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The adoption of electric vehicles (EVs) within last-mile deliveries is considered one of the key transfor-
mations towards more sustainable logistics. The inclusion of EVs introduces new operational constraints
to the models such as a restricted driving range and the possibility to perform recharges en route. The
discharge of the typical batteries is complex and depends on several variables, including the vehicle travel
speed, but most of the approaches assume that the energy consumption depends only on the distance
traveled. This becomes relevant in different logistics contexts, such as last-mile distrubtion in large cities
and mid-haul logistics in retail, where traffic congestion affects severely the travel speeds. In this paper,
we introduce a general version of the Time-Dependent Electric Vehicle Routing Problem with Time Win-
dows (TDEVRPTW), which incorporates the time-dependent nature of the transportation network both
in terms of travel times and the energy consumption. We propose a unifying framework to integrate
other critical variable times arising during the operations previously studied in the literature, such as the
time-dependent waiting times and non-linear charging times. We propose a state of the art branch-cut-
and-price (BCP) algorithm. Based on extensive computational experiments, we show that the approach is
very effective solving instances with up to 100 customers with different time dependent configurations.
From a managerial standpoint, our experiments indicate that neglecting the travel speeds can affect the
quality of the solutions obtained, where up to 40 percent of the infeasibilities induced by neglecting the

time dependency can be caused by exceeding the battery capacity.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

One of the key environmental challenges nowadays relies in the
use of cleaner and more sustainable energy resources to reduce
emissions and pollution worldwide. Providing access to new and
sustainable transportation solutions appears as one of the urgent
topics to be addressed from a logistics perspective. As of 2010, it
is estimated that 20% of the emission of greenhouse gas (GHG) in
that region stemmed from transportation activities.

In the last decade, many companies have been shifting to-
wards more environmentally friendly transportation alternatives.
One area of significant impact is last-mile logistics, where tradi-
tional internal combustion engine vehicles (ICEVs) are being re-
placed by electric vehicles (EVs) and cargo bikes, especially in
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highly congested areas. For instance, UPS aims to have 25% of its
vehicles running on alternative fuel by 2020, including 10,000 EVs
(UPS, 2019). From a technical perspective, EVs offer several benefits
compared to the ICEVs, such as less noise contamination, reduced
CO, emissions, and a high energy conversion efficiency. They are
usually combined with other methods such as the regenerative
braking system, which produces electrical energy from movement.
As a counterpart, the restricted battery capacity influences the op-
erations of EVs by reducing the so-called driving range. Then, rout-
ing plans for EVs should incorporate these new operational con-
straints explicitly, preventing vehicles from running out of battery
during the distribution by making intermediate stops at recharging
stations. Recent advances have increased the driving range in the
last few years, and current implementations suggest it is reach-
ing reasonable levels for distribution within cities. However, the
battery capacity declines over time and their continuous replace-
ments represent significant investments. Other aspects such as the
use of air conditioning or heating systems also reduce the driving
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range, which can be up to 30% of the original capacity according
to Restrepo et al. (2014).

The Electric Vehicle Routing Problem (EVRP) introduced by
Schneider et al. (2014) extends the classical Vehicle Routing Prob-
lem (VRP) by incorporating explicitly the battery of the vehicle.
It is modeled as an additional resource where the energy is con-
sumed when the vehicle moves along the network and can be
recharged en route. Most of the literature considers a simplified
model where the battery discharge is proportional to the distance
traveled, assuming the consumption rage remains constant during
the planning horizon. A similar observation holds for the charg-
ing times at the fueling stations. In practice, according to Goeke
& Schneider (2015) and as observed in Schneider et al. (2014) the
vehicle load, the travel speed, and the gradient of the terrain are
among the most important variables affecting the energy con-
sumption.

These parameters become relevant in practice when imple-
menting the routing plans. For instance, within last-mile logistics
in large cities, variations traffic variations impact directly on the
travel speeds at different moments of the day, which in turn af-
fect the battery discharge. In this context, the packages to be dis-
tributed are usually rather small and the load is not as important
as the timing decisions. If the driving range represents a limita-
tion, either because of the available technology or degradation of
the battery, using the distance as a proxy for energy consumption
may be misleading. Another relevant area regards mid-haul logis-
tics, where the transition to an electrified fleet includes some ad-
ditional challenges compared to last-mile operations, as discussed
in Schiffer et al. (2021). A standard mid-haul route naturally ex-
ceeds the driving range of nowadays EVs, making the operations
more complex as en-route recharges may not be avoided. Conges-
tion effects also play an important role in this case as, depending
on the geographical location of the warehouses, distribution cen-
ters, and stores, the travel times and speeds can be heavily affected
during rush hours, especially if considering large urban areas. We
acknowledge that the total load of the truck, and how this impacts
the operations, would be also an important factor to evaluate, not
included as part of our research. Overall, these two scenarios indi-
cate that en route battery levels could be wrongly estimated under
the classical linear discharge model, leading to tactical plans that
may not be applicable in practice due to battery depletion.

Although congestion is a dynamic phenomenon, where unex-
pected events may be difficult to predict in day-ahead planning,
designing more realistic distribution plans is still a relevant area
of study. Routing plans for next-day deliveries that are aware of
the average congestion patterns are expected to translate into im-
proved operations, possibly with fewer disruptions due to pre-
dictable traffic variations. Our paper contributes in this direction.
We study the time-dependent EVRPTW (TDEVRPTW), which incor-
porates the effects of congestion into the EVRPTW originally pro-
posed in Schneider et al. (2014), not only in terms of the timing
but also on the charge of the battery. Furthermore, we provide a
general framework that naturally integrates other relevant opera-
tional aspects affecting the applicability of the routing plans, such
as variable charging times and waiting times at the recharge sta-
tions. We first provide a discussion on the literature related to the
EVRPTW and the TDVRP to frame our research, and then we out-
line our main contributions.

1.1. Literature review

As described in the next section, our paper contributes by in-
troducing the TDEVRPTW both in terms of the modeling as well as
devising a state-of-the-art Branch-Cut-and-Price (BCP) algorithm as
a solution methodology. Regarding exact algorithms, BCPs are the
most effective algorithms, especially for multi-vehicle VRPs. We re-
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fer the reader to Toth & Vigo (2014) for a detailed introduction to
BCP algorithms applied to VRPs, and further explore Irnich & De-
saulniers (2005) and Irnich (2008) regarding advanced labeling al-
gorithms for shortest path problems with resource constraints, in-
cluding the use of Resource Extension Functions (REFs). More re-
cently, Costa et al. (2019) provide a complete overview of the dif-
ferent components that are usually incorporated in a BCP.

Environmental aspects within VRPs have been addressed from
different perspectives. A stream of research related to green logis-
tics considers, among others, the effects of transportation on the
environment by minimizing fuel consumption and GHG emissions
under different congestion conditions (see, e.g. Heni, 2018; Toth &
Vigo, 2014, Chapter 15). To the best of our knowledge, the first ap-
proach including alternative fueling vehicles with a limited driv-
ing range is the Green VRP (GVRP) proposed by Erdogan & Miller-
Hooks (2012). Although they do not focus on the use of EVs, they
provide an initial framework for these types of problems. Davis &
Figliozzi (2013) study the impact of replacing ICEVs by EVs for dis-
tribution and Felipe et al. (2014) extend the GVRP by introducing
the partial-recharge policy, allowing vehicles to determine the bat-
tery charged at each fueling station, as well as multiple recharging
technologies by assigning a different recharging speed to each sta-
tion.

