 and 56 kilometer 

er hours, lower than the 65 kilometer per hours reported therein 

or the ICEVs. When comparing the characteristics of each model, 
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t

e notice differences in energy consumption, particularly at lower 

ravel speeds. This suggests that additional research is required in 

his area to fine-tune the energy consumption models. 

Recently, and simultaneously with our work, some approaches 

nvestigate algorithms for more complex battery discharge func- 

ions. Zang et al. (2022) consider a non-linear battery depreciation 

odel to account for the impact of the depth-of-discharge and de- 

elop a column-generation-based heuristic with a tailored labeling 

lgorithm. Rastani & Çatay (2023) tackle a research question that is 

imilar to ours but focused on weight. They adjust the consump- 

ion model from Goeke & Schneider (2015) to account for the load, 

ropose two compact ILP formulations, and propose an Adaptive 

arge Neighborhood Search (ALNS) heuristic to investigate the im- 

act of the load in the energy consumption. 

The interaction between the vehicles and the recharging infras- 

ructure introduces new interesting operational constraints, with a 

irect impact on the quality and the feasibility of the solutions. 

hese constraints are motivated by practical contexts and, in gen- 

ral, have been tackled independently. Sassi et al. (2014) consider 

ime-dependent charging costs, multiple recharging technologies, 

nd a mixed fleet of vehicles, modeling the dynamic pricing strate- 

ies in smart grid networks. Bessi et al. (2022) develop a BP algo- 

ithm considering multiple recharging technologies and propose a 

i-directional labeling algorithm, still assuming he recharging time 

o be proportional to the amount of recharged energy. Montoya 

t al. (2017) focus on the charging process, observing that the 

mount of energy charged depends not only on time spent but 

lso on the preliminary battery energy level. The charging func- 

ions modeling the process are nonlinear, and they show that con- 

inuous piecewise linear functions with up to 3 pieces translate 

nto good approximations. This problem is also studied by Froger 

t al. (2019) , introducing new algorithms that improve the quality 

f the solutions. Another interesting aspect deals with access to the 

echarging infrastructure. The limited capacity of a recharge sta- 

ion (in terms of chargers) may be exceeded by the high demand 

f vehicles during peak hours. This is considered in Keskin et al. 

2019) , where the vehicles cannot cannot assume to have access 

o a charger immediately upon arrival to a station, and therefore 

ncur in waiting times that affect the rest of the route. Their ex- 

eriments suggest that waiting times can result in up to a 26% dif- 

erence in terms of costs. Similarly to the previous cases, the wait- 

ng times can be modeled by continuous piecewise linear functions 

hat satisfy the First-In-First-Out (FIFO) condition. Overall, we refer 

he reader to Pelletier et al. (2016) for a complete survey of the 

iterature considering modeling and algorithmic aspects. 

Congestion effects on routing decisions have received increas- 

ng attention during the last few years, as they represent a crit- 

cal aspect regarding last-mile deliveries in large cities (see e.g. 

avelsbergh & Van Woensel, 2016 ). Time-Dependent VRPs (TDVRPs, 

ee Gendreau et al., 2015 ) is the name assigned to a wide fam-

ly of interesting optimization problems that incorporate explic- 

tly the traffic conditions at a planning level by assuming that the 

ravel time between two customers is variable and does not re- 

ain constant during the planning horizon. Regarding congestion, 

he model proposed by Ichoua et al. (2003) has been widely ac- 

epted as a standard within the VRP community. Briefly, variable 

ravel speeds are modeled as a step function over the planning 

orizon, and the vehicle moves along the network according to 

hese speeds depending on the departure time from a customer. 

s a result, the travel time between two customers is a continuous 

iecewise linear function that satisfies the FIFO condition. From an 

lgorithmic perspective, TDVRPs require more complex models, al- 

orithms, and implementations to handle variable travel times. We 

estrict our review to exact algorithms, although (meta)heuristic 

pproaches have also been proposed recently in the related liter- 

ture. Classical objective functions consider the makespan or, com- 
980 
lementary, the duration of the route, incorporating in this fash- 

on the departure time from the depot a decision variable. Single 

ehicle problems are usually referred to as the Time-Dependent 

raveling Salesman Problem (TDTSP). The TDTSP minimizing the 

akespan is studied in Adamo et al. (2019) ; Cordeau et al. (2014) ,

hile algorithms for the variant with time windows and also 

inimizing the duration are studied in Lera-Romero & Miranda- 

ront (2019) ; Lera-Romero et al. (2020a) ; Vu et al. (2020) . Regard- 

ng Time-Dependent VRP (TDVRP), Dabia et al. (2013) develop a 

ranch-and-Price (BP) algorithm for the TDVRP with time windows 

TDVRPTW) where the objective function minimizes the total du- 

ation of the routes. The pricing problem is tackled using tailored 

abeling algorithms that incorporate the time dependency. As a re- 

ult, some of the resources are modeled via a function that de- 

ends on the time. The labeling algorithm applies a total domi- 

ance criterion , meaning that one label can dominate another only 

f this function is dominated over its entire domain. The TDVRPTW 

ith Pickup and Deliveries (TDVRPTWPD) is studied in detail by 

un et al. (2018) using similar ideas, while a variant of the TD- 

RPTW with path flexibility is explored by Huang et al. (2017) . 

nother problem having a similar structure is studied in Tagmouti 

t al. (2007) , where an arc-routing problem with time-dependent 

iecewise linear service costs is transformed into a VRP, also con- 

idering a time-dependent service function. Regarding the solu- 

ion approach, the labeling algorithm developed for the pricing 

roblem resembles the one proposed in Dabia et al. (2013) , which 

onsiders a total dominance criterion. Recently, Lera-Romero et al. 

2020b) approach the TDVRPTW with a BCP algorithm that in- 

orporates partial dominance within the labeling algorithm when 

olving the pricing problem, enabling a label to be dominated only 

t a portion of its domain. This enhancement shows to be very 

ffective, outperforming previous approaches in the computational 

xperiments. 

The literature connecting the EVRPTW and the TDVRP is some- 

ow scarce, and we highlight some recent research in this direc- 

ion. Fukasawa et al. (2018) studies a complex optimization prob- 

em where, in addition to the routing decisions, the speed of the 

ehicles in each instant is also a decision variable in order to min- 

mize the costs associated with fuel consumption. Pelletier et al. 

2019) consider an optimization problem under the uncertainty of 

ome external variables such as road friction, vehicle speed, and 

eather by estimating the deviation of the discharge rate in typi- 

al scenarios. Shao et al. (2017) enhance the classical EVRPTW by 

dding time-dependent travel times to obtain more accurate es- 

imations regarding potential violations of the time windows, al- 

hough the battery discharge model remains simplified and is not 

ffected by the variable travel speeds. Recently, and simultaneously 

ith our work, Lu et al. (2020) take the first steps towards a model 

hat considers the impact of the time-dependent speeds on energy 

onsumption. However, they assume that the congestion can be 

aptured with a step function having only three pieces with differ- 

nt travel speeds. Besides the limitations regarding the applicabil- 

ty in practice, the proposed model does not scale for more general 

ontexts. As far as we know, no article in the literature proposed a 

eneral model integrating the effects of congestion into the battery 

ischarge model for EVs. 

.2. Our contributions 

We build upon the research by Goeke & Schneider (2015) and 

choua et al. (2003) to study the TDEVRPTW, a generalization of 

he EVRPTW that captures the effect of congestion on both the 

ravel times and the battery consumption. Aligned with the obser- 

ations raised by Desaulniers et al. (2016) , considering explicitly 

he speed profiles as an input for the battery discharge model in- 

roduces an additional complexity regarding REFs compared to the 
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VRPTW. Although the speed is not itself a decision variable, the 

outes must find implicitly a trade-off between traveling an arc at 

 less congested period to reduce the travel time, likely to be ben- 

ficial regarding the time windows, and the eventual increase in 

he energy consumption, arguably negatively affecting the driving 

ange. 

However, our conception of time-dependency goes beyond the 

lassical time-dependent travel times, as we propose a unifying 

ramework that naturally integrates further operational constraints 

uch as the variable charging times ( Montoya et al., 2017 ) and the

aiting times ( Keskin et al., 2019 ), both of which are approximated 

ia continuous piecewise linear functions in their approaches. To 

he best of our knowledge, our paper is the first one to consider 

ll these aspects in an integrated fashion from the routing perspec- 

ive. Through our experimental setup, we provide valuable man- 

gerial insights on the impact of congestion in the driving range. 

or some of the scenarios considered, up to 40% of the routes ob- 

ained in a time-independent setup become infeasible due to the 

mpact of congestion on the battery. 

In terms of methodology, we design a BCP algorithm including 

tate-of-the-art components. We develop a labeling algorithm ca- 

able of handling piecewise linear functions within each label to 

ncode the speed-dependent energy consumption as a resource. 

ur labeling algorithm applies partial dominance rules to accel- 

rate its execution. The BCP is enhanced with new, tailored pre- 

rocessing rules for the TDEVRPTW that can be further exploited 

y other VRP variants considering a limited driving range. Regard- 

ng the branching, we propose an alternative scheme for routing 

ith EVs that simplifies the one proposed in Desaulniers et al. 

2016) and, furthermore, reduces the number of enumerated nodes 

n a BP. Extensive computational experiments demonstrate that 

ur approach is robust for the time-dependent instances, that our 

ore general framework is efficient on time-independent EVRPTW 

enchmarks, and that it is able to solve time-dependent instances 

oughly of the same size as for the EVRPTW with comparable com- 

utational effort. 

The rest of the paper is organized as follows. Section 2 de- 

nes the TDEVRPTW in its general fashion and introduces the no- 

ation used in the paper. Then, Section 3 presents a general frame- 

ork encoding within the TDEVRPTW further time-related oper- 

tional constraints. The BCP algorithm is presented in Section 4 . 

inally, the numerical experiments are presented in Section 5 with 

onclusions and a discussion of the possible future directions in 

ection 6 . 

. Time-dependent electric vehicle routing problem 

In this section we define the TDEVRPTW in its general fashion 

nd provide a brief analysis of its novel characteristics. We review 

he variants from the literature that are incorporated later into the 

lgorithms described in Section 4.2 . Finally, we introduce the new 

ime-dependent battery consumption model, which integrates the 

ariable speeds into the battery discharge functions. 

.1. Problem definition 

The TDEVRPTW is defined on a directed graph D = (V, A ) where

ach vertex i ∈ V represents a location that can be either the de-

ot, a customer, or a (recharging) station. Thus, V = { o, d} ∪ V c ∪ V s ,

here o and d are two vertices representing the depot, V c is the 

et of customers, and V s the set of recharging stations. Each arc 

i, j) ∈ A represents a path between locations i and j, where c i j de-

otes its travel cost. 

Classical routing problems incorporate real-life operational con- 

traints such as vehicle capacity, time windows, and service times. 
981 
e assume that an unlimited fleet of homogeneous EVs is avail- 

ble, where each vehicle has a capacity Q . Each customer i ∈ V 

as a positive demand q i , a time window [ a i , b i ] where the service

ust start, and a service time s i to process the customer. 

Congestion effects are captured following the model proposed 

y Ichoua et al. (2003) . Operations take place within a planning 

orizon [0 , T ] , which typically represents the length of a working 

ay. Each arc (i, j) ∈ A has an associated distance d i j and a speed

unction v i j (t) indicating the speed of any vehicle traversing arc 

i, j) at time t . In this model, v i j (t) is a step function of known,

xed average speeds defined over a partition of the planning hori- 

on given as input. Then, a travel time function τi j (t) is derived for 

ach arc (i, j) ∈ A , indicating the travel time of the trip from i to

j if departing at time t ∈ [0 , T ] . Function τi j (t) : [0 , T ] → R is con-

inuous, piecewise linear, and satisfies the FIFO property, meaning 

hat delaying the departure cannot lead to an earlier arrival time. 

Each EV is equipped with a battery with a limited capacity B 

expressed in kWh). For each arc (i, j) ∈ A we consider an energy 

onsumption function βi j (t) that indicates the energy consumed 

hile traveling from location i to j if departing from i at time 

. As described in the next section, the consumption depends on 

he travel speed and, therefore, becomes a time-dependent func- 

ion on the departure time from the origin location. Although the 

attery is discharged while the vehicle is in motion, it can be 

echarged at any station to continue the route. For an EV with an 

nitial battery level of w 0 > 0 kilowatt hour and a recharge station 

j ∈ V s , the charge obtained after t units of time is given by a func-

ion g j (w 0 , t) . Following the notation introduced by Desaulniers 

t al. (2016) , the classical EVRPTW is retrieved by setting the 

attery-discharge function βi j (t) = b i j and the recharging function 

 j (0 , h i j ) = b i j when assuming constant travel time functions, be-

ng b i j the energy consumption for arc (i, j) ∈ A and h i j = αb i j the

ime required to recharge b i j units of energy. Section 2.2 provides 

 deeper analysis of these functions. 