Recently, a stream of articles considers explicitly distribution
problems using a fleet of EVs, where the energy from the battery
of the vehicle is consumed as the vehicle operates, that may be
replenished in order to eventually extend the length of the tour.
The EVRP with time windows (EVRPTW) is proposed in Schneider
et al. (2014), where the GVRP is extended with limited battery con-
straints and other classical VRP constraints (e.g. time windows and
vehicle capacities), and tackled via metaheuristics. The discharge
of the battery is assumed to be linear with respect to the distance
traveled, a simplification of the real conditions. Desaulniers et al.
(2016) develop a BCP algorithm for a generalization of the EVRPTW
where full and partial recharge policies are allowed, as well as
the possibility of limiting the number of en route recharges. Simi-
larly, Roberti & Wen (2016) tackle the single-vehicle version of the
problem. Partial recharges are also considered in Keskin & Catay
(2016), while Schiffer & Walther (2017) also incorporates location
decisions. We remark that these problems can be formulated as a
special case of VRP with intermediate stops, a more general family
of VRPs recently surveyed in Schiffer et al. (2019).

Another interesting, complementary area of research focuses on
enriching the EVRPTW and other variants by incorporating charac-
teristics to reduce the gap with real-world operations. Demir et al.
(2014) present a review of different energy consumption models.
More complex and realistic energy consumption models for elec-
tric batteries, based on tests conducted using real data, are pro-
posed by Goeke & Schneider (2015) and Wu et al. (2015). We re-
mark that Goeke & Schneider (2015) extend the EVRPTW to con-
sider a mixed fleet composed of both EVs and ICEVs. Their model
incorporates the dependency on the travel speed, the mass of the
vehicle, and the weight of the load to be transported into the en-
ergy consumption, among others. Further interesting results are re-
ported by Fetene et al. (2017), where the effect of different factors
on the energy consumption rate and the driving range is measured
through a detailed analysis of a large-scale dataset of driving pat-
terns collected from more than 700 EVs over a period of two years.
The EVs correspond to private vehicles instead heavy-duty vehicles,
and several factors are taken into account, such as travel speed,
driver behavior, weather conditions, road type, and others, when
considering their use. Regarding the travel speed, their results sug-
gest that the energy consumption is non-linear and that the opti-
mal driving speed has a sweet spot between 45 and 56 kilometer
per hours, lower than the 65 kilometer per hours reported therein
for the ICEVs. When comparing the characteristics of each model,
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we notice differences in energy consumption, particularly at lower
travel speeds. This suggests that additional research is required in
this area to fine-tune the energy consumption models.

Recently, and simultaneously with our work, some approaches
investigate algorithms for more complex battery discharge func-
tions. Zang et al. (2022) consider a non-linear battery depreciation
model to account for the impact of the depth-of-discharge and de-
velop a column-generation-based heuristic with a tailored labeling
algorithm. Rastani & Catay (2023) tackle a research question that is
similar to ours but focused on weight. They adjust the consump-
tion model from Goeke & Schneider (2015) to account for the load,
propose two compact ILP formulations, and propose an Adaptive
Large Neighborhood Search (ALNS) heuristic to investigate the im-
pact of the load in the energy consumption.

The interaction between the vehicles and the recharging infras-
tructure introduces new interesting operational constraints, with a
direct impact on the quality and the feasibility of the solutions.
These constraints are motivated by practical contexts and, in gen-
eral, have been tackled independently. Sassi et al. (2014) consider
time-dependent charging costs, multiple recharging technologies,
and a mixed fleet of vehicles, modeling the dynamic pricing strate-
gies in smart grid networks. Bessi et al. (2022) develop a BP algo-
rithm considering multiple recharging technologies and propose a
bi-directional labeling algorithm, still assuming he recharging time
to be proportional to the amount of recharged energy. Montoya
et al. (2017) focus on the charging process, observing that the
amount of energy charged depends not only on time spent but
also on the preliminary battery energy level. The charging func-
tions modeling the process are nonlinear, and they show that con-
tinuous piecewise linear functions with up to 3 pieces translate
into good approximations. This problem is also studied by Froger
et al. (2019), introducing new algorithms that improve the quality
of the solutions. Another interesting aspect deals with access to the
recharging infrastructure. The limited capacity of a recharge sta-
tion (in terms of chargers) may be exceeded by the high demand
of vehicles during peak hours. This is considered in Keskin et al.
(2019), where the vehicles cannot cannot assume to have access
to a charger immediately upon arrival to a station, and therefore
incur in waiting times that affect the rest of the route. Their ex-
periments suggest that waiting times can result in up to a 26% dif-
ference in terms of costs. Similarly to the previous cases, the wait-
ing times can be modeled by continuous piecewise linear functions
that satisfy the First-In-First-Out (FIFO) condition. Overall, we refer
the reader to Pelletier et al. (2016) for a complete survey of the
literature considering modeling and algorithmic aspects.

Congestion effects on routing decisions have received increas-
ing attention during the last few years, as they represent a crit-
ical aspect regarding last-mile deliveries in large cities (see e.g.
Savelsbergh & Van Woensel, 2016). Time-Dependent VRPs (TDVRPs,
see Gendreau et al.,, 2015) is the name assigned to a wide fam-
ily of interesting optimization problems that incorporate explic-
itly the traffic conditions at a planning level by assuming that the
travel time between two customers is variable and does not re-
main constant during the planning horizon. Regarding congestion,
the model proposed by Ichoua et al. (2003) has been widely ac-
cepted as a standard within the VRP community. Briefly, variable
travel speeds are modeled as a step function over the planning
horizon, and the vehicle moves along the network according to
these speeds depending on the departure time from a customer.
As a result, the travel time between two customers is a continuous
piecewise linear function that satisfies the FIFO condition. From an
algorithmic perspective, TDVRPs require more complex models, al-
gorithms, and implementations to handle variable travel times. We
restrict our review to exact algorithms, although (meta)heuristic
approaches have also been proposed recently in the related liter-
ature. Classical objective functions consider the makespan or, com-
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plementary, the duration of the route, incorporating in this fash-
ion the departure time from the depot a decision variable. Single
vehicle problems are usually referred to as the Time-Dependent
Traveling Salesman Problem (TDTSP). The TDTSP minimizing the
makespan is studied in Adamo et al. (2019); Cordeau et al. (2014),
while algorithms for the variant with time windows and also
minimizing the duration are studied in Lera-Romero & Miranda-
Bront (2019); Lera-Romero et al. (2020a); Vu et al. (2020). Regard-
ing Time-Dependent VRP (TDVRP), Dabia et al. (2013) develop a
Branch-and-Price (BP) algorithm for the TDVRP with time windows
(TDVRPTW) where the objective function minimizes the total du-
ration of the routes. The pricing problem is tackled using tailored
labeling algorithms that incorporate the time dependency. As a re-
sult, some of the resources are modeled via a function that de-
pends on the time. The labeling algorithm applies a total domi-
nance criterion, meaning that one label can dominate another only
if this function is dominated over its entire domain. The TDVRPTW
with Pickup and Deliveries (TDVRPTWPD) is studied in detail by
Sun et al. (2018) using similar ideas, while a variant of the TD-
VRPTW with path flexibility is explored by Huang et al. (2017).
Another problem having a similar structure is studied in Tagmouti
et al. (2007), where an arc-routing problem with time-dependent
piecewise linear service costs is transformed into a VRP, also con-
sidering a time-dependent service function. Regarding the solu-
tion approach, the labeling algorithm developed for the pricing
problem resembles the one proposed in Dabia et al. (2013), which
considers a total dominance criterion. Recently, Lera-Romero et al.
(2020b) approach the TDVRPTW with a BCP algorithm that in-
corporates partial dominance within the labeling algorithm when
solving the pricing problem, enabling a label to be dominated only
at a portion of its domain. This enhancement shows to be very
effective, outperforming previous approaches in the computational
experiments.

The literature connecting the EVRPTW and the TDVRP is some-
how scarce, and we highlight some recent research in this direc-
tion. Fukasawa et al. (2018) studies a complex optimization prob-
lem where, in addition to the routing decisions, the speed of the
vehicles in each instant is also a decision variable in order to min-
imize the costs associated with fuel consumption. Pelletier et al.
(2019) consider an optimization problem under the uncertainty of
some external variables such as road friction, vehicle speed, and
weather by estimating the deviation of the discharge rate in typi-
cal scenarios. Shao et al. (2017) enhance the classical EVRPTW by
adding time-dependent travel times to obtain more accurate es-
timations regarding potential violations of the time windows, al-
though the battery discharge model remains simplified and is not
affected by the variable travel speeds. Recently, and simultaneously
with our work, Lu et al. (2020) take the first steps towards a model
that considers the impact of the time-dependent speeds on energy
consumption. However, they assume that the congestion can be
captured with a step function having only three pieces with differ-
ent travel speeds. Besides the limitations regarding the applicabil-
ity in practice, the proposed model does not scale for more general
contexts. As far as we know, no article in the literature proposed a
general model integrating the effects of congestion into the battery
discharge model for EVs.

1.2. Our contributions

We build upon the research by Goeke & Schneider (2015) and
Ichoua et al. (2003) to study the TDEVRPTW, a generalization of
the EVRPTW that captures the effect of congestion on both the
travel times and the battery consumption. Aligned with the obser-
vations raised by Desaulniers et al. (2016), considering explicitly
the speed profiles as an input for the battery discharge model in-
troduces an additional complexity regarding REFs compared to the
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EVRPTW. Although the speed is not itself a decision variable, the
routes must find implicitly a trade-off between traveling an arc at
a less congested period to reduce the travel time, likely to be ben-
eficial regarding the time windows, and the eventual increase in
the energy consumption, arguably negatively affecting the driving
range.

However, our conception of time-dependency goes beyond the
classical time-dependent travel times, as we propose a unifying
framework that naturally integrates further operational constraints
such as the variable charging times (Montoya et al., 2017) and the
waiting times (Keskin et al., 2019), both of which are approximated
via continuous piecewise linear functions in their approaches. To
the best of our knowledge, our paper is the first one to consider
all these aspects in an integrated fashion from the routing perspec-
tive. Through our experimental setup, we provide valuable man-
agerial insights on the impact of congestion in the driving range.
For some of the scenarios considered, up to 40% of the routes ob-
tained in a time-independent setup become infeasible due to the
impact of congestion on the battery.

In terms of methodology, we design a BCP algorithm including
state-of-the-art components. We develop a labeling algorithm ca-
pable of handling piecewise linear functions within each label to
encode the speed-dependent energy consumption as a resource.
Our labeling algorithm applies partial dominance rules to accel-
erate its execution. The BCP is enhanced with new, tailored pre-
processing rules for the TDEVRPTW that can be further exploited
by other VRP variants considering a limited driving range. Regard-
ing the branching, we propose an alternative scheme for routing
with EVs that simplifies the one proposed in Desaulniers et al.
(2016) and, furthermore, reduces the number of enumerated nodes
in a BP. Extensive computational experiments demonstrate that
our approach is robust for the time-dependent instances, that our
more general framework is efficient on time-independent EVRPTW
benchmarks, and that it is able to solve time-dependent instances
roughly of the same size as for the EVRPTW with comparable com-
putational effort.

The rest of the paper is organized as follows. Section 2 de-
fines the TDEVRPTW in its general fashion and introduces the no-
tation used in the paper. Then, Section 3 presents a general frame-
work encoding within the TDEVRPTW further time-related oper-
ational constraints. The BCP algorithm is presented in Section 4.
Finally, the numerical experiments are presented in Section 5 with
conclusions and a discussion of the possible future directions in
Section 6.

2. Time-dependent electric vehicle routing problem

In this section we define the TDEVRPTW in its general fashion
and provide a brief analysis of its novel characteristics. We review
the variants from the literature that are incorporated later into the
algorithms described in Section 4.2. Finally, we introduce the new
time-dependent battery consumption model, which integrates the
variable speeds into the battery discharge functions.

2.1. Problem definition

The TDEVRPTW is defined on a directed graph D = (V, A) where
each vertex i e V represents a location that can be either the de-
pot, a customer, or a (recharging) station. Thus, V = {o,d} UV, UV,
where o and d are two vertices representing the depot, V; is the
set of customers, and Vi the set of recharging stations. Each arc
(i, j) € A represents a path between locations i and j, where ¢;; de-
notes its travel cost.

Classical routing problems incorporate real-life operational con-
straints such as vehicle capacity, time windows, and service times.
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We assume that an unlimited fleet of homogeneous EVs is avail-
able, where each vehicle has a capacity Q. Each customer i eV
has a positive demand g;, a time window |[q;, b;] where the service
must start, and a service time s; to process the customer.

Congestion effects are captured following the model proposed
by Ichoua et al. (2003). Operations take place within a planning
horizon [0, T], which typically represents the length of a working
day. Each arc (i, j) € A has an associated distance d;; and a speed
function v;;(t) indicating the speed of any vehicle traversing arc
(i, j) at time t. In this model, v;;(t) is a step function of known,
fixed average speeds defined over a partition of the planning hori-
zon given as input. Then, a travel time function t;;(t) is derived for
each arc (i, j) € A, indicating the travel time of the trip from i to
Jj if departing at time t € [0, T]. Function 7;;(t): [0, T] — R is con-
tinuous, piecewise linear, and satisfies the FIFO property, meaning
that delaying the departure cannot lead to an earlier arrival time.

Each EV is equipped with a battery with a limited capacity B
(expressed in kWh). For each arc (i, j) € A we consider an energy
consumption function B;;(t) that indicates the energy consumed
while traveling from location i to j if departing from i at time
t. As described in the next section, the consumption depends on
the travel speed and, therefore, becomes a time-dependent func-
tion on the departure time from the origin location. Although the
battery is discharged while the vehicle is in motion, it can be
recharged at any station to continue the route. For an EV with an
initial battery level of wy > 0 kilowatt hour and a recharge station
j € Vs, the charge obtained after ¢ units of time is given by a func-
tion g;(wp,t). Following the notation introduced by Desaulniers
et al. (2016), the classical EVRPTW is retrieved by setting the
battery-discharge function B;j(t) = b;; and the recharging function
g;(0, h;j) = b;; when assuming constant travel time functions, be-
ing b;; the energy consumption for arc (i, j) € A and h;; = ab;; the
time required to recharge b;; units of energy. Section 2.2 provides
a deeper analysis of these functions.

Most of the literature related to EVs allows recharges of either
one of two policies: full or partial. Whereas the full-recharge policy
forces all vehicles to charge batteries up to their full capacity at
each station, the partial-recharge scenario provides a more granu-
lar choice. Partial recharge extends the solution space by indicating
not only the path but also the amount of battery recharged at each
station visited within the route. Desaulniers et al. (2016) also lim-
its the number of en route recharges to one. This policy is called
the single-recharge policy, while the former is referred to as the
multiple-recharge policy.