Most of the literature related to EVs allows recharges of either 

ne of two policies: full or partial. Whereas the full-recharge policy 

orces all vehicles to charge batteries up to their full capacity at 

ach station, the partial-recharge scenario provides a more granu- 

ar choice. Partial recharge extends the solution space by indicating 

ot only the path but also the amount of battery recharged at each 

tation visited within the route. Desaulniers et al. (2016) also lim- 

ts the number of en route recharges to one. This policy is called 

he single-recharge policy, while the former is referred to as the 

ultiple-recharge policy. 

A route r = (0 , v 1 , . . . , v k , d) is a sequence of locations starting

rom the initial depot o and ending at the final depot d. Similarly 

o the EVRPTW, a route r is feasible if and only if: (i) there are

o repeated customers (although a recharge station may be visited 

ore than once); (ii) the capacity of the vehicle is not exceeded; 

iii) customers are visited within their time window [ a i , b i ] ; and

iv) the energy required βi j (t) for each arc (i, j) in a route must 

ever exceed the battery level of the EV when departing from lo- 

ation i towards j. The last two conditions depend on the timing 

f the route, as both the travel time and the battery consumption 

epend on the speed that, in turn, depends on the time of depar- 

ure from each of the traversed vertices. Then, as discussed in the 

ext sections, the departure times from the depot and from the 

ntermediate locations within a route become a decision variable. 

he cost of a route r is given by c r = 

∑ 

(i, j) ∈ r c i j . The TDEVRPTW 

nvolves finding a set of feasible routes visiting each customer ex- 

ctly once at the minimum total cost. 

We further remark that while most time-dependent models 

ave an objective function that minimizes the makespan or dura- 

ion of the routes, we consider a more classical, time-independent 

bjective function. This decision is motivated by several reasons, 

oth regarding the model as well as its algorithmic implications. 
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Table 1 

Variable definitions and suggested values as proposed by Demir et al. (2014) . Vehi- 

cle mass and surface from the city delivery truck Alke ATX 320E. 

Notation Value Description 

g 9.81 meters per square second Gravitational constant 

ρ 1.42 kilograms per cubic meter Air density 

cr 0.006 Coefficient rolling resistance 

cd 0.9 Coefficient aerodynamic drag 

F S 2.40 square meters Frontal surface 

m c 900 kilograms Curb mass 
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e defer this discussion to Section 4.4.5 , in order to provide bet- 

er reflect the motivation behind this decision. 

.2. Battery consumption model 

We consider the model proposed in Goeke & Schneider (2015) , 

here the battery consumption depends on different variables 

rouped into three categories: vehicle mass, speed, and conditions 

f the terrain. Let P (v , q ) be the instantaneous consumption func-

ion of a vehicle traveling at speed v with load q , defined by the

ollowing equation 

 (v , q ) = 

(
1 

2 

· cd · ρ · F S · v 2 + (m c + m u q ) ·

g · ( sin (α) + cr · cos (α)) 

) 

· v . (1) 

he rest of the parameters are defined in Table 1 . Note that the

ass m u of each of the q units loaded in the vehicle is not spec-

fied. This variable depends on the type of goods to be delivered, 

hich is problem-dependent. Similarly, the variable α indicates the 

radient of the terrain, which depends on the road conditions. 

Since we focus on the effects of the congestion, we adapt this 

ormula to achieve a reasonable compromise between the simplic- 

ty and expressiveness of the model. We assume that the mass of 

ach unit is negligible compared to the vehicle mass ( m u = 0 ), and

hat the gradient is zero ( α = 0 ). Thus, we define h 1 = 

1 
2 · cd · ρ · F S

nd h 2 = m c · g · cr, and rewrite P (v , q ) as follows: 

 (v ) = h 1 v 3 + h 2 v . (2) 

Table 1 shows the estimated values for each parameter sug- 

ested by Demir et al. (2014) . Replacing these values in the former 

xpression results in h 1 ≈ 1 . 54 and h 2 ≈ 52 . 97 . Thus, we can in-

er that, under these conditions, h 2 ≈ 35 h 1 . This relation becomes 

elevant to create synthetic instances: given a single discharge 

ate h (for instance, as considered in the EVRPTW), an instanta- 

eous consumption function can be derived by setting h 1 = 

h 
35 and 

 2 = h − h 
35 , assuming v = 1 for the EVRPTW. Establishing an anal-

gous connection between the average travel speed and the speed 

unctions will later enable us to evaluate the effects of congestion 

hen compared to the EVRPTW. 

Observe that the instantaneous consumption function P (v ) in- 

icates the energy consumed in an instant of time by a vehicle 

raveling at speed v . However, the battery discharge function βi j (t) 

efined in Section 2.1 refers to the total energy consumed during 

he traversal of arc (i, j) ∈ A if departing from i at time t . To com-

ute the battery discharge function βi j (t) we must combine the 

ime-dependent travel times with the instantaneous consumption 

unctions P (v ) . If a vehicle departs from vertex i to vertex j at time

, then it arrives j at time t + τi j (t) . Thus, the vehicle is travers-

ng arc (i, j) during interval [ t , t + τi j (t )] and the battery discharge

i j (t) can be computed by integrating the instantaneous consump- 

ion function over that interval of time. 

i j (t) = 

∫ t + τi j (t ) 

P (v i j (x )) dx (3) 

t 
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ecall that the speed function v i j (t) over arc (i, j) ∈ A is a step

unction; let | v i j | be its number of pieces. If the k th piece of v i j 

 k = 1 , . . . , | v i j | ) is defined on the domain [ T k , T k +1 ) and has a con-

tant value v̄ k 
i j 

, then Eq. (3) can be rewritten as 

i j (t) = 

| v i j | ∑ 

k =1 

P ( ̄v k i j ) ×
∣∣[ T k , T k +1 ) ∩ [ t, t + τi j (t)] 

∣∣ (4) 

imilarly to the case of the travel time functions, the battery dis- 

harge functions are piecewise linear and continuous, as stated in 

he following proposition. 

emark 1. Given an arc (i, j) ∈ A , the discharge function βi j (t) is

iecewise linear and continuous. 

roof. The result follows since (4) is a composition of continuous 

iecewise linear functions. �

To fully characterize the battery discharge functions, it is neces- 

ary to describe their breakpoints. We remark that τi j is computed 

n a similar fashion as βi j , and therefore these breakpoints are the 

ame for τi j and βi j ( Ichoua et al., 2003 ). 

Fig. 1 presents an example of the different functions involved 

n the battery discharge model. Consider an arc (i, j) ∈ A with a

istance d i j = 2 and a speed function v i j as specified in Fig. 1 (a).

urthermore, the fleet of EVs has batteries with an instantaneous 

onsumption function P (v ) = 

1 
6 v 

3 + 

1 
3 v ( Fig. 1 (c)). Then, the result-

ng travel time function τi j and battery discharge function βi j are 

llustrated in Fig. 1 (b) and (d), respectively. 

Finally, recall the discussion from Section 1.1 regarding the 

ifferences between Goeke & Schneider (2015) and Fetene et al. 

2017) in terms of the energy consumption and its dependence on 

ravel speed. Although we concentrate on the model proposed by 

oeke & Schneider (2015) , we highlight that our approach is gen- 

ral enough to incorporate other discharge functions by defining 

he appropriate instantaneous consumption function of the aver- 

ge travel speeds. 

.3. Delayed departure from the locations 

Frequently, tactical plans assume that the vehicles leave the 

ustomer immediately after the service is completed. This is the 

ase in most of the classical variants of the TDVRPs, motivated by 

he fact that the travel times satisfy the FIFO property and, there- 

ore, delaying the departure cannot improve the solution. 

From the model presented in Section 2.2 , the EVs require a dif- 

erent approach. The travel speed (and, therefore, the travel time) 

nd the battery level are usually inversely correlated, meaning that 

 feasible route (eventually, the optimal one) may benefit from 

raveling at a slower speed, still satisfying all the operational con- 

traints, in order to increase the driving range of the EV. To illus- 

rate this situation, recall the example from Fig. 1 . If the vehicle 

eparts from i at t i = 7 , then the travel time is τi j (7) = 0 . 5 , and ar-

ives at j at time 7.5 with a battery consumption βi j (7) = 6 units 

f energy. However, if feasible, delaying the departure up to t ′ 
i 
= 8 

ncreases the travel time τi j (8) = 1 , arriving at j at time 9, but 

onsuming less energy since βi j (8) = 2 . Note that this reduction 

n energy consumption may be critical regarding visits to other 

ustomers, and thus necessary for the optimal solution. Then, the 

odel must allow a vehicle to delay its departure from a location 

n order to guarantee optimality, becoming also a decision variable 

nd increasing the difficulty. In what follows, we provide an in- 

erpretation for this characteristic and discuss a potential practical 

mplementation. 

In order to avoid solutions including unrealistic waiting times, 

e limit the deferral of the departure to b i + s i when visiting i ∈ V 

eventually, up to T for a station i ∈ V s ). We acknowledge that, even
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Fig. 1. Numerical example illustrating the speed function v i j (t) (1a); travel time function τi j (t) (1b); instantaneous consumption function P(v ) (1c); and battery discharge 

function βi j (t) (1d) for an arc (i, j) ∈ A having d i j = 2 . 
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ith this limitation, these adjustments may be difficult to imple- 

ent in practice. However, there are some interesting interpreta- 

ions from a managerial standpoint. First, they can be seen as a 

uffer regarding potential unexpected delays during the operations. 

econd, these waiting times suggest that the speed could be re- 

uced when executing the route. To illustrate this second idea, re- 

all the previous example and assume that the vehicle is ready to 

epart from i at t i = 7 , but the optimal solution indicates to delay

he departure to t ′ 
i 
= 8 . Then, instead of delaying the departure, the

ehicle may still leave at t i = 7 but aim to arrive at j at time 9, as

ould be the case when departing at t ′ 
i 
= 8 . Simplifying the exam- 

le, the average travel from i to j at average travel speed 

ˆ v i j = 1 

n practice, without violating any time constraints. As mentioned 

efore, we assume in this case that slower speeds consume less 

attery. 

Note that this is not determined at the planning stage when 

olving the TDEVRPTW as the travel speeds and congestion pat- 

erns are not a decision variable, but rather an input for the prob- 

em. This decision is partially motivated by the fact that in practice, 

imilarly to other VRPs, en route adjustments are usually applied 

n real-time due to deviations from the planned schedule. For the 

DVRPs in general, and the TDEVRPTW in particular, this is par- 

icularly important as congestion is a dynamic phenomenon that 

ay suffer from significant variations with respect to the standard 

atterns due to unexpected events, beyond the classical rush hour 

ongestion. Then, travel speed adjustments originating from a de- 

ayed departure could be implemented during the execution rather 

han determined at the planning stage, in real-time, by suggesting 

o the driver a desired (eventually, optimal) range for the average 

ravel speed for a given link. In this fashion, the suggested speed 

ange may account not only for the updated, more detailed con- 

estion estimation but also for the specific information about the 

urrent operational context, such as the timing and potential de- 

ays, among others. 

From an algorithmic standpoint, suggesting an optimal travel 

peed range requires solving an additional, real-time optimiza- 

ion problem. Fukasawa et al. (2018) tackle a joint vehicle rout- 

ng and speed optimization (JVRSP) for the VRP considering tradi- 

ional ICEVs. If tailored for routing with EVs, this integrated prob- 

em could stand as the building block of a real-time decision sup- 

ort tool to complement the TDEVRPTW. First, we note that the 

VRSP is a very challenging problem, both theoretically and prac- 

ically. Second, the re-optimization of a route must incorporate all 

he operational constraints from the TDEVRPTW. This includes the 

attery discharge model, eventually with more detailed and up- 

ated travel speed information. Also, time windows must still be 

atisfied, imposing a lower limit for the speed reduction implicitly. 

f the energy consumption model is aligned with the pattern ob- 

erved in Fetene et al. (2017) , suggestions should further either im- 

licitly or explicitly incorporate a minimum recommended travel 

peed, as traveling too low may not be beneficial for the time win- 

ows nor for the driving range. Note that the re-optimization may 
T

983 
lso require increasing the travel speed if the current execution 

s behind schedule in order to meet the time windows, eventu- 

lly introducing additional recharges, if necessary. Finally, note that 

his framework can be further generalized to deal with other types 

f events, eventually becoming a real-time disruption management 

ool. 