A route r= (0,vq,...,14,d) is a sequence of locations starting
from the initial depot o and ending at the final depot d. Similarly
to the EVRPTW, a route r is feasible if and only if: (i) there are
no repeated customers (although a recharge station may be visited
more than once); (ii) the capacity of the vehicle is not exceeded;
(iii) customers are visited within their time window [a;, b;]; and
(iv) the energy required B;;(t) for each arc (i, j) in a route must
never exceed the battery level of the EV when departing from lo-
cation i towards j. The last two conditions depend on the timing
of the route, as both the travel time and the battery consumption
depend on the speed that, in turn, depends on the time of depar-
ture from each of the traversed vertices. Then, as discussed in the
next sections, the departure times from the depot and from the
intermediate locations within a route become a decision variable.
The cost of a route r is given by ¢ = 3 )¢, Cij. The TDEVRPTW
involves finding a set of feasible routes visiting each customer ex-
actly once at the minimum total cost.

We further remark that while most time-dependent models
have an objective function that minimizes the makespan or dura-
tion of the routes, we consider a more classical, time-independent
objective function. This decision is motivated by several reasons,
both regarding the model as well as its algorithmic implications.
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Table 1
Variable definitions and suggested values as proposed by Demir et al. (2014). Vehi-
cle mass and surface from the city delivery truck Alke ATX 320E.

Notation Value Description

g 9.81 meters per square second Gravitational constant

] 1.42 kilograms per cubic meter Air density

cr 0.006 Coefficient rolling resistance
cd 0.9 Coefficient aerodynamic drag
FS 2.40 square meters Frontal surface

me 900 kilograms Curb mass

We defer this discussion to Section 4.4.5, in order to provide bet-
ter reflect the motivation behind this decision.

2.2. Battery consumption model

We consider the model proposed in Goeke & Schneider (2015),
where the battery consumption depends on different variables
grouped into three categories: vehicle mass, speed, and conditions
of the terrain. Let P(v,q) be the instantaneous consumption func-
tion of a vehicle traveling at speed v with load g, defined by the
following equation

1
P(v,q) = (2~cd-p-FS-U2+(mc+muq)-

g (sin(o) +cr-cos(a)) | - v. (1)
The rest of the parameters are defined in Table 1. Note that the
mass my of each of the g units loaded in the vehicle is not spec-
ified. This variable depends on the type of goods to be delivered,
which is problem-dependent. Similarly, the variable « indicates the
gradient of the terrain, which depends on the road conditions.

Since we focus on the effects of the congestion, we adapt this
formula to achieve a reasonable compromise between the simplic-
ity and expressiveness of the model. We assume that the mass of
each unit is negligible compared to the vehicle mass (m,; = 0), and
that the gradient is zero (o = 0). Thus, we define h; = % -cd-p-FS
and hy = m¢-g-cr, and rewrite P(v, q) as follows:

P(v) = hyv® + hyv. (2)

Table 1 shows the estimated values for each parameter sug-
gested by Demir et al. (2014). Replacing these values in the former
expression results in hy ~ 1.54 and h; ~ 52.97. Thus, we can in-
fer that, under these conditions, h, ~ 35h;. This relation becomes
relevant to create synthetic instances: given a single discharge
rate h (for instance, as considered in the EVRPTW), an instanta-
neous consumption function can be derived by setting h; = % and
hy =h-— % assuming v = 1 for the EVRPTW. Establishing an anal-
ogous connection between the average travel speed and the speed
functions will later enable us to evaluate the effects of congestion
when compared to the EVRPTW.

Observe that the instantaneous consumption function P(v) in-
dicates the energy consumed in an instant of time by a vehicle
traveling at speed v. However, the battery discharge function B;;(t)
defined in Section 2.1 refers to the total energy consumed during
the traversal of arc (i, j) € A if departing from i at time t. To com-
pute the battery discharge function B;;(t) we must combine the
time-dependent travel times with the instantaneous consumption
functions P(v). If a vehicle departs from vertex i to vertex j at time
t, then it arrives j at time ¢ + 7;;(t). Thus, the vehicle is travers-
ing arc (i, j) during interval [¢, ¢t + 7;;(t)] and the battery discharge
Bij(t) can be computed by integrating the instantaneous consump-
tion function over that interval of time.

t+7;5(t)
Bii(6) = f P(v;(x))dx (3)
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Recall that the speed function v;;(t) over arc (i, j) €A is a step
function; let |vj;| be its number of pieces. If the kth piece of v;;
(k=1,...,|v;l) is defined on the domain [Ty, T,;) and has a con-
stant value Df‘l then Eq. (3) can be rewritten as

31
Bij(t) = > PW) x [T, Tew) N[t €+ T35(D)]]
k=1

(4)

Similarly to the case of the travel time functions, the battery dis-
charge functions are piecewise linear and continuous, as stated in
the following proposition.

Remark 1. Given an arc (i, j) € A, the discharge function B;;(t) is
piecewise linear and continuous.

Proof. The result follows since (4) is a composition of continuous
piecewise linear functions. O

To fully characterize the battery discharge functions, it is neces-
sary to describe their breakpoints. We remark that 7;; is computed
in a similar fashion as B;j, and therefore these breakpoints are the
same for 7;; and B;; (Ichoua et al., 2003).

Fig. 1 presents an example of the different functions involved
in the battery discharge model. Consider an arc (i, j) € A with a
distance d;; =2 and a speed function v;; as specified in Fig. 1(a).
Furthermore, the fleet of EVs has batteries with an instantaneous
consumption function P(v) = {1 + v (Fig. 1(c)). Then, the result-
ing travel time function 7;; and battery discharge function B;; are
illustrated in Fig. 1(b) and (d), respectively.

Finally, recall the discussion from Section 1.1 regarding the
differences between Goeke & Schneider (2015) and Fetene et al.
(2017) in terms of the energy consumption and its dependence on
travel speed. Although we concentrate on the model proposed by
Goeke & Schneider (2015), we highlight that our approach is gen-
eral enough to incorporate other discharge functions by defining
the appropriate instantaneous consumption function of the aver-
age travel speeds.

2.3. Delayed departure from the locations

Frequently, tactical plans assume that the vehicles leave the
customer immediately after the service is completed. This is the
case in most of the classical variants of the TDVRPs, motivated by
the fact that the travel times satisfy the FIFO property and, there-
fore, delaying the departure cannot improve the solution.

From the model presented in Section 2.2, the EVs require a dif-
ferent approach. The travel speed (and, therefore, the travel time)
and the battery level are usually inversely correlated, meaning that
a feasible route (eventually, the optimal one) may benefit from
traveling at a slower speed, still satisfying all the operational con-
straints, in order to increase the driving range of the EV. To illus-
trate this situation, recall the example from Fig. 1. If the vehicle
departs from i at t; = 7, then the travel time is 7;;(7) = 0.5, and ar-
rives at j at time 7.5 with a battery consumption B;;(7) = 6 units
of energy. However, if feasible, delaying the departure up to ¢/ =8
increases the travel time 7;;(8) =1, arriving at j at time 9, but
consuming less energy since B;;(8) =2. Note that this reduction
in energy consumption may be critical regarding visits to other
customers, and thus necessary for the optimal solution. Then, the
model must allow a vehicle to delay its departure from a location
in order to guarantee optimality, becoming also a decision variable
and increasing the difficulty. In what follows, we provide an in-
terpretation for this characteristic and discuss a potential practical
implementation.