.4. Battery consumption and feasible routes. 

Having defined the battery consumption model at an edge level, 

e next proceed to extend these definitions to routes. This repre- 

ents a key concept within our model, as the feasibility of a route 

epends on maintaining a positive battery level during the entire 

rip. Let p = (o = v 1 , . . . , v k ) be a path starting at the depot and

be a potential ready time at vertex v k , that is, a time instant at

hich the vehicle has visited (processed) all the vertices in p and 

s ready to depart to the next vertex (or, alternatively, finish the 

rip if v k = d). Both t and the battery level at t depend not only 

n the sequence of vertices in p and the departure time from the 

epot, but also on the other interdependent decisions taken along 

he traversal of p. Different battery levels could be feasible for a 

iven time instant t depending on the energy consumption while 

raversing p, which in turn depends on the travel speeds and the 

eparture times; the amount of energy recharged en route; and 

ventually on the delayed departure discussed in the previous sec- 

ion. 

Note that the battery level, including both the consumption and 

he recharges, does not affect the cost of a route (and, therefore, 

he overall solution) as it only restricts its feasibility. Then, given 

 path p and a time t , we focus on the combinations of decisions 

hat lead to the maximum battery level when p is ready at time 

, discarding other dominated solutions. In what follows, we de- 

elop the model considering a partial-recharge policy, although it 

an be easily adapted to other contexts. Similarly to the classical 

ime-independent variants, we assume that the service time s i for 

ertex i is already encoded into the travel time function τi j (t) . Spe- 

ific details are provided in Section 3 . We first consider a simpli- 

ed definition for a given arc or vertex, and then we generalize the 

dea for paths. 

Suppose we are given a continuous and piecewise linear func- 

ion λ such that λ(t) indicates the maximum battery level of a ve- 

icle that is ready to depart a vertex i at a time t . Moreover, sup-

ose the domain of λ is a closed interval dom (λ) . When traveling 

hrough an arc (i, j) ∈ A and departing from i at time t , the bat-

ery consumed is given by βi j (t) and, therefore, the battery level 

hen arriving at j is by λ(t) − βi j (t) . However, this need not be 

he maximum battery level achievable to visit j at time t + τi j (t) 

hen traveling directly from i . Indeed, the vehicle may have ar- 

ived at j at a time t ′ earlier than t , with more charge in the bat-

ery, and waited until time t (which does not affect the battery 

evel). We define the function T RV λ
i j 
(t) to capture this behavior. 

hat is, T RV λ
i j 
(t) denotes the maximum battery level when arriving 
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t j at a time t after traversing the arc (i, j) ∈ A , given that the

aximum battery level function at i is λ. For each time t , let H(t)

e the set of times t ′ such that j is reached at time t or earlier

hen i is departed from at time t ′ . That is, H(t) = { t ′ ∈ dom (λ) |
ax { a j , t ′ + τi j (t ′ ) } ≤ t} . Then, T RV λ

i j 
(t) is defined by 

 RV 

λ
i j (t) = max 

t ′ ∈ H(t) 

{
λ(t ′ ) − βi j (t ′ ) 

}
. (5) 

Recall that functions λ, βi j and τi j are continuous and piece- 

ise linear, and τi j also satisfies the FIFO property. Thus, λ − βi j 

nd t → max { a j , t + τi j (t) } are also continuous and piecewise lin-

ar. By definition, H(t ′ ) ⊆ H(t) for t ′ ≤ t , thus H(t) is a closed in-

erval [ h (t) , ̄h (t) ] because τi j satisfies the FIFO property. Note that 

 (t) is a constant function, whereas h̄ (t) is continuous and piece- 

ise linear, hence the domain dom (T RV λ
i j 

) of T RV λ
i j 

is a closed in-

erval [ t 1 , t 2 ] as well. For the sake of simplicity, we abuse notation

nd define a restricted domain considering arrival times at j such 

hat the maximum battery level is non-negative, i.e. dom (T RV λ
i j 

) = 

 t ∈ [ t 1 , t 2 ] : T RV λ
i j 
(t) ≥ 0 } , that still remains a closed interval. This

efinition removes the infeasible arrival times at j that cannot be 

eached because the battery is depleted. Note that T RV λ
i j 
(t) implic- 

tly encodes waiting times incurred by eventually delaying the de- 

arture from j, as it considers feasible ready times earlier than t . 

A similar analysis holds for the stops at the recharging stations. 

n this case, we further assume the recharging functions g i (w 0 , t) 

o be continuous and piecewise linear and provide in Section 3 the 

otivation for this hypothesis. Once again, suppose we are given 

 continuous and piecewise linear function μ such that μ(t) in- 

icates the maximum battery level of a vehicle that is ready to 

tart a recharge at time t in a station i ∈ V s . Again, μ is defined

ver a closed interval dom (μ) and assume that the image of μ
s included in dom (g i ) . Let CHG 

μ
i 
(t) be the maximum battery level

hen the recharge is completed at time t , defined as 

HG 

μ
i 
(t) = max 

t ′ ≤t ,t ′ ∈ dom (μ) 

{
μ( t ′ ) + g i ( μ( t ′ ) , t − t ′ ) 

}
. (6) 

Again, as different battery levels are feasible for a given t , 

HG 

μ
i 
(t) indicates the maximum. Since recharging has no cost, it 

s always convenient to charge instead of waiting (without recharg- 

ng). Similarly to the previous case, the function CHG 

μ
i 
(t) also cap- 

ures possible delays incurred by waiting times, while the domain 

om (CHG 

μ
i 
) of CHG 

μ
i 

is equal to the closed interval dom (μ) . 

Both T RV λ
i j 

and CHG 

μ
i 

are defined in terms of piecewise linear 

unctions, although their structure is slightly more complex than a 

traightforward composition. Based on the previous approach, the 

unction G in the following result generalizes the structure of T RV λ
i j 

nd CHG 

μ
i 

. The detailed proof can be retrieved from Appendix A . 

roposition 1. Let f be a continuous and piecewise linear function, 

nd b be a continuous and non-decreasing function. Define a function 

 on a domain [ x, y ] as 

 (t) = max 
t ′ ∈ [ b(x ) ,b(t)] 

f (t ′ , t) , (7) 

here [ b(x ) , b(y )] ⊆ dom ( f ) . Then, G is continuous, piecewise linear,

nd non-decreasing. 

Proposition 1 is relevant from a practical standpoint, as it en- 

bles to compute T RV λ
i j 

and CHG 

μ
i 

considering only a finite subset 

f breakpoints. We summarize this in the following results; note 

hat b is piecewise linear in the definitions of T RV and CHG . 

orollary 1. Let | G | and | f | be the number of pieces of G and f in

 x, y ] and [ b(x ) , b(y )] , respectively. Then, | G | ≤ | f | . 
orollary 2. If b is piecewise linear, then G can be computed in poly- 

omial time. If the pieces of f and b are sorted, then G can be com-

uted in linear time. 
984 
We now extend these ideas to paths, in order to compute 

he battery level at any given moment of a trip. Let p = (o =
 1 , v 2 , . . . , v k ) be a path starting at the depot o, but not necessar-

ly ending at d. Define λp 
v i (t) as the maximum battery level at a 

eady time t when visiting vertex v i along path p, i = 1 , . . . , k . Re-

all that t is a ready time when v i can be departed from at time 

, meaning that v i has already been “processed”. Certainly, each 

 ∈ [0 , T ] is a ready time for the depot v 1 . Thus, as each vehicle

eparts from v 1 with a full battery level, it follows that λp 
v 1 (t) = B

or every t ∈ [0 , T ] . Clearly, λp 
v 1 is a continuous and piecewise linear

unction defined over a closed interval. To define λp 
v i we proceed 

y induction on i , taking advantage of the functions T RV and CHG .

et λ = λp 
v i −1 

, i.e., λ(t) is the maximum battery level when vertex 

 i −1 is ready at time t . If v i is customer, then each arrival time is

 ready time, thus λp 
v i (t) = T RV λv i −1 v i (t) . Recall that λp 

v i is a contin-

ous and piecewise linear function defined on a closed interval, as 

t is required by the induction. If v i is a recharging station, then v i 
an be departed from only after the battery is recharged. Thus, we 

ave to consider the time required to travel from v i −1 to v i plus 

he time to recharge at v i . Consequently, λp 
v i (t) = CHG 

μ
v i (t) where 

is the function such that μ(t) = T RV λv i −1 v i (t ) . Once again, λp 
v i (t )

s a continuous and piecewise linear function defined on a closed 

nterval. 

The functions λp 
v i are used to encode the battery level within 

ur labeling algorithm, as discussed in Section 4.4 . We fur- 

her provide a numerical example illustrating these definitions in 

ppendix B . 

. A general framework for time-dependent times 

We next describe how to naturally integrate to the TDEVRPTW 

urther time-related management aspects, previously studied in 

he literature in an isolated fashion, without changing the struc- 

ure of the problem. Indeed, all these additional features can be 

irectly encoded as a TDEVRPTW instance as described in the pre- 

ious section. 

.1. Handling service times 

Similar to time-independent problems, the service time s i of a 

ustomer i ∈ V c can be directly encoded into the travel time and 

attery discharge functions to simplify the model and definitions. 

he following equations describe how to transform an instance I
f the TDEVRPTW into an equivalent instance ˆ I where the service 

imes can be assumed to be zero. Let τi j and βi j be the travel time 

nd battery discharge functions for arc (i, j) in I , and ˆ τi j and 

ˆ βi j 

he corresponding functions in 

ˆ I . Then, for ˆ I set 

ˆ i j (t) := s i + τi j (t + s i ) (8) 

ˆ 
i j (t) := βi j (t + s i ) . (9) 

nd s i = 0 for i ∈ V . This transformation assumes that the final de-

ot s d has no service time (s d = 0) . Moreover, note that the travel

ime functions still obey the FIFO property. To avoid confusion with 

he previous formulae, in the remaining of the document we as- 

ume that the service time is already encoded within the func- 

ions, but we maintain the original notation of τi j for the travel 

imes and βi j for the battery discharge. 

.2. Nonlinear charging times 

Different approaches have been considered in the related litera- 

ure for the battery recharging model. The EVRPTW, in its original 

etup, considers that the recharging time is linear to the amount 
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f energy to recharge, independently of whether the battery is 

mpty or, for instance, half-full charged. According to Montoya 

t al. (2017) , this recharging time is not linear. Moreover, they esti- 

ate that recharging the initial 75% of the battery requires a sim- 

lar time than the final 25%. For each station, j ∈ V s , let ˆ g j (t) indi-

ate the energy (in kWh) recharged in t units of time in a vehicle 

ith an empty battery. They show that considering ˆ g j (t) as a con- 

inuous concave piecewise linear function with three pieces results 

n a good estimation of the recharge times based on collected data. 

oreover, this function is invertible. 

Using these estimations, note that g j (w 0 , t) = min { B −
 0 , ̂  g j ( ̂  g −1 

j 
(w 0 ) + t) − w 0 } indicates the charge obtained after

units of time for an EV with battery level w 0 . By definition, 

 j (w 0 , t) is continuous and piecewise linear as required previ- 

usly. 

.3. Time-dependent waiting times 

As suggested by Keskin et al. (2019) , the assumption that a ve- 

icle can perform a recharge upon arrival to a charging station can 

ometimes lead to unrealistic solutions. This observation is rele- 

ant in the context of mid-haul and city logistics, as congestion is 

ikely to occur at the recharging stations due to increased demand 

uring peak hours. To capture this behavior, they introduce a time- 

ependent waiting time function ω s (t) for each station s ∈ V s indi- 

ating the expected waiting time until a terminal is available if a 

ehicle arrives at station s at time t . These functions are continu- 

us, piecewise linear, and satisfy the FIFO property. 

Time-dependent travel times naturally incorporate these wait- 

ng times following a similar procedure to the one described for 

ervice times. For the sake of simplicity, assume ω i (t) = 0 for all

 ∈ [0 , T ] when i ∈ V \ V s . Similarly to Section 3.1 , given a vertex

j ∈ V , then the travel time function for arc (i, j) ∈ A is redefined

s 

ˆ i j (t) := τi j (t) + ω j (t + τi j (t)) . (10) 

bserve that this transformation assumes there is no distinction 

etween travel and waiting times regarding the objective func- 

ion. Otherwise, the waiting time functions may require to be han- 

led explicitly. Again, to avoid confusion, we assume that the time- 

ependent waiting times are directly encoded in function τi j . 

A key property behind the time-dependent travel time model 

ies in the FIFO condition. The following proposition states that 

he property holds after applying this transformation. The proof is 

mitted as it is the direct consequence of adding and composing 

ontinuous piecewise linear functions that satisfy the FIFO condi- 

ion. 

roposition 2. The FIFO property holds for the travel time functions 

fter applying (10) . 

However, a negative result is that the breakpoints defining τi j 

nd βi j may not remain the same after applying this preprocessing, 

s stated in Section 2.2 . 

We provide a numerical example to illustrate this transforma- 

ion in Fig. 2 . Let j ∈ V s be a station having waiting time function

 j ( Fig. 2 (a)). Consider an arc (i, j) ∈ A , and let τi j be its travel

ime function ( Fig. 2 (b)). The preprocessed function τi j is depicted 

n Fig. 2 (c). 

Finally, we remark that a similar analysis can be developed to 

odel time-dependent service times via continuous piecewise lin- 

ar functions. Although we do not consider explicitly this scenario, 

hey can be incorporated in a similar fashion to our framework. 

his may become relevant in practice, for instance, to model vari- 

ble unloading times due to difficulties in finding parking spots 

uring peak hours or similar use cases arising frequently in logis- 

ics. 
985 
.4. Further infrastructure characteristics 

Finally, note that some EVs admit multiple charging modes, 

uch as different charging speeds or technologies for a given range 

f battery capacity. This can be modeled by defining a specific 

harging function for each case. Briefly, each station is associ- 

ted with a specific charging mode , which indicates the avail- 

ble recharging function. For recharging stations having multiple 

odes, we can simply replicate the station. A fixed cost for each 

ode can be further incorporated into the inbound arcs to each 

tation as well. 

. Exact algorithm 

This section describes the main components of the exact BCP 

lgorithm. We explain how to adapt the framework to toggle the 

ifferent recharging policies and include a discussion regarding 

lternative objective functions. We highlight that our algorithm 

xtends and generalizes the one proposed by Desaulniers et al. 

2016) and constitutes a unifying framework for several interest- 

ng problems related to planning with EVs. 

.1. Preprocessing 

.1.1. Reducing arcs and time windows 

Two interrelated steps are applied that search for infeasible 

rcs and shrink time windows, respectively. These steps are re- 

eated while there are changes in the instance structure. For this 

rocedure, we follow the ideas of Lera-Romero & Miranda-Bront 

2019) that extend the classical rules proposed by Desrosiers et al. 

1995) . Briefly, an arc (i, j) ∈ A is removed if is either capacity in-

easible, i.e. q i + q j > Q , or time infeasible, i.e. a i + τi j (a i ) > b j . In

ddition, we consider as input for the TDEVRPTW the preprocessed 

DVRPTW instances, with the time windows already adjusted ac- 

ording to the time-dependent travel times. We omit the details 

or the sake of brevity but refer to Desrosiers et al. (1995) for a

etailed description. 

.1.2. Minimum battery required 

We next introduce a preprocessing rule specifically designed 

or the TDEVRPTW. For each vertex i ∈ V we can compute a 

ower bound MBR (i ) of the minimum battery required to reach 

ny recharge station (or eventually the depot) from vertex i with- 

ut depleting the battery. Let β
i j 

= min { βi j (t) | t ∈ dom (βi j ) } be a

ower bound on the energy consumption for arc (i, j) ∈ A . Then,

or i ∈ V , a lower bound MBR (i ) can be computed via a stan-

ard shortest-path algorithm using βi j as arc weights. Note that 

BR (i ) = 0 for i ∈ V \ V c . In addition, arcs (i, j) ∈ A satisfying B −
i j 

< MBR ( j) indicate that the battery level when reaching j can- 

ot be enough to either reach another station or the depot, and 

herefore can be safely discarded. These bounds are used further 

o enhance the feasibility rules of the labeling algorithm to reduce 

he size of the enumeration tree, as described in Section 4.4 . 

.2. Set-partitioning formulation 

BCP algorithms and extended formulations based on the set- 

artitioning model stand as one of the most effective approaches 

o tackle different variants of the VRP. Let � be the set of all the 

easible routes for the TDEVRPTW. For each route r ∈ �, c r repre- 

ents its cost and the constant a ir indicates if route r visits cus- 

omer i ∈ V . Let y r be a binary variable indicating whether a route

 ∈ � is selected in the optimal solution. The set-partitioning for- 

ulation for the TDEVRPTW is defined as follows. 

in 

∑ 

r∈ �
c r y r (11) 
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Fig. 2. Example for the preprocessed time-dependent waiting times including waiting time function ω j (t) of j ∈ V s (Fig. 2(a)); τi j (t) of arc (i, j) ∈ A (Fig. 2(b)); τi j (t) of arc 

(i, j) after (10) (Fig. 2(c)). 
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∑ 

r∈ �
a ir y r = 1 , i ∈ V c (12) 

 r ∈ { 0 , 1 } , r ∈ �. (13) 

he objective function (11) minimizes the total costs of the solu- 

ion, whereas restrictions (12) enforce that each customer is visited 

xactly once and (13) impose the domain of the variables. 

Since � is exponential, the classical approach is to solve the LP 

elaxation at each node by using column generation. A restricted 

aster problem (RMP) is initialized with a subset of the routes 
′ ⊆ �. For the TDEVRPTW, the initialization of the RMP is slightly 

ore complicated compared to other variants as the traditional 

trategy selecting the routes r = { o, i, d} to define �′ may be in-

easible due to the battery consumption. To overcome this issue, 

e initially include in �′ an artificial (infeasible) route r that vis- 

ts all customers with cost c r = n × max (i, j) ∈ A c i j to guarantee the 

easibility of the LP relaxation of the RMP. 

After the initialization step, new columns are added iteratively 

ntil the algorithm converges to the optimal (fractional) solution. 

t each iteration, the LP relaxation of the RMP is computed to 

btain the dual variables πi associated with constraints (12) for 

 ∈ V c . Using this information, if a feasible route r with negative re-

uced cost c̄ r = c r −
∑ 

i ∈ r πi exists, then it is added to the RMP and 

he procedure is repeated. Otherwise, the current fractional solu- 

ion is optimal. For the TDEVRPTW, the pricing problem becomes 

 Time-dependent Electric Elementary Shortest Path Problem with 

esource Constraints (TDEESPPRC). The most effective exact ap- 

roaches to tackle similar problems rely on dynamic programming 

nd labeling algorithms ( Desaulniers et al., 2016 ). Heuristics are 

n general used to speedup the performance of the pricing step, 

nd exact algorithms are executed when no negative reduced cost 

outes are found to guarantee optimality (see Section 4.4.4 ). 

.3. Branching scheme 

In this section, we review the standard ideas considered for 

he EVRPTW and propose a tailored branching rule to manage the 

ntermediate stops at the recharging stations. Classical BCP algo- 

ithms consider branching on the so-called arc variables . Given an 

ptimal solution y ∗ of the LP relaxation for (11) –(13) , define for 

ach arc (i, j) ∈ A a binary variable x ∗
i j 

= 

∑ 

r∈ �, (i, j) ∈ r y ∗r . When no

ntermediate stops between customers are possible, such as in the 

RP, it can be easily shown that y ∗ is fractional iff x ∗ is fractional 

s well. Based on this result, a robust branching rule can be imple- 

ented (see, e.g. Costa et al., 2019 ). We refer to this rule as the

rc Branching Rule (ABR). 

Formulation (11) –(13) encodes the feasibility of a route, includ- 

ng the visits to the recharging stations, as part of the definition of 

. Note that constraints (12) are enforced only for customer ver- 

ices i ∈ V c , and indeed � can be restricted to consider at most one
986 
inimum-cost route for each set of customer vertices S ⊆ V c , since 

ll other routes visiting the same customers become dominated. 

rom now on, we assume � satisfies this property as it can be 

asily implemented and is a key hypothesis for our branching. 

Based on this observation, we propose an alternative branching 

ule exploiting the sequence of customers visited by a route, which 

e name Customer Branching Rule (CBR). Let r = (0 = v 1 , . . . , v k =
) ∈ � be a feasible route. We define the customer sequence of r, 

R (r) , as the sequence of customer vertices in r, removing those 

ertices v i ∈ V s . Given i, j ∈ V c and r ∈ �, let b i jr be a constant indi-

ating whether j is visited immediately after i in CR (r) . Intuitively, 

 i jr = 1 if there are no customers between i and j in route r. Let

urther define binary variables z i j indicating if vertex j is visited 

mmediately after i in any route r ∈ � disregarding recharge sta- 

ions, that can be retrieved from the primal solution y as follows 

 i j = 

∑ 

r∈ �
b i jr y r . (14) 

iven a fractional variable z i j we create two descending branches, 

ne for z i j = 0 and the other one for z i j = 1 . The following proposi-

ion proves that CBR is a valid branching rule (see Appendix C for 

 proof). 

roposition 3. Let ( ̄y , ̄z ) be a solution of formulation (11) –(13) ex- 

ended with variables z from (14) . Then, ȳ is a feasible solution for 

he TDEVRPTW if and only if z̄ i j ∈ { 0 , 1 } for all i, j ∈ V c . 

Simultaneously with our work, Bessi et al. (2022) briefly discuss 

he use of the CBR. We further provide specific details on our im- 

lementation of the CBR into our framework. Conceptually, the CBR 

an be handled in a similar fashion as the ABR. Constraint z i j = 1

an be replaced by the union of constraints z ik = 0 for k ∈ V c \ { j} ,
nd z k j = 0 for k ∈ V c \ { i } . This is particularly helpful when adapt-

ng the pricing problem to handle this branching strategy as ex- 

lained in Section 4.4.2 . Finally, Fig. 3 (b) depicts the variables z i j 

ssociated to the solution presented for Fig. 3 (a). 

.3.1. Other branching alternatives 

Generally, the ABR is combined with some additional rules to 

urther reduce the enumeration tree. For the EVRPTW, Desaulniers 

t al. (2016) propose a four-level branching strategy. Firstly, they 

ranch on the number of vehicles 
∑ 

r∈ � y r . Then, branching is per- 

ormed on the total number of recharges 
∑ 

r∈ � ρr y r , where ρr indi- 

ates the number of recharges performed in the traversal of route 

. The next decision is based on the number of recharges at a given 

tation 

∑ 

r∈ � ρr j y r , where ρr j indicates the number of recharges of 

oute r at station j ∈ V f . Finally, ABR is considered by variables x i j 

f none of the above are fractional. We remark that these rules can 

e combined with the CBR as well. 
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Fig. 3. Example for arc variables x i j (ABR, 3a) and customer variables (CBR, 3b). The instance has depots 0 and 9, recharging stations { 1 , 2 , 3 } and customers { 4 , . . . , 8 } where 

a feasible fractional solution composed of four routes r 1 = (0 , 5 , 3 , 6 , 1 , 7 , 8 , 9) , r 2 = (0 , 5 , 3 , 2 , 4 , 2 , 9) , r 3 = (0 , 3 , 6 , 1 , 2 , 4 , 2 , 9) , r 4 = (0 , 2 , 4 , 2 , 1 , 7 , 8 , 9) , with variable values 

y 1 = 

2 
3 

and y 2 = y 3 = y 4 = 

1 
3 

is shown. In the ABR, all arcs incident to a customer have integer values yet the solution is fractional. 
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.4. The pricing problem 

This section describes the labeling algorithm developed to 

ackle the pricing problem for Section 4.2 and the variants from 

ection 3 . We also provide a brief discussion regarding the impact 

f considering alternative objective functions. 

.4.1. The labeling algorithm 

We develop a forward labeling algorithm that explores all fea- 

ible paths. These algorithms generate implicitly an enumeration 

ree where each node is called a label and represents a partial path 

tarting from the initial depot o. Aiming to overcome the expo- 

ential growth, pruning rules are in general incorporated to reduce 

he number of labels enumerated. In a time-independent context, 

ach label is usually either discarded or processed. However, time- 

ependent problems require further consideration since labels en- 

ode some of their resource values as functions over a given do- 

ain. Thus, partial pruning rules eventually discard some specific 

ntervals in the domain (see, e.g. Lera-Romero et al., 2020b ). 