In order to avoid solutions including unrealistic waiting times,
we limit the deferral of the departure to b; +s; when visiting i e V
(eventually, up to T for a station i € V;). We acknowledge that, even
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Fig. 1. Numerical example illustrating the speed function v;;(t) (1a); travel time function 7;;(t) (1b); instantaneous consumption function P(v) (1c); and battery discharge

function f;;(t) (1d) for an arc (i, j) € A having d;; = 2.

with this limitation, these adjustments may be difficult to imple-
ment in practice. However, there are some interesting interpreta-
tions from a managerial standpoint. First, they can be seen as a
buffer regarding potential unexpected delays during the operations.
Second, these waiting times suggest that the speed could be re-
duced when executing the route. To illustrate this second idea, re-
call the previous example and assume that the vehicle is ready to
depart from i at t; = 7, but the optimal solution indicates to delay
the departure to t/ = 8. Then, instead of delaying the departure, the
vehicle may still leave at t; = 7 but aim to arrive at j at time 9, as
would be the case when departing at ] = 8. Simplifying the exam-
ple, the average travel from i to j at average travel speed ;; =1
in practice, without violating any time constraints. As mentioned
before, we assume in this case that slower speeds consume less
battery.

Note that this is not determined at the planning stage when
solving the TDEVRPTW as the travel speeds and congestion pat-
terns are not a decision variable, but rather an input for the prob-
lem. This decision is partially motivated by the fact that in practice,
similarly to other VRPs, en route adjustments are usually applied
in real-time due to deviations from the planned schedule. For the
TDVRPs in general, and the TDEVRPTW in particular, this is par-
ticularly important as congestion is a dynamic phenomenon that
may suffer from significant variations with respect to the standard
patterns due to unexpected events, beyond the classical rush hour
congestion. Then, travel speed adjustments originating from a de-
layed departure could be implemented during the execution rather
than determined at the planning stage, in real-time, by suggesting
to the driver a desired (eventually, optimal) range for the average
travel speed for a given link. In this fashion, the suggested speed
range may account not only for the updated, more detailed con-
gestion estimation but also for the specific information about the
current operational context, such as the timing and potential de-
lays, among others.

From an algorithmic standpoint, suggesting an optimal travel
speed range requires solving an additional, real-time optimiza-
tion problem. Fukasawa et al. (2018) tackle a joint vehicle rout-
ing and speed optimization (JVRSP) for the VRP considering tradi-
tional ICEVs. If tailored for routing with EVs, this integrated prob-
lem could stand as the building block of a real-time decision sup-
port tool to complement the TDEVRPTW. First, we note that the
JVRSP is a very challenging problem, both theoretically and prac-
tically. Second, the re-optimization of a route must incorporate all
the operational constraints from the TDEVRPTW. This includes the
battery discharge model, eventually with more detailed and up-
dated travel speed information. Also, time windows must still be
satisfied, imposing a lower limit for the speed reduction implicitly.
If the energy consumption model is aligned with the pattern ob-
served in Fetene et al. (2017), suggestions should further either im-
plicitly or explicitly incorporate a minimum recommended travel
speed, as traveling too low may not be beneficial for the time win-
dows nor for the driving range. Note that the re-optimization may
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also require increasing the travel speed if the current execution
is behind schedule in order to meet the time windows, eventu-
ally introducing additional recharges, if necessary. Finally, note that
this framework can be further generalized to deal with other types
of events, eventually becoming a real-time disruption management
tool.

2.4. Battery consumption and feasible routes.

Having defined the battery consumption model at an edge level,
we next proceed to extend these definitions to routes. This repre-
sents a key concept within our model, as the feasibility of a route
depends on maintaining a positive battery level during the entire
trip. Let p=(o=v4,...,1;) be a path starting at the depot and
t be a potential ready time at vertex v, that is, a time instant at
which the vehicle has visited (processed) all the vertices in p and
is ready to depart to the next vertex (or, alternatively, finish the
trip if v, = d). Both t and the battery level at t depend not only
on the sequence of vertices in p and the departure time from the
depot, but also on the other interdependent decisions taken along
the traversal of p. Different battery levels could be feasible for a
given time instant t depending on the energy consumption while
traversing p, which in turn depends on the travel speeds and the
departure times; the amount of energy recharged en route; and
eventually on the delayed departure discussed in the previous sec-
tion.

Note that the battery level, including both the consumption and
the recharges, does not affect the cost of a route (and, therefore,
the overall solution) as it only restricts its feasibility. Then, given
a path p and a time t, we focus on the combinations of decisions
that lead to the maximum battery level when p is ready at time
t, discarding other dominated solutions. In what follows, we de-
velop the model considering a partial-recharge policy, although it
can be easily adapted to other contexts. Similarly to the classical
time-independent variants, we assume that the service time s; for
vertex i is already encoded into the travel time function ;;(t). Spe-
cific details are provided in Section 3. We first consider a simpli-
fied definition for a given arc or vertex, and then we generalize the
idea for paths.

Suppose we are given a continuous and piecewise linear func-
tion A such that A(t) indicates the maximum battery level of a ve-
hicle that is ready to depart a vertex i at a time t. Moreover, sup-
pose the domain of A is a closed interval dom(A). When traveling
through an arc (i, j) € A and departing from i at time t, the bat-
tery consumed is given by B;;(t) and, therefore, the battery level
when arriving at j is by A(t) — B;;(t). However, this need not be
the maximum battery level achievable to visit j at time ¢ + 7;;(t)
when traveling directly from i. Indeed, the vehicle may have ar-
rived at j at a time t’ earlier than t, with more charge in the bat-
tery, and waited until time t (which does not affect the battery
level). We define the function TRVl.j.‘(t) to capture this behavior.

That is, TRVI.;‘ (t) denotes the maximum battery level when arriving
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at j at a time t after traversing the arc (i, j) € A, given that the
maximum battery level function at i is A. For each time ¢, let H(t)
be the set of times t’ such that j is reached at time t or earlier
when i is departed from at time t’. That is, H(t) = {t' e dom(}) |
max{a;, t’ + 7;;(t')} < t}. Then, TRV} (¢) is defined by
TRV (t) = max {r@) - Bit)} (5)

Recall that functions A, B;; and t;; are continuous and piece-
wise linear, and 7;; also satisfies the FIFO property. Thus, A — 8;;
and t — max{a;, t + ;;(t)} are also continuous and piecewise lin-
ear. By definition, H(t") € H(t) for t’ <t, thus H(t) is a closed in-
terval [h(t), h(t)] because t;; satisfies the FIFO property. Note that
h(t) is a constant function, whereas h(t) is continuous and piece-
wise linear, hence the domain dom(TRVi)}) of TRV,? is a closed in-
terval [tq, t;] as well. For the sake of simplicity, we abuse notation
and define a restricted domain considering arrival times at j such
that the maximum battery level is non-negative, i.e. dom(TRVi;‘) =
{telt1,t2]: TRVS.‘(t) > 0}, that still remains a closed interval. This
definition removes the infeasible arrival times at j that cannot be
reached because the battery is depleted. Note that TRV& (t) implic-
itly encodes waiting times incurred by eventually delaying the de-
parture from j, as it considers feasible ready times earlier than t.

A similar analysis holds for the stops at the recharging stations.
In this case, we further assume the recharging functions g;(wy, t)
to be continuous and piecewise linear and provide in Section 3 the
motivation for this hypothesis. Once again, suppose we are given
a continuous and piecewise linear function w such that w(t) in-
dicates the maximum battery level of a vehicle that is ready to
start a recharge at time ¢ in a station i € V5. Again, u is defined
over a closed interval dom(x) and assume that the image of u
is included in dom(g;). Let CHG;‘ (t) be the maximum battery level
when the recharge is completed at time t, defined as

CHGI(t) =  max  {u() +g(ut).t—tH}.

t'<t,t’edom(p)

(6)

Again, as different battery levels are feasible for a given t,
CHGIH (t) indicates the maximum. Since recharging has no cost, it
is always convenient to charge instead of waiting (without recharg-
ing). Similarly to the previous case, the function CHGI’.‘ (t) also cap-
tures possible delays incurred by waiting times, while the domain
dom(CHG}") of CHG!" is equal to the closed interval dom(s).