Next, we present the forward labeling algorithm for the 

DEVRPTW with a partial-recharge policy and unlimited 

echarges. Each path p = (o, . . . , v ) is represented by a label

 = (pre v , v , S, q, c, λp 
v ) where pre v is a pointer to the parent label,

 is the last vertex, S is a set of unreachable customers, q is the

otal demand, c is the cost, and λp 
v is the maximum battery level 

unction defined in Section 2.4 , i.e., λp 
v (t) is the maximum battery 

evel at the ready time t after traversing p. For simplicity, let 

pre v (L ) , v (L ) , S(L ) , q (L ) , c(L ) , and λL denote the components pre v ,
 , S, q , c, and λv 

p of label L , respectively. In addition, let p(L ) be

he path represented by L and let dom (L ) = dom (λL ) = [ a (L ) , b(L )]

enote the feasible ready times at v (L ) after traversing p, with 

 (L ) = min ( dom (L )) being the earliest arrival time to vertex v (L ) .

hen p(L ) is a route we call L a route label . 

Let c̄ i j = c i j − πi be the adjusted arc costs including the dual 

ariables from the RMP. Since vehicles depart from the depot 

ith a full battery, the initial label is represented by tuple 

⊥ , o, { o} , 0 , 0 , 0 , λo ) , where λo (t) = B for t ∈ [ a o , b o ] . The following

ule indicates how to extend a label during the enumeration pro- 

ess. 

ule 1 (Extension) . Given a label L , the extension through an arc

v (L ) , w ) results in a new label L w 

where pre v (L w 

) = L , v (L w 

) =
 , S(L w 

) = S(L ) ∪ { w } , q (L w 

) = q (L ) + q w 

, c(L w 

) = c(L ) + c̄ v w 

, and

unction λL w is computed from λL as discussed in Section 2.4 , i.e. 

L w = 

{ 

λp(L w ) 
w 

(t) = T RV 

λ
v (L ) w 

(t) if w ∈ V c ,

λp(L w ) 
w 

(t) = CHG 

μ
w 

(t ) , with μ(t ) = T RV 

λ
v (L ) w 

(t) if w ∈ V s .

ote that L w 

is feasible when w / ∈ S(L ) , q (L w 

) ≤ Q and a (L ) +
v w 

(a (L )) ≤ b w 

. 

Battery requirements enable to the introduction of additional 

ailored feasibility rules. Recall from Section 4.1.2 that given a ver- 
987 
ex v ∈ V , MBR (v ) indicates the minimum battery required to de-

art from a vertex v and reach a station or, alternatively, the end 

epot without depleting the battery. The following rule exploits 

his information to discard some intervals from dom (L ) . 

ule 2 (Feasibility) . Given a label L , any time t ∈ dom (L ) such that

L (t) < MBR (v (L )) can be safely discarded from λL . If dom (λL ) = ∅
hen p(L ) is infeasible and L can be discarded. 

Since function λL is non-decreasing by definition, any interval 

iscarded from dom (λL ) must be a prefix. This fact can reduce the 

ime required to compute this rule for many labels. 

Another action to reduce the number of labels enumerated re- 

ies in applying dominance rules. Briefly, given two labels L, M, if 

very feasible extension p ′ of p(L ) is also a feasible extension of 

p(M) but p(M) + p ′ always has a lower cost, then L can be dis-

arded. In practice, to reduce the computational burden, sufficient 

onditions are tested to ensure that a label can be discarded. In 

 time-dependent context, partial dominance enables to discard 

ome specific dominated time instants from the domain dom (L ) , 

ven if the label is not entirely dominated. As a result, the domain 

f a label may become a collection of intervals instead of a sin- 

le one. However, this can be mitigated by assuming the vehicle 

imply waits without consuming battery in this dominated inter- 

al, which is modeled by considering a constant function extend- 

ng the function from the previous non-dominated piece (we refer 

o Lera-Romero et al., 2020b for details). To avoid introducing fur- 

her definitions, we abuse notation and assume the battery level 

unctions λL and λM 

, as well as their corresponding domains, are 

djusted in this fashion in the following rule. 

ule 3 (Partial dominance) . Let L and M be two labels satisfying 

i) v (L ) = v (M ) , (ii) q (M ) ≤ q (L ) , (iii) c(M) ≤ c(L ) , and (iv) S(M) ⊆
(L ) . Then, any time t ∈ dom (λL ) ∩ dom (λM 

) such that (v) λL (t) ≤
M 

(t) can be discarded from dom (L ) . If dom (λL ) = ∅ then we say

 is fully dominated and can be safely discarded. 

From an implementation standpoint, to accelerate the domi- 

ance tests we consider the classical bucket structure where a dy- 

amic programming table stores labels indexed by their resources 

 , q . Within each bucket, labels are sorted by cost. Observe that 

ominance tests include a comparison of the battery level func- 

ions between two labels, which requires linear time with respect 

o the total number of pieces in both functions. For the sake of 

revity, we skip the implementation details. Fig. 4 shows an ex- 

mple of the partial dominance algorithm when label L is being 

erified for dominance against label M, where the dashed line rep- 

esents the constant extension over a dominated interval in the do- 

ain of label M. Fig. 4 (b) shows the remaining pieces from L after

he dominance. 

.4.2. Incorporating CBR to the pricing algorithm 

The CBR branching rule imposed over variables z i j can be man- 

ged within the pricing algorithm in a similar fashion as the 
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Fig. 4. Example of the partial dominance applied to L (black) and M (red) (4a) and the remaining pieces (4b). (For interpretation of the references to color in this figure leg- 

end, the reader is referred to the web version of this article.) 
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ranching over the classical arc variables x i j by preventing such 

outes from being generated instead of adding explicitly the con- 

traints z i j = 0 . 

At each node of the branch and bound tree, define F i = { j ∈
 c ∪ { d} | z i j = 0 } as the set of forbidden successors for each cus-

omer i ∈ V c ∪ { o, d} (and let F i = ∅ for each i ∈ V s ). Intuitively, F i 
ncodes the set of successors of i that cannot be visited due to 

ranching decisions taken earlier in the tree. We include in the 

epresentation of a label L an additional resource u indicating the 

ast vertex from V c ∪ { o, d} visited in p(L ) , i.e. either a customer or

he depot. The extension of L through an arc (v (L ) , w ) ∈ A must ad-

itionally verify that w �∈ F u (L ) . Consequently, Rule 3 must be modi- 

ed accordingly to remain valid, where F u (M) ⊆ F u (L ) must also hold 

n order to conclude that label M dominates label L at time t . This 

ew condition ensures that every feasible extension of L does not 

nvolve w ∈ F u (M) as the next vertex, and therefore is also a feasible

xtension of M. We further strengthen this condition by consider- 

ng the set of already visited customers S(L ) as follows 

 u (M) ⊆ F u (L ) ∪ S(L ) . (15) 

Incorporating condition (15) to Rule 3 affects the efficiency of 

he labeling algorithm. Similarly to the ABR for VRPs without inter- 

ediate stops between customers, label extensions are discarded 

ecause they may become infeasible. On the contrary, dominance 

ules become weaker due to the introduction of a new condition. 

learly, this implies that more labels are enumerated, although we 

emark that the effect of condition (15) is limited to only those 

abels L that end in a recharging station, otherwise v (L ) = v (M) =
 (L ) = u (M) and the inclusion is trivially satisfied. 

.4.3. Alternative recharge policies 

So far, the battery consumption model and the labeling algo- 

ithm have been presented under a partial-recharge policy. For- 

unately, adapting the model to consider a full-recharge policy is 

traightforward. Fig. B.1 (e) illustrates the battery level function af- 

er applying the charging step. Observe that there is a prefix of the 

omain P = [ min ( dom (λp 
j 
)) , t 2 ] ⊆ dom (λp 

j 
) where λp 

j 
(t) < B = 10

or all t ∈ P . Under a full-recharge policy, it is infeasible to depart

rom a recharge station j ∈ V s with that battery level. 

Formally, let p be a path ending at a station j ∈ V s , and let λp 
j 

e its battery level function at vertex j. Then, all time instants t ∈
om (λp 

j 
) such that λp 

j 
(t) < B must be discarded. Observe that a 

ull-recharge policy can be enforced by setting MBR ( j) = B for all 

echarging stations j ∈ V s since Rule 2 removes any time from the 

omain under this value. 

Another variant introduced by Desaulniers et al. (2016) is the 

ossibility to restrict the number of en-route recharges. Given a 

aximum number of recharges per route R max , extend the def- 

nition of a label L of to consider a new resource r(L ) indicat-

ng the number of recharges performed, and forbid an extension 

o a recharging station if r(L ) ≥ R max . Additionally, the dominance 
988 
ule 3 must be modified by including condition r(M) ≤ r(L ) , which 

nforces that all extensions of L are also feasible for M. 

.4.4. Pricing heuristics 

The execution of the column generation is usually accelerated 

y resorting to heuristics in order to identify columns with a neg- 

tive reduced cost, while the exact labeling algorithm is executed 

f no such column is identified. One type of heuristic adaptation 

requently used for labeling algorithms is to reduce the size of the 

raph. At the beginning of each pricing iteration, the graph is re- 

uced to consider only the k outbound arcs (i, j) ∈ A from each

ertex i ∈ V with the smallest reduced cost c̄ i j . We refer to this ap-

roach as the k -shrink heuristic. 

We further consider relaxing the dominance Rule 3 within the 

ricing algorithm, maintaining the feasibility of the solutions but 

ventually discarding routes with a negative reduced cost due to a 

eaker dominance criterion. We refer to the heuristic where con- 

ition (iv) is relaxed from Rule 3 as relax-S , while the heuristic re- 

axing condition (v) (i.e., the battery level) is referred to as relax-B . 

.4.5. Alternative objective functions 

Although the TDEVRPTW minimizes the total cost of the routes, 

e include a brief discussion regarding the feasibility and the im- 

act of considering further alternative objective functions. In some 

ime-dependent problems, such as the TDTSP (see, e.g. Cordeau 

t al., 2014 ), the objective is to minimize the makespan of the 

oute for a vehicle that departs at the beginning of the planning 

orizon, i.e., at time t 0 = 0 . Our approach can be easily adapted to

onsider such an objective function. In this case, the reduced cost 

f a label L at time t ∈ dom (L ) is defined as t − ∑ 

i ∈ p(L ) πi , where π
re the values of the dual variables. Within the pricing algorithm, 

etting the cost c i j = 0 for all arcs (i, j) ∈ A redefines c(L ) as the

um of the dual prices of path p(L ) for a label L . Note that the ob-

ective function does not affect the extension rules, which remain 

nchanged. However, dominance rules depend on the reduced cost 

f the route. For a label L , when reaching v (L ) at some time t the

educed cost is t − c(L ) , and thus condition (iii) from Rule 3 effec-

ively compares the reduced cost of two labels L and M at some 

xed time t . Note that even when partial dominance can discard 

ome specific intervals, the optimal route preserves its makespan 

n the domain. 

A more complex objective function is considered for the TD- 

RPTW (see, e.g. Dabia et al., 2013; Lera-Romero et al., 2020b ) 

here vehicles are allowed to delay their departure from the de- 

ot in order to minimize the duration of the route. Unfortunately, 

andling this objective function within the BCP algorithm proposed 

or the TDEVRPTW introduces significant complexity compared to 

he TDVRPTW. The reason is that a new decision variable is added, 

hich is the initial departing time is t 0 . Given a path p, the bat-

ery level depends both on the completion time t and on the ini- 

ial departing time t , and becomes a two-dimensional function 
0 
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ue to the delays both in the departure from the depot as well 

s from the departure from a vertex, as discussed in Section 2.3 . 

lthough the dominance procedure can be adapted, it would be- 

ome computationally too expensive to store this type of function 

ithin each label and perform the corresponding comparisons in 

he dominance step. Similarly, considering energy-dependent costs 

or the path during the trip would suffer from the same drawback. 

ote, however, that a fixed recharge cost c j can be easily included 

or each recharge made at station j ∈ V s by defining c i j := c i j + c j 
or (i, j) ∈ A . 

.5. Cutting planes 

We incorporate the Subset Row Inequalities (SRCs) proposed by 

epsen et al. (2008) as cutting planes to tighten the LP relaxation, 

iming to reduce the size of the branching tree. These valid in- 

qualities have become a standard within VRP exact algorithms 

ased on the set-partitioning formulation (see, e.g. Costa et al., 

019 ) and have also been used for the EVRPTW by Desaulniers 

t al. (2016) . Formally, an SRC s = (S, k ) is defined by a set of cus-

omers S ⊆ V c , and a coefficient k ∈ N . Given a route r ∈ � and

 = (S, k ) , let v sr = 

⌊ | S∩ r| 
k 

⌋ 

be the number subsets in S having k ver-

ices that are visited by r. Then, the SRC reads 

 

∈ �
y r v sr ≤

⌊ | S| 
k 

⌋
. (16) 

We consider the 3-SRC , i.e., having | S| = 3 and k = 2 . Note that

ince the SRCs are non-robust cuts, we refer the reader to Costa 

t al. (2019) for the details on how to adapt the pricing problem. 

riefly, our cutting plane algorithm is as follows. After solving the 

P relaxation via column generation, a maximum of n cuts violated 

nequalities are iteratively added to the formulation following a 

aximum violation criterion, reoptimizing the RMP at each step 

ithout solving the pricing problem. Preliminary experiments indi- 

ate that this approach tends to reduce the number of cuts added 

o the RMP while preserving their impact on the quality of the LP 

elaxation. 