Both TRVi’\» and CHGf‘ are defined in terms of piecewise linear
functions, although their structure is slightly more complex than a
straightforward composition. Based on the previous approach, the
function G in the following result generalizes the structure of TRVI.;‘

and CHG,“ . The detailed proof can be retrieved from Appendix A.

Proposition 1. Let f be a continuous and piecewise linear function,
and b be a continuous and non-decreasing function. Define a function
G on a domain [x,y] as

G(t) = max t',t),
© t’e[b(x).b(t)]f( )

(7)

where [b(x), b(y)] < dom(f). Then, G is continuous, piecewise linear,
and non-decreasing.

Proposition 1 is relevant from a practical standpoint, as it en-
ables to compute TRVl.j\. and CHGf‘ considering only a finite subset
of breakpoints. We summarize this in the following results; note
that b is piecewise linear in the definitions of TRV and CHG.

Corollary 1. Let |G| and |f| be the number of pieces of G and f in
[x,y] and [b(x), b(y)], respectively. Then, |G| < |f].

Corollary 2. If b is piecewise linear, then G can be computed in poly-
nomial time. If the pieces of f and b are sorted, then G can be com-
puted in linear time.
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We now extend these ideas to paths, in order to compute
the battery level at any given moment of a trip. Let p= (0=
vy, vy, ..., V) be a path starting at the depot o, but not necessar-
ily ending at d. Define )‘51' (t) as the maximum battery level at a
ready time t when visiting vertex v; along path p,i=1,..., k. Re-
call that t is a ready time when v; can be departed from at time
t, meaning that v; has already been “processed”. Certainly, each
t €[0,T] is a ready time for the depot vy. Thus, as each vehicle
departs from v; with a full battery level, it follows that Aﬁl (t)=B
for every t € [0, T]. Clearly, )L,’,’I is a continuous and piecewise linear
function defined over a closed interval. To define Aﬁi we proceed
by induction on i, taking advantage of the functions TRV and CHG.
Let A = )‘51'71' i.e., A(t) is the maximum battery level when vertex
v;_q is ready at time t. If v; is customer, then each arrival time is
a ready time, thus A,‘,’i t) = TRVJ}-,M (t). Recall that )»,’3’1, is a contin-
uous and piecewise linear function defined on a closed interval, as
it is required by the induction. If v; is a recharging station, then v;
can be departed from only after the battery is recharged. Thus, we
have to consider the time required to travel from v;_; to v; plus
the time to recharge at v;. Consequently, k,’,’i (t) = CHG,‘,‘i (t) where
/ is the function such that u(t) = TRV&-,W,- (t). Once again, Aﬂl_ (t)
is a continuous and piecewise linear function defined on a closed
interval.

The functions )L{,’i are used to encode the battery level within
our labeling algorithm, as discussed in Section 4.4. We fur-
ther provide a numerical example illustrating these definitions in
Appendix B.

3. A general framework for time-dependent times

We next describe how to naturally integrate to the TDEVRPTW
further time-related management aspects, previously studied in
the literature in an isolated fashion, without changing the struc-
ture of the problem. Indeed, all these additional features can be
directly encoded as a TDEVRPTW instance as described in the pre-
vious section.

3.1. Handling service times

Similar to time-independent problems, the service time s; of a
customer i € V; can be directly encoded into the travel time and
battery discharge functions to simplify the model and definitions.
The following equations describe how to transform an instance Z
of the TDEVRPTW into an equivalent instance Z where the service
times can be assumed to be zero. Let 7;; and B;; be the travel time
and battery discharge functions for arc (i, j) in Z, and %;; and ,3,-]-
the corresponding functions in Z. Then, for Z set

fij(l') = Si+fij(l'+5,') (8)

Bij(t) = Bt +sp). (9)

and s; = 0 for i e V. This transformation assumes that the final de-
pot sy has no service time (s; = 0). Moreover, note that the travel
time functions still obey the FIFO property. To avoid confusion with
the previous formulae, in the remaining of the document we as-
sume that the service time is already encoded within the func-
tions, but we maintain the original notation of t;; for the travel
times and f;; for the battery discharge.

3.2. Nonlinear charging times
Different approaches have been considered in the related litera-

ture for the battery recharging model. The EVRPTW, in its original
setup, considers that the recharging time is linear to the amount
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of energy to recharge, independently of whether the battery is
empty or, for instance, half-full charged. According to Montoya
et al. (2017), this recharging time is not linear. Moreover, they esti-
mate that recharging the initial 75% of the battery requires a sim-
ilar time than the final 25%. For each station, j € Vs, let §;(t) indi-
cate the energy (in kWh) recharged in t units of time in a vehicle
with an empty battery. They show that considering §;(t) as a con-
tinuous concave piecewise linear function with three pieces results
in a good estimation of the recharge times based on collected data.
Moreover, this function is invertible.

Using these estimations, note that g;(wp,t)=min{B -
wo, & (g‘jT1 (wg) +t) —wp} indicates the charge obtained after
t units of time for an EV with battery level wy. By definition,
gj(wp, t) is continuous and piecewise linear as required previ-
ously.

3.3. Time-dependent waiting times

As suggested by Keskin et al. (2019), the assumption that a ve-
hicle can perform a recharge upon arrival to a charging station can
sometimes lead to unrealistic solutions. This observation is rele-
vant in the context of mid-haul and city logistics, as congestion is
likely to occur at the recharging stations due to increased demand
during peak hours. To capture this behavior, they introduce a time-
dependent waiting time function ws(t) for each station s € V; indi-
cating the expected waiting time until a terminal is available if a
vehicle arrives at station s at time t. These functions are continu-
ous, piecewise linear, and satisfy the FIFO property.

Time-dependent travel times naturally incorporate these wait-
ing times following a similar procedure to the one described for
service times. For the sake of simplicity, assume w;(t) = 0 for all
t €[0,T] when ieV\V;. Similarly to Section 3.1, given a vertex
j eV, then the travel time function for arc (i, j) € A is redefined
as
fl‘j(t) = 'C,‘j(t)-i-a)j(t-i-fij(t)). (10)
Observe that this transformation assumes there is no distinction
between travel and waiting times regarding the objective func-
tion. Otherwise, the waiting time functions may require to be han-
dled explicitly. Again, to avoid confusion, we assume that the time-
dependent waiting times are directly encoded in function T;;.

A key property behind the time-dependent travel time model
lies in the FIFO condition. The following proposition states that
the property holds after applying this transformation. The proof is
omitted as it is the direct consequence of adding and composing
continuous piecewise linear functions that satisfy the FIFO condi-
tion.

Proposition 2. The FIFO property holds for the travel time functions
after applying (10).

However, a negative result is that the breakpoints defining t;;
and B;; may not remain the same after applying this preprocessing,
as stated in Section 2.2.

We provide a numerical example to illustrate this transforma-
tion in Fig. 2. Let j € Vs be a station having waiting time function
wj (Fig. 2(a)). Consider an arc (i, j) € A, and let 7;; be its travel
time function (Fig. 2(b)). The preprocessed function t;; is depicted
in Fig. 2(c).

Finally, we remark that a similar analysis can be developed to
model time-dependent service times via continuous piecewise lin-
ear functions. Although we do not consider explicitly this scenario,
they can be incorporated in a similar fashion to our framework.
This may become relevant in practice, for instance, to model vari-
able unloading times due to difficulties in finding parking spots
during peak hours or similar use cases arising frequently in logis-
tics.
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3.4. Further infrastructure characteristics

Finally, note that some EVs admit multiple charging modes,
such as different charging speeds or technologies for a given range
of battery capacity. This can be modeled by defining a specific
charging function for each case. Briefly, each station is associ-
ated with a specific charging mode, which indicates the avail-
able recharging function. For recharging stations having multiple
modes, we can simply replicate the station. A fixed cost for each
mode can be further incorporated into the inbound arcs to each
station as well.