. Computational experiments 

In this section, we evaluate the time-dependent model pro- 

osed in Section 2 and the BCP algorithm developed in 

ection 4 for the TDEVRPTW. For this purpose, we introduce a set 

f time-dependent benchmark instances, generated as an extension 

f the ones proposed by Desaulniers et al. (2016) , as described in 

ection 5.1 . The experiments are designed to obtain managerial in- 

ights regarding the importance of incorporating time-dependent 

ravel times and, in addition, provide strong evidence about the 

ffectiveness of our approach through extensive experiments with 

nd without variable travel speeds. The experiments are conducted 

n an Intel(R) Core(TM) i7-8700 CPU @ 3.20 gigahertz with 32 gi- 

abyte of RAM, and the algorithms are coded in C++ and use CPLEX 

2.9 as an LP solver. 

.1. Experimental setup 

In order to evaluate the different components of the model, 

e extend the instances proposed in Desaulniers et al. (2016) for 

he EVRPTW by incorporating time-dependent travel speeds, non- 

inear recharging times, and time-dependent waiting times as fol- 

ows. 

Regarding time-dependent travel speeds, we we follow 

he strategy proposed by Dabia et al. (2013) . The planning 

orizon [0 , T = b d ] is partitioned into five travel speed zones

 = [0 , 0 . 2 T ] , T = [0 . 2 T , 0 . 4 T ] , T = [0 . 4 T , 0 . 6 T ] , T = [0 . 6 T , 0 . 8 T ] , 
1 2 3 4 

989 
 5 = [0 . 8 T , 1 . 0 T ] . Each arc (i, j) ∈ A is randomly assigned to one

f three speed profiles representing different traffic congestion 

evels: high , normal , and low . Fig. 5 (a) shows the speed function

 p assigned to each speed profile. To enable meaningful qualitative 

omparisons, each speed function v p has an average speed of 1.0 

ver the planning horizon, which is the travel speed considered 

n the time-independent instances. The parameter r required to 

efine the instantaneous consumption function P (v ) is obtained 

rom the original instances. 

All instances are enhanced with piecewise linear recharging 

unctions following the pattern proposed by Montoya et al. (2017) . 

ecall that the original EVRPTW instances from Desaulniers et al. 

2016) assume the charging of the battery is proportional to the 

mount of energy to be recharged, i.e. the full charge of the bat- 

ery with capacity B takes t g units of time, recharging B/t g kWh per 

nit. We define the piecewise linear recharging functions where a 

ull recharge of a battery with capacity B also requires t g units of 

ime as well, although the recharge per unit of time is not uniform 

long the interval ( Fig. 5 (b)). In addition, each station belongs to 

ne of the following modes: fast , medium , and slow . The medium 

ode is defined according to B and t g , while the slow and fast 

odes are a scaled version of the medium mode, 2 t g , and 0 . 5 t g ,

espectively. 

Regarding the time-dependent waiting times at stations, Keskin 

t al. (2019) consider multiple scenarios that capture different real- 

ife situations. As our objective is more general than evaluating 

nly the waiting times, the instances are extended according to 

he TD-Smooth-Long pattern, as it represents an intermediate sce- 

ario where stations are neither too congested nor empty. Fig. 5 (c) 

hows the function considered, which is scaled for each instance 

ccording to the planning horizon. 

Note that the benchmark instances proposed by Desaulniers 

t al. (2016) can be retrieved by setting all the speed profiles to 

 p (t) = 1 , defining the recharging functions with a unique piece 

equiring the same total time as the medium charger to charge the 

attery completely, removing the waiting times by setting ω s (t) = 

 for every station s ∈ V s . For the experiments, we define the fol-

owing configurations for the instances: 

• Basic: instances from Desaulniers et al. (2016) extended with 

time-dependent information. 
• NC: Basic extended with non-linear charging functions. 
• WT: Basic extended with time-dependent waiting time func- 

tions. 
• All: Basic extended with non-linear charging and time- 

dependent waiting time functions. 

To evaluate the impact of the time-dependent travel speeds, 

e further consider the time-independent versions of the above 

enchmarks as indicated previously. 

The configurations of our BCP algorithm relies on several pa- 

ameters, some of them dependent on the type of instances con- 

idered. Regarding the heuristic pricing, we execute the relax- 

, relax- B , and k -shrink described in Section 4.4.4 with different 

ombinations of parameters. Based on limited preliminary experi- 

ents, the configuration is as follows: relax- S first combined with 

 -shrink for k = 3 , 7 and 12; relax- B ; relax- S; and finally 7-shrink.

nce a configuration fails, is not attempted again in future itera- 

ions, if any. If all heuristics fail to find a column with a negative 

educed cost, then the exact algorithm is executed. As for the cut- 

ing planes, we set n max = 200 . 

The recharge policy considered also impacts the configuration 

f the BCP algorithm, in particular, whether single (S) or multiple 

M) recharges are allowed, and if they are restricted to be full (F) 

r partial (P). Under SF and MF recharge policies, we set MBR ( j) =
 for all j ∈ V s . For SF and SP, we set R max = 1 to limit the number

f recharges en route to 1. 
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Fig. 5. Description of the dataset, including the speed function v p (t) for each profile p high (blue), normal (red), low (black) (Fig. 5(a)); a generic recharging function ˆ g from 

Montoya et al. (2017) (Fig. 5(b)); and waiting time function ω(t) from Keskin et al. (2019) (Fig. 5(c)). (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Table 2 

Comparison of the quality of optimal solutions: time-independent vs time-dependent. 

Dataset | V c | common Time independent Time dependent 

cost makespan #rech #routes cost (%) makespan (%) #rech (%) #routes (%) 

25 56 458 .50 2879 .88 1 .09 4 .11 −0 .20 −0 .05 6 .82 −3 .04 

Basic 50 43 702 .85 4441 .24 0 .97 6 .63 0 .33 0 .02 24 .57 −0 .70 

100 14 1251 .98 5449 .47 1 .28 12 .93 0 .38 2 .16 4 .53 2 .21 

25 56 457 .03 2846 .69 1 .10 4 .02 0 .01 0 .72 11 .92 −2 .22 

NC 50 45 699 .23 4256 .58 1 .08 6 .51 0 .55 0 .84 14 .13 0 .00 

100 14 1188 .15 6643 .29 1 .21 12 .14 0 .61 0 .50 4 .07 2 .94 

25 56 462 .79 2948 .02 0 .93 4 .21 0 .06 −0 .01 5 .31 −0 .85 

WT 50 43 723 .78 4582 .24 0 .89 6 .88 0 .46 0 .91 9 .68 2 .36 

100 13 1224 .89 7364 .81 0 .90 13 .54 0 .65 0 .89 7 .74 −0 .57 

25 56 461 .17 2906 .51 0 .94 4 .11 0 .15 0 .09 5 .23 −0 .87 

ALL 50 44 717 .97 4480 .35 0 .88 6 .91 0 .69 0 .58 13 .98 −0 .99 

100 12 1238 .16 6825 .26 0 .90 13 .17 0 .48 1 .75 11 .35 3 .16 
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.2. Impact of the TDEVRPTW 

The time-dependent model presented in Section 2 includes 

ore information and, therefore, is expected to produce better- 

uality solutions. In this section, we evaluate and compare the so- 

utions produced when considering time dependency to their time- 

ndependent counterparts. 

To evaluate the time-dependent model, we initially conduct ex- 

eriments over the four datasets described in the previous sec- 

ion with and without time-dependent travel speeds. For the ex- 

eriments, we consider the policy MP, with multiple stops and par- 

ial recharge, as it stands as the more complex and rich scenario. 

e evaluate the quality of the solution in each case over four met- 

ics: total cost; the sum of the makespan of the routes; the average 

umber of recharges per route (#rech); and the number of routes 

#routes). Table 2 reports the results, disaggregated by dataset and 

veraged over each instance size only over the instances that are 

olved to optimality in both cases. Column | V c | indicates the num- 

er of customers, column common shows the number of instances 

olved to optimality in both contexts. For the time-independent 

ase, averages for each metric are reported in absolute terms and 

sed as a baseline. Let z ti and z td be the value of a given metric

or the time-independent and for the time-dependent case, respec- 

ively. For the time-dependent setup, the values are reported as the 

elative difference with respect to the time-independent scenario, 

.e. (z ti − z td ) /z ti . 

The main message of Table 2 is that incorporating the conges- 

ion at the planning level induces differences between the optimal 

olutions with respect to all metrics. For instance, the number of 

echarges per route increases by more than a 10% on average and 

p to 24% for the time-dependent case, suggesting that simplifying 

ravel speeds by averaging them impacts directly on the battery 

ischarge model. Notice, however, that including time-dependency 

oes not necessarily lead to higher cost solutions, as is the case 
990 
f the 25 customer instances for the dataset NC. In fact, consider- 

ng the congestion explicitly lead to faster routes in several cases, 

till remaining feasible. We further highlight the differences in the 

umber of routes, that may become meaningful from a managerial 

erspective. 

By construction, the time-independent instances can be inter- 

reted as the result of averaging the travel speeds from the time- 

ependent ones. To highlight the congestion effects, we propose 

 follow-up analysis by evaluating the solutions obtained for the 

ime-independent instances under the time-dependent context. In 

his sense, we assume that the time-dependent instances represent 

 better approximation of the real-world operations, and the infea- 

iblities detected are the result of neglecting the time-dependency 

nd its effects. We focus on two different sources of infeasibilities. 

e say a route r is time-infeasible if it is infeasible even when set- 

ing the battery capacity is not restrictive, i.e. B = ∞ . Intuitively, a

ime-infeasible route is infeasible either due to the violation of a 

ime window or because its makespan exceeds the planning hori- 

on. Similarly, we say a route r is battery-infeasible if all the dead- 

ines of the time windows are removed, i.e. by setting b i = T for all

 ∈ V , and r is still infeasible due to insufficient battery. These in-

easibilities can be further measured and quantified. We define the 

ime-violation as the worst violation of a customer’s time window 

ivided by the horizon size T , and the battery-violation as the extra 

nergy required to make the route feasible divided by the battery 

apacity B . Finally, we count the solution as infeasible if at least 

ne of its routes is infeasible. 

Table 3 reports the results of the infeasibility tests, aggregated 

y n , for each dataset. Column #inst indicates the number of in- 

tances solved to optimality in the time-independent context. The 

est of the columns indicate the results of the metrics described 

bove. Column #inf-s stands for the number of infeasible solutions, 

nd columns %inf, %inf-t, and %inf-b represent the number of in- 

easible, time-infeasible and battery-infeasible routes, respectively, 
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Table 3 

Feasibility analysis of the time-independent solutions evaluated in a time- 

dependent context. 

Dataset | V c | #inst #inf-s %inf %inf-t %inf-b %
-t %
-b 

25 56 47 50.22 30.49 23.32 1.47 0.76 

Basic 50 48 41 60.07 40.28 26.15 1.61 0.54 

100 17 17 82.16 58.92 34.05 3.61 0.88 

25 56 47 50.45 33.64 23.64 1.49 0.61 

NC 50 48 42 57.34 37.20 25.94 1.76 0.60 

100 16 16 74.29 48.57 32.00 3.71 0.76 

25 56 46 50.43 28.21 25.21 1.57 0.67 

WT 50 48 42 62.05 39.93 28.38 1.68 0.49 

100 18 18 87.43 54.86 41.14 3.60 1.12 

25 56 48 50.44 27.19 25.88 1.54 0.61 

ALL 50 48 42 57.14 36.88 27.57 1.66 0.57 

100 15 15 74.23 47.24 36.81 3.46 1.05 
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ver the total number of routes. %
-t and %
-b indicate the aver- 

ge violation of the time and battery-infeasible routes, respectively. 

From the results, we note that a large number of solutions ob- 

ained from the time-independent model become infeasible when 

valuated under the time-dependent model. By inspecting the so- 

utions, we note that on average more than 60% of the routes are 

nfeasible. Similarly to the classical TDVRP, a considerable percent- 

ge of these infeasibilities is due to a violation of the time win- 

ows originated in the variations in the travel times, between 30 

nd 55% of the routes according to our results. However, a very 

nteresting result is that a significant number of infeasibilities are 

ue to the EV running out of battery while executing the route. 

hese percentages range between 20 and 40%, depending on the 

cenario considered. From a managerial standpoint, these types of 

nfeasibilities may result in considerably expensive. Finally, we note 

hat the average violations are rather small in both cases. This may 

e related to the parameters considered for the instances. Speed 

rofiles with higher variability and a different relation between h 1 
nd h 2 could lead to larger values. 

To further understand the practical impact of the model pro- 

osed, we extend the above experiments by considering new 

atasets incorporating some real-world values, aiming to incorpo- 

ate at least partially some characteristics that are present in real- 

ime networks and vehicle fleets. The datasets Basic, NC, WT, and 

LL from described initially are extended into Basic-R, NC-R, WT-R, 

nd ALL-R, respectively, as follows: 

• We consdier instances with n = 25 , 50 from the original 

dataset. 
• The travel time information (planning horizon, travel speed, 

time windows, etc.) is scaled to represent more realistic 

travel speeds. In these new datasets, the EV travel speed 

ranges between 30 and 102 kilometer per hours approxi- 

mately, with an average of 60 kilometer per hours. The plan- 

ning horizon is expressed in hours (from 4 to 80 hours) and 

location distances in km (between 10 and 60 kilometers). 
• Some parameters are adjusted following the ones reported 

in Schiffer et al. (2021) . More specifically, the battery capac- 

ity and the driving range obtained when driving at the aver- 

age travel speed matches the specification of a Tesla Semi 

500. The information regarding clients, locations and dis- 

tances is not used since, to the best of our knowledge, it is 

not public. 

We replicated the original experiment using this new set of in- 

tances, focusing on qualitative analysis. Table 4 reports the results 

btained. The key to the table is the same as in Table 2 . Comparing

hese two tables, we observe that incorporating time-dependency 

nto the model produces similar outcomes. The differences are con- 

istent across all the metrics reported in relative terms on both 

ata sets. The scaled dataset shows a smaller number of required 
991 
echarges per route, likely due to the fact that the battery capac- 

ty of the Semi 500 is proportionally larger than that of the previ- 

us instances. As a result, fewer recharges per route are required 

nd the differences across datasets are negligible for n = 25 , and 

ore significant for n = 50 . In the former, waiting times and non-

inear charging times have almost no impact as few recharges are 

erformed and and the routes have few vertices, minimizing the 

otential impact. Finally, note that the average makespan reported 

or the new instances is significantly smaller because the time is 

easured in hours. 

Table 5 replicates the qualitative analysis, using the same key 

s Table 3 , showing some interesting insights. Note that the 

ime-dependency remains an important factor regarding feasibil- 

ty, where a significant number of routes obtained in a time- 

ndependent context become infeasible when evaluated under the 

ime-dependent model. However, the number of infeasible routes 

ue to battery depletion is relatively moderate. This is may be 

aused by different reasons. As mentioned previously, the battery 

apacity is a less restrictive resource in the new set of instances. 

lso, the vehicle information considers a mid-haul logistic context, 

here the weight may be relevant. In addition, our instances still 

ssume that the impact of the load can be neglected. Note also 

hat for larger instances that require more recharges per route, a 

imilar behavior as that of the non-scaled dataset appears again. 

.3. The CBR branching rule 

In this section, we evaluate the CBR within the framework. To 

educe the potential impact of external factors, we conduct the 

xperiments over the original time-independent instances from 

esaulniers et al. (2016) . Moreover, both CBR and ABR are tested 

n a pure BP (without the SRCs) in order better appreciate the im- 

act when enumerating more nodes in the branch and bound tree. 

n important observation is that the ABR can be implemented by 

emoving arcs from the support digraph since, for these instances, 

o arcs between two recharging stations exist. We consider such a 

implified implementation in this experiment, although we remark 

hat this may result beneficial for the ABR compared to the general 

ase, given that no additional constraints must be included in the 

MP and no edges are removed from the underlying graph. 

Table D.7 in Appendix D presents the detailed results. The key 

akeout is that using CBR in this context is beneficial, as BP-CBR is 

ble to close 15 more instances than BP-ABR. One of the reasons 

s the number of nodes enumerated, where CBR obtains reductions 

f about 50% percent on average. This effect is more evident in 

arger instances. However, we highlight that the average execution 

ecreases at a smaller rate. Recall that the pricing problem needs 

o be modified within the CBR, and some pricing iterations may 

ecome more expensive in terms of the computation times due to 

his overhead, while the ABR is implemented by removing arcs. 

.4. Performance of the BCP 

We conduct extensive computational experiments to evaluate 

he performance of the BCP algorithm under different contexts and 

onfigurations. The first experiment compares the effectiveness of 

he BCP on the four configurations (Basic, NC, WT, and All) for 

oth time-dependent and time-independent versions, restricted to 

he MP recharge policy to maintain the number of experiments 

anageable. Again, we select this policy since it stands as the 

ost challenging scenario. Table 6 reports the number of instances 

olved to optimality (opt), the average execution time (time), the 

verage number of nodes enumerated (nodes), the average num- 

er of cuts added on the root node (cuts), and the average number 

f columns added when solving the root node (rCols) and during 

he entire execution (tCols). To evaluate the impact of the SRCs, 
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Table 4 

Comparison of the quality of optimal solutions: time-independent vs. time-dependent, scaled dataset. 

Dataset | V c | common Time independent Time dependent 

cost makespan #rech #routes cost (%) makespan (%) #rech (%) #routes (%) 

Basic-R 25 56 450 .59 46 .43 0 .35 3 .84 −0 .07 0 .60 17 .51 −1 .40 

50 39 698 .60 73 .82 0 .22 6 .38 0 .94 1 .02 88 .24 0 .80 

NC-R 25 55 450 .72 46 .65 0 .37 3 .89 −0 .28 0 .50 37 .22 −2 .80 

50 37 696 .53 75 .98 0 .25 6 .49 0 .57 0 .82 51 .88 1 .25 

WT-R 25 56 450 .59 46 .49 0 .26 3 .89 0 .13 0 .57 −0 .07 −1 .38 

50 42 690 .49 71 .54 0 .16 6 .33 48 .48 −0 .12 49 .00 −1 .50 

ALL-R 25 56 450 .59 46 .45 0 .10 3 .86 0 .13 0 .74 145 .96 −75 .46 

50 45 683 .69 70 .08 0 .18 6 .38 48 .65 −0 .26 36 .87 −73 .51 

Table 5 

Feasibility analysis of the time-independent solutions evaluated in a time-dependent context, scaled dataset. 

Dataset | V c | #inst #inf-s %inf %inf-t %inf-b %
-t %
-b 

Basic-R 25 56 31 24.53 24.53 0.00 1.74 –

50 41 25 26.69 26.69 0.40 2.28 0.91 

NC-R 25 56 31 25.00 25.00 0.00 1.77 –

50 40 24 25.93 25.93 0.41 2.30 0.94 

WT-R 25 56 31 24.19 24.19 0.00 1.72 –

50 43 25 25.57 25.57 0.38 2.18 0.87 

ALL-R 25 56 31 24.07 24.07 0.00 1.71 –

50 45 24 23.00 23.00 0.35 2.07 0.79 

Table 6 

Performance for the BCP for all variants, with and without time-dependency and under a MP recharge policy. 

Dataset | V c | inst Time independent Time dependent 

opt time nodes cuts rCols tCols %hg %eg %cg opt time nodes cuts rCols tCols %hg %eg %cg 

25 56 56 7 .05 1 .04 2 .61 2219 .00 2220 .43 0 .07 0 .50 0 .00 56 25 .13 1 .14 2 .70 2270 .75 2274 .55 0 .07 0 .43 0 .01 

Basic 50 56 48 193 .27 2 .88 14 .79 11933 .58 11999 .83 0 .05 0 .80 0 .06 44 197 .67 2 .00 15 .23 11284 .19 11471 .16 0 .10 0 .79 0 .09 

100 56 17 775 .94 11 .82 73 .05 22141 .85 24231 .59 0 .03 1 .96 0 .27 17 822 .30 10 .88 65 .05 48783 .71 58343 .88 0 .03 2 .02 0 .34 

25 56 56 8 .72 1 .25 2 .29 2149 .25 2158 .34 0 .04 0 .46 0 .02 56 43 .16 1 .11 3 .25 2493 .89 2498 .39 0 .03 0 .49 0 .02 

NC 50 56 48 350 .40 2 .83 15 .13 13961 .58 14149 .81 0 .09 0 .69 0 .06 47 291 .80 1 .51 15 .04 11045 .96 11140 .26 0 .08 0 .72 0 .05 

100 56 16 536 .48 9 .63 63 .00 52014 .05 34475 .38 0 .03 1 .91 0 .22 15 446 .46 7 .67 58 .74 36713 .32 31578 .73 0 .03 1 .64 0 .19 

25 56 56 5 .64 1 .21 2 .80 2106 .36 2141 .41 0 .05 0 .59 0 .02 56 21 .84 1 .75 3 .41 2162 .05 2204 .52 0 .10 0 .59 0 .05 

WT 50 56 48 219 .54 6 .75 16 .75 10418 .23 10703 .42 0 .07 0 .95 0 .10 44 165 .87 3 .45 15 .65 9527 .37 9757 .80 0 .08 0 .90 0 .12 

100 56 18 907 .41 20 .00 77 .68 45534 .16 21655 .06 0 .02 2 .07 0 .43 14 727 .61 16 .86 61 .57 50785 .70 18950 .93 0 .01 2 .34 0 .70 

25 56 56 6 .77 1 .21 2 .13 2131 .71 2134 .91 0 .09 0 .43 0 .01 56 41 .76 1 .04 2 .54 2303 .34 2303 .38 0 .04 0 .48 0 .00 

ALL 50 56 48 259 .72 3 .75 17 .13 11543 .60 11720 .15 0 .08 0 .78 0 .06 47 263 .20 3 .21 14 .83 12255 .94 12517 .98 0 .11 0 .82 0 .08 

100 56 15 530 .57 14 .87 69 .04 52582 .96 22963 .67 0 .04 2 .49 0 .76 13 489 .25 14 .54 69 .76 37435 .19 19116 .54 0 .02 2 .34 0 .54 
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e report the average % gap (%eg) of the first LP relaxation and 

lso at the root node (%cg). In addition, to assess for the effective- 

ess of the pricing heuristics, we report the % gap remaining to 

e closed when the exact labeling algorithm is invoked in the first 

P relaxation (%hg). More specifically, we measure the difference 

etween the LP value of the RMP when the exact labeling algo- 

ithm is called for the first time and the LP relaxation. Again, these 

etrics are reported in an aggregated fashion over each dataset 

nd | V c | . The columns time, nodes, and tCols are averaged over the

nstances solved to optimality for each metric, while the columns 

uts, rCols, %hg, %eg and %cg are averaged over the instances where 

he root node was closed. 

Table 6 suggests that incorporating the different variants has 

 limited impact on the performance of our algorithm. This is 

he expected behavior for our time-dependent framework since 

he time-dependent waiting times are directly encoded into the 

ravel time functions and the non-linear charging functions are 

andled in the extension step of the labeling algorithm. We re- 

ark, however, that the time-dependent instances appear to be 

lightly harder to solve compared to their time-independent coun- 

erparts, leaving all other variables fixed. For instance, the number 

f columns required to execute the algorithm are in the same or- 

er regardless of the variant. The pricing problem becomes harder 

o solve in a time-dependent context, which is reasonable consid- 

ring that the battery level function within each label has poten- 

ially more breakpoints. In fact, we observe that the BCP tends to 
s

992 
numerate fewer nodes in a time-dependent setup compared to 

ts time-independent counterpart for comparable execution times. 

he cutting planes have a positive impact causing a dramatic gap 

eduction at the root node. As expected, the total number of cuts 

ncreases for as n increases. We note that the BCP produces re- 

arkable gaps at the root node, below 1% on average, as a result 

f combining elementary routes with SRCs. Finally, the values re- 

orted for %hg indicate that the pricing heuristics are essential to 

oving forward the column generation -almost to optimality- al- 

hough the exact algorithm and the cutting planes are still neces- 

ary to further reduce the gap. 