4. Exact algorithm

This section describes the main components of the exact BCP
algorithm. We explain how to adapt the framework to toggle the
different recharging policies and include a discussion regarding
alternative objective functions. We highlight that our algorithm
extends and generalizes the one proposed by Desaulniers et al.
(2016) and constitutes a unifying framework for several interest-
ing problems related to planning with EVs.

4.1. Preprocessing

4.1.1. Reducing arcs and time windows

Two interrelated steps are applied that search for infeasible
arcs and shrink time windows, respectively. These steps are re-
peated while there are changes in the instance structure. For this
procedure, we follow the ideas of Lera-Romero & Miranda-Bront
(2019) that extend the classical rules proposed by Desrosiers et al.
(1995). Briefly, an arc (i, j) € A is removed if is either capacity in-
feasible, i.e. q;+q; > Q, or time infeasible, i.e. a; + 7;;(a;) > bj. In
addition, we consider as input for the TDEVRPTW the preprocessed
TDVRPTW instances, with the time windows already adjusted ac-
cording to the time-dependent travel times. We omit the details
for the sake of brevity but refer to Desrosiers et al. (1995) for a
detailed description.

4.1.2. Minimum battery required

We next introduce a preprocessing rule specifically designed
for the TDEVRPTW. For each vertex i<V we can compute a
lower bound MBR(i) of the minimum battery required to reach
any recharge station (or eventually the depot) from vertex i with-
out depleting the battery. Let éij =min{B;;(t) | t e dom(B;;)} be a
lower bound on the energy consumption for arc (i, j) € A. Then,
for ieV, a lower bound MBR(i) can be computed via a stan-
dard shortest-path algorithm using B;; as arc weights. Note that
MBR(i) = 0 for i € V \ V.. In addition, arcs (i, j) € A satisfying B —
éij < MBR(j) indicate that the battery level when reaching j can-
not be enough to either reach another station or the depot, and
therefore can be safely discarded. These bounds are used further
to enhance the feasibility rules of the labeling algorithm to reduce
the size of the enumeration tree, as described in Section 4.4.

4.2. Set-partitioning formulation

BCP algorithms and extended formulations based on the set-
partitioning model stand as one of the most effective approaches
to tackle different variants of the VRP. Let Q2 be the set of all the
feasible routes for the TDEVRPTW. For each route r € 2, ¢, repre-
sents its cost and the constant g;. indicates if route r visits cus-
tomer i € V. Let y, be a binary variable indicating whether a route
r e Q is selected in the optimal solution. The set-partitioning for-
mulation for the TDEVRPTW is defined as follows.

min Z Cryr

reQ2

(11)
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Fig. 2. Example for the preprocessed time-dependent waiting times including waiting time function w;(t) of j € Vs (Fig. 2(a)); 7;(t) of arc (i, j) € A (Fig. 2(b)); 7;;(t) of arc

(i, j) after (10) (Fig. 2(c)).

sty apyr=1ieV (12)
reQ
yre{0,1},re Q. (13)

The objective function (11) minimizes the total costs of the solu-
tion, whereas restrictions (12) enforce that each customer is visited
exactly once and (13) impose the domain of the variables.

Since 2 is exponential, the classical approach is to solve the LP
relaxation at each node by using column generation. A restricted
master problem (RMP) is initialized with a subset of the routes
Q' c Q. For the TDEVRPTW, the initialization of the RMP is slightly
more complicated compared to other variants as the traditional
strategy selecting the routes r = {o,i,d} to define ' may be in-
feasible due to the battery consumption. To overcome this issue,
we initially include in Q' an artificial (infeasible) route r that vis-
its all customers with cost ¢; = n x max jjea Cjj to guarantee the
feasibility of the LP relaxation of the RMP.

After the initialization step, new columns are added iteratively
until the algorithm converges to the optimal (fractional) solution.
At each iteration, the LP relaxation of the RMP is computed to
obtain the dual variables m; associated with constraints (12) for
i € Vc. Using this information, if a feasible route r with negative re-
duced cost ¢; = ¢ — Y, 7; exists, then it is added to the RMP and
the procedure is repeated. Otherwise, the current fractional solu-
tion is optimal. For the TDEVRPTW, the pricing problem becomes
a Time-dependent Electric Elementary Shortest Path Problem with
Resource Constraints (TDEESPPRC). The most effective exact ap-
proaches to tackle similar problems rely on dynamic programming
and labeling algorithms (Desaulniers et al., 2016). Heuristics are
in general used to speedup the performance of the pricing step,
and exact algorithms are executed when no negative reduced cost
routes are found to guarantee optimality (see Section 4.4.4).

4.3. Branching scheme

In this section, we review the standard ideas considered for
the EVRPTW and propose a tailored branching rule to manage the
intermediate stops at the recharging stations. Classical BCP algo-
rithms consider branching on the so-called arc variables. Given an
optimal solution y* of the LP relaxation for (11)-(13), define for
each arc (i, j) € A a binary variable X =D re.(ijer Vr- When no
intermediate stops between customers are possible, such as in the
VRP, it can be easily shown that y* is fractional iff x* is fractional
as well. Based on this result, a robust branching rule can be imple-
mented (see, e.g. Costa et al.,, 2019). We refer to this rule as the
Arc Branching Rule (ABR).

Formulation (11)-(13) encodes the feasibility of a route, includ-
ing the visits to the recharging stations, as part of the definition of
2. Note that constraints (12) are enforced only for customer ver-
tices i € V;, and indeed 2 can be restricted to consider at most one
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minimum-cost route for each set of customer vertices S < V, since
all other routes visiting the same customers become dominated.
From now on, we assume §2 satisfies this property as it can be
easily implemented and is a key hypothesis for our branching.
Based on this observation, we propose an alternative branching
rule exploiting the sequence of customers visited by a route, which
we name Customer Branching Rule (CBR). Let r= (0 =vq,..., v, =
d) € Q be a feasible route. We define the customer sequence of r,
CR(r), as the sequence of customer vertices in r, removing those
vertices v; € Vs. Given i, j € Ve and r € €, let b;j, be a constant indi-
cating whether j is visited immediately after i in CR(r). Intuitively,
bjj = 1 if there are no customers between i and j in route r. Let
further define binary variables z;; indicating if vertex j is visited
immediately after i in any route r €  disregarding recharge sta-
tions, that can be retrieved from the primal solution y as follows

zij =Y bijryr.

reQ

(14)

Given a fractional variable z;; we create two descending branches,
one for z;; = 0 and the other one for z;; = 1. The following proposi-
tion proves that CBR is a valid branching rule (see Appendix C for
a proof).

Proposition 3. Let (y,z) be a solution of formulation (11)-(13) ex-
tended with variables z from (14). Then, y is a feasible solution for
the TDEVRPTW if and only if Z;; € {0, 1} for all i, j € V..

Simultaneously with our work, Bessi et al. (2022) briefly discuss
the use of the CBR. We further provide specific details on our im-
plementation of the CBR into our framework. Conceptually, the CBR
can be handled in a similar fashion as the ABR. Constraint z;; = 1
can be replaced by the union of constraints z;, = 0 for k € V¢ \ {j},
and z; = 0 for k € V¢ \ {i}. This is particularly helpful when adapt-
ing the pricing problem to handle this branching strategy as ex-
plained in Section 4.4.2. Finally, Fig. 3(b) depicts the variables z;;
associated to the solution presented for Fig. 3(a).