.5. Benchmark with other exact algorithms 

Exact algorithms based on extended formulations outperform 

ompact models in almost all contexts, becoming the current 

tandard within the VRP literature. This pattern is even more 

ronounced in the case of TDVRPs, as the LP relaxation of the 

ompact formulations tends to be weaker due to the presence 

f variable travel times. To provide further evidence regarding 

he effectiveness of our framework using a high standard base- 

ine, we establish a direct comparison between our BCP and the 

esults reported by Desaulniers et al. (2016) over the original 

VRPTW instances with all four recharge policies (SF, SP, MF, MP). 

esides the TDEVRPTW, this is an interesting experiment itself 

ince the BCP algorithms incorporate different components. Briefly, 
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esaulniers et al. (2016) implements a bidirectional labeling al- 

orithm, ng -route relaxations, and a different cutting plane algo- 

ithm. We remark, however, that our framework includes a signifi- 

ant overhead to manage piecewise linear functions. 

The results are shown in Table D.8 in Appendix D , where the 

ey is the same as in the previous experiments. In this case, av- 

rages are computed over all instances solved to optimality by 

he corresponding method. Indeed, we are able to solve to op- 

imality 13 and 45 more instances compared to the mono and 

i-directional versions from Desaulniers et al. (2016) , respectively. 

his indicates that our BCP is competitive, although we remark 

hat our computer is approximately 20% faster. Besides the compu- 

ation times, the remaining metrics suggest that some new com- 

onents of the algorithm have a positive impact. The number 

f nodes enumerated remains moderate, particularly for instances 

ith n = 50 , 100 . The root gaps share the same behavior as they

re smaller than %0.20 on average. We believe this is due to a 

ombination of factors, namely considering elementary routes that 

ead to tighter lower bounds, the CBR branching, and the enhanced 

reprocessing rules. We emphasize that improved results for the 

VRPTW are reported in Desaulniers et al. (2020) using an en- 

anced variable fixing method. 

. Conclusions 

In this paper, we propose a general model for the TDEVRPTW 

hat accounts for the effect of congestion on the discharge of the 

attery. Moreover, we develop a general framework that unifies 

nd integrates several realistic characteristics considering some of 

he most relevant operational constraints for the EVRP from the 

iterature, so far addressed independently in the related litera- 

ure. From a managerial standpoint, we show that neglecting the 

ime-dependent travel speeds at the planning level can affect the 

uality of the routing plans, potentially incurring in violations of 

he time windows and exceeding the driving range. Our experi- 

ents suggest that up to 40% of the infeasibilities of the distribu- 

ion, plan can be caused by exceeding the battery capacity of the 

Vs, and that this effect is more moderate in less stressed scenar- 

os. From an algorithmic perspective, we develop a new BCP al- 

orithm that generalizes existing methods for the EVRPTW, capa- 

le of handling time-dependent waiting times, non-linear charging 

unctions, time-dependent travel times, and speed-dependent bat- 

ery discharge functions. We introduce a new branching rule de- 

ived to efficiently manage the intermediate stops between cus- 

omers. Overall, the proposed algorithm shows to be very effec- 

ive on a large set of instances from a wide spectrum of scenar- 

os, solving instances with up to 100 customers to optimality and 

ith a performance comparable to the literature for the (time- 

ndependent) EVRPTW. 

As future research, we believe that the evaluation of the model 

n real data is one of the most interesting directions. This would 
ig. B1. Example of the battery level function λp (t) , including the discharge function βi j (

HG j , j ∈ V s (B.6e). 

993 
ring the model and the experiments closer to real-world oper- 

tions. In terms of the algorithm, incorporating additional com- 

onents such as variable fixing could increase the size of the in- 

tances solved. An interesting and challenging problem aiming to 

educe the gap between the models and their practical implemen- 

ation regards devising real-time algorithms capable of adjusting 

he routes during their execution to account for possible changes 

n the traffic conditions and other deviations from the original 

chedule. A promising research line regards the adaptation of the 

oint vehicle routing and speed optimization problem studied in 

ukasawa et al. (2018) to consider routing with EVs, eventually 

onsidering a heuristic framework and the single-vehicle to re- 

ptimize each route independently. Furthermore, integrated mod- 

ls exploring the impact of both the load and the speed would be 

hallenging algorithmically but could lead to meaningful manage- 

ial insights. 
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ppendix A. Proof of Proposition 1 

roof. Suppose f has | f | pieces f 1 , . . . , f | f | in the domain 

 b(x ) , b(y )] , and let b(x ) = u 0 , . . . , u | f | = b(y ) be its breakpoints.

ince b is continuous and non-decreasing, it follows that there 

xist x = t 0 < . . . < t | f | = y such that b(t i ) = u i for every 1 ≤ i ≤
 f | . By induction on i = 0 , . . . , | f | we shall prove that G is

ontinuous, piecewise linear, and non-decreasing in the domain 

 t 0 , t i ] . The base case i = 0 is trivial. For the inductive step i + 1 ,

et z = max { f (t ′ ) | t ′ ∈ [ u i , u i +1 ] } . If z ≤ G (t i ) , then G (t) = G (t i ) =
ax { f (t ′ ) | t ′ ∈ [ u 0 , u i ] } for every t ∈ [ t i , t i +1 ] ; clearly G is contin-

ous, piecewise linear, and non-decreasing in [ t 0 , t i +1 ] . Otherwise, 

ince f is continuous and f i is linear, it follows that f i is increas- 

ng and there exists some u ∗ ∈ [ u i , u i +1 ] such that f i (u ∗) = G (t i ) ≥
f (u i ) . Note, also, that u ∗ = b(t ∗) for some t ∗ ∈ [ t i , t i +1 ] because b

s continuous. Therefore, G (t) = G (t i ) for every t ∈ [ t i , t 
∗] and, since

is non-decreasing, G (t) = f i (b(t)) = max { f (t ′ ) | t ′ ∈ [ u 0 , b(t)] } for

very t ∈ [ t ∗, t i +1 ] . Since f i is linear, we conclude that G is contin-

ous, piecewise linear, and non-decreasing in [ t 0 , t i +1 ] . �

ppendix B. Example for the battery level function 

Fig. B.1 illustrates the idea of the battery level function and its 

ifferent steps. Suppose there is a two-vertex path p = (i, j) trav- 

led by an EV for i, j ∈ V . For simplification purposes suppose there
B.6a), travel time τi j (B.6b), charge function g j (t) (B.6c), T RV i j , j ∈ V \ V s (B.6d), and 
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Table D.7 

Comparison of the different branching strategies from Section 4.3 . 

Dataset | V c | common CBR ABR 

opt time nodes opt time nodes 

25 56 56 2 .26 5 .29 56 2 .59 6 .39 

SF 50 45 51 76 .10 38 .11 51 89 .48 55 .80 

100 10 12 451 .64 221 .60 12 477 .81 273 .60 

25 55 56 7 .49 5 .55 55 9 .89 7 .76 

MF 50 45 49 205 .46 25 .04 48 176 .50 67 .84 

100 10 12 509 .64 89 .40 11 740 .99 173 .20 

25 56 56 2 .08 4 .39 56 2 .19 6 .96 

SP 50 48 53 139 .21 42 .04 50 180 .41 66 .50 

100 16 17 554 .79 45 .75 16 661 .23 80 .75 

25 55 56 8 .39 5 .22 55 11 .62 12 .53 

MP 50 45 50 247 .63 35 .80 46 348 .45 120 .96 

100 9 9 399 .76 48 .11 9 727 .74 92 .56 

Table D.8 

Comparison with numerical results from Desaulniers et al. (2016) for the time-independent scenario. 

Var. | V c | inst Desaulniers et al. (2016) BCP 

Monodirectional Bidirectional 

opt time nodes %rg opt time nodes %rg opt time nodes %rg 

25 56 55 13 .90 1 .25 0 .08 56 30 .60 1 .25 0 .08 56 2 .23 1 .36 0 .03 

SF 50 56 46 265 .97 7 .74 0 .14 47 250 .87 7 .47 0 .16 47 92 .28 2 .74 0 .09 

100 56 13 575 .68 33 .92 0 .12 14 615 .30 36 .43 0 .13 19 552 .28 18 .16 0 .23 

25 56 55 112 .98 1 .22 0 .04 56 16 .03 1 .21 0 .04 56 1 .78 1 .11 0 .01 

SP 50 56 44 255 .35 4 .68 0 .09 50 297 .38 7 .16 0 .12 49 162 .39 3 .12 0 .08 

100 56 18 578 .65 6 .44 0 .06 22 628 .40 15 .36 0 .08 22 572 .31 12 .64 0 .12 

25 56 53 93 .22 1 .19 0 .03 56 93 .43 1 .21 0 .03 56 11 .08 1 .50 0 .02 

MF 50 56 44 357 .85 27 .09 0 .05 46 258 .94 31 .17 0 .05 46 138 .58 1 .74 0 .04 

100 56 10 599 .27 17 .20 0 .10 13 780 .16 77 .15 0 .14 18 625 .86 12 .89 0 .19 

25 56 52 151 .33 1 .08 0 .01 54 23 .48 1 .11 0 .01 56 7 .05 1 .04 0 .00 

MP 50 56 37 374 .72 85 .43 0 .12 45 494 .80 82 .78 0 .12 48 193 .27 2 .88 0 .06 

100 56 15 855 .50 5 .40 0 .10 18 576 .32 13 .11 0 .11 17 775 .94 11 .82 0 .13 
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re no time windows ( a i = a j = 0 , b i = b j = T ), vertex i = o is the

epot, and the travel time is illustrated in Fig. B.1 (b), the battery 

apacity is B = 10 and the discharge function βi j is as described in 

ig. B.1 (a). Finally, let ˆ g (t) be the non-linear recharging function as 

efined in Fig. B.1 (c). 

The single vertex path p 0 = (i ) = (o) has a constant battery 

evel function λp 0 (t) = B for all t ∈ [0 , T ] , which represents a full-

harge when departing from the depot. Then, the battery level 

unction λp results from extending λp 0 over the arc (i, j) . In this 

ase, we have two possible scenarios: (i) j ∈ V \ V s or (ii) j ∈ V s . 

In the first scenario, the battery level function λp after travers- 

ng arc (i, j) is depicted in Fig. B.1 (d). Here, the red segment shows

he times when the battery level was achieved by means of wait- 

ng. For example, the battery level if arriving at j exactly at time 

 = 10 is 4. This occurs since vertex i must be departed from at

ime t ′ = 9 , and then the battery consumption must be 6. Ob- 

erve however that λp (10) = 8 , since the EV can arrive at j at time

 

′ = 6 < 10 with battery level 8 and then wait 4 units of time. 

The second scenario shows the battery level function λp when 

j ∈ V s is a recharging station. In this case, function CHG j is applied

nd the result is illustrated in Fig. B.1 (e). The red portion of the

omain includes those times when the battery level was achieved 

fter performing a recharge. 

ppendix C. Proof of Proposition 3 

roof. Clearly, having ȳ r ∈ { 0 , 1 } for r ∈ � guarantees z̄ i j ∈ { 0 , 1 } by

efinition since each arc (i, j) can be present in at most one route 

aving ȳ r > 0 . Conversely, recall that for each customer set S ⊆ V c 
here is at most one route that visits exactly S in �. Additionally, 

onstraints (12), (14) and hypothesis that z̄ i j ∈ { 0 , 1 } enforce that
994 
or each customer k ∈ V c there is exactly one active variable z̄ k j 

nd z̄ ik for some i, j ∈ V c ∪ { o, d} . If two active routes r 1 , r 2 ∈ � such

hat ȳ r 1 , ̄y r 2 > 0 share a customer k ∈ V c , then the customer vertex

ollowing k in CR (r 1 ) and CR (r 2 ) must be the same (or the pre-

ious vertex is the depot). An analogous argument also holds for 

he previous customer vertex. As a result, it is simple to verify that 

R (r 1 ) = CR (r 2 ) , and then r 1 = r 2 since there is a unique route in

for each S ⊆ V c . �

ppendix D. Intances and detailed results 

Table D.7 shows the results for the two branching rules, CBR 

nd ABR. We report the number of instances solved to optimality 

opt), the total execution time (time), and the number of nodes 

numerated (nodes) aggregated by each recharge policy and in- 

tance customer count | V c | and averaged over the instances solved 

y both methods (common). 

The results of the comparison with the methods developed by 

esaulniers et al. (2016) are shown in Table D.8 , where the key 

s the same as in the previous experiments. In this case, averages 

re computed over all instances solved to optimality by the cor- 

esponding method. To enable a comparison, the values of %rg for 

he algorithms developed Desaulniers et al. (2016) are computed 

ver all instances based on the results they report. 
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