4.3.1. Other branching alternatives

Generally, the ABR is combined with some additional rules to
further reduce the enumeration tree. For the EVRPTW, Desaulniers
et al. (2016) propose a four-level branching strategy. Firstly, they
branch on the number of vehicles ", . yr. Then, branching is per-
formed on the total number of recharges )", q oryr, Where p; indi-
cates the number of recharges performed in the traversal of route
r. The next decision is based on the number of recharges at a given
station )_..q 0rjyr, Where p,; indicates the number of recharges of
route r at station j € V. Finally, ABR is considered by variables x;;
if none of the above are fractional. We remark that these rules can
be combined with the CBR as well.
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Fig. 3. Example for arc variables x;; (ABR, 3a) and customer variables (CBR, 3b). The instance has depots 0 and 9, recharging stations {1, 2, 3} and customers {4, ...,
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8} where

a feasible fractional solution composed of four routes r; = (0,5,3,6,1,7,8,9), 1, =(0,5,3,2,4,2,9), 13 =(0,3,6,1,2,4,2,9), 14 = (0,2,4,2,1,7,8,9), with variable values
y1=1% and y, =y3 =y4 = § is shown. In the ABR, all arcs incident to a customer have integer values yet the solution is fractional.

4.4. The pricing problem

This section describes the labeling algorithm developed to
tackle the pricing problem for Section 4.2 and the variants from
Section 3. We also provide a brief discussion regarding the impact
of considering alternative objective functions.

4.4.1. The labeling algorithm

We develop a forward labeling algorithm that explores all fea-
sible paths. These algorithms generate implicitly an enumeration
tree where each node is called a label and represents a partial path
starting from the initial depot o. Aiming to overcome the expo-
nential growth, pruning rules are in general incorporated to reduce
the number of labels enumerated. In a time-independent context,
each label is usually either discarded or processed. However, time-
dependent problems require further consideration since labels en-
code some of their resource values as functions over a given do-
main. Thus, partial pruning rules eventually discard some specific
intervals in the domain (see, e.g. Lera-Romero et al., 2020b).

Next, we present the forward labeling algorithm for the
TDEVRPTW with a partial-recharge policy and unlimited
recharges. Each path p=(o,...,v) is represented by a label
L= (prev,v,S, q,c, \D) where prev is a pointer to the parent label,
v is the last vertex, S is a set of unreachable customers, q is the
total demand, c is the cost, and A} is the maximum battery level
function defined in Section 2.4, i.e., AP(t) is the maximum battery
level at the ready time t after traversing p. For simplicity, let
prev(L), v(L), S(L), q(L), c(L), and A; denote the components prev,
v, S, g, ¢, and A}, of label L, respectively. In addition, let p(L) be
the path represented by L and let dom(L) = dom(X;) = [a(L), b(L)]
denote the feasible ready times at v(L) after traversing p, with
a(L) = min(dom(L)) being the earliest arrival time to vertex v(L).
When p(L) is a route we call L a route label.

Let ¢j; = ¢;j —r; be the adjusted arc costs including the dual
variables from the RMP. Since vehicles depart from the depot
with a full battery, the initial label is represented by tuple
(L,0,{0},0,0,0, Ao), where A,(t) =B for t € [ay, by]. The following
rule indicates how to extend a label during the enumeration pro-
cess.

Rule 1 (Extension). Given a label L, the extension through an arc
(v(L),w) results in a new label L, where prev(Ly) =L, v(Ly) =
w, S(Lw) =S u{w}, qlw) =q(L) +qw, c(Lw) =c(L) + Cuw, and
function A, is computed from A; as discussed in Section 2.4, i.e.

MO =TRV, ), © ifweV,
") () = CHGL (1), with u(t) = TRVE, () if we Vs,

Note that L, is feasible when w ¢ S(L), q(Lw) <Q and a(lL) +
Tw(a(l)) < bw.

Battery requirements enable to the introduction of additional
tailored feasibility rules. Recall from Section 4.1.2 that given a ver-
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tex v eV, MBR(v) indicates the minimum battery required to de-
part from a vertex v and reach a station or, alternatively, the end
depot without depleting the battery. The following rule exploits
this information to discard some intervals from dom(L).

Rule 2 (Feasibility). Given a label L, any time t € dom(L) such that
AL(t) < MBR(v(L)) can be safely discarded from A;. If dom(A;) =@
then p(L) is infeasible and L can be discarded.

Since function A; is non-decreasing by definition, any interval
discarded from dom(A;) must be a prefix. This fact can reduce the
time required to compute this rule for many labels.

Another action to reduce the number of labels enumerated re-
lies in applying dominance rules. Briefly, given two labels L, M, if
every feasible extension p’ of p(L) is also a feasible extension of
p(M) but p(M) + p’ always has a lower cost, then L can be dis-
carded. In practice, to reduce the computational burden, sufficient
conditions are tested to ensure that a label can be discarded. In
a time-dependent context, partial dominance enables to discard
some specific dominated time instants from the domain dom(L),
even if the label is not entirely dominated. As a result, the domain
of a label may become a collection of intervals instead of a sin-
gle one. However, this can be mitigated by assuming the vehicle
simply waits without consuming battery in this dominated inter-
val, which is modeled by considering a constant function extend-
ing the function from the previous non-dominated piece (we refer
to Lera-Romero et al., 2020b for details). To avoid introducing fur-
ther definitions, we abuse notation and assume the battery level
functions A; and Ay, as well as their corresponding domains, are
adjusted in this fashion in the following rule.

Rule 3 (Partial dominance). Let L and M be two labels satisfying
(i) v(@) =v(M), (ii) (M) < q(L), (iii) c(M) < c(L), and (iv) S(M)
S(L). Then, any time t € dom(A;) Ndom(Ay;) such that (v) Ap(t) <
Aum(t) can be discarded from dom(L). If dom(A;) = @ then we say
L is fully dominated and can be safely discarded.

From an implementation standpoint, to accelerate the domi-
nance tests we consider the classical bucket structure where a dy-
namic programming table stores labels indexed by their resources
v, q. Within each bucket, labels are sorted by cost. Observe that
dominance tests include a comparison of the battery level func-
tions between two labels, which requires linear time with respect
to the total number of pieces in both functions. For the sake of
brevity, we skip the implementation details. Fig. 4 shows an ex-
ample of the partial dominance algorithm when label L is being
verified for dominance against label M, where the dashed line rep-
resents the constant extension over a dominated interval in the do-
main of label M. Fig. 4(b) shows the remaining pieces from L after
the dominance.

4.4.2. Incorporating CBR to the pricing algorithm
The CBR branching rule imposed over variables z;; can be man-
aged within the pricing algorithm in a similar fashion as the
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Fig. 4. Example of the partial dominance applied to L (black) and M (red) (4a) and the remaining pieces (4b). (For interpretation of the references to color in this figure leg-

end, the reader is referred to the web version of this article.)

branching over the classical arc variables x;; by preventing such
routes from being generated instead of adding explicitly the con-
straints z;; = 0.

At each node of the branch and bound tree, define F = {j e
Veu{d} | zjj =0} as the set of forbidden successors for each cus-
tomer ieV.U{o,d} (and let FE =¢ for each ie V). Intuitively, F
encodes the set of successors of i that cannot be visited due to
branching decisions taken earlier in the tree. We include in the
representation of a label L an additional resource u indicating the
last vertex from V. U {o, d} visited in p(L), i.e. either a customer or
the depot. The extension of L through an arc (v(L), w) € A must ad-
ditionally verify that w ¢ F, ;). Consequently, Rule 3 must be modi-
fied accordingly to remain valid, where F, ) C F,) must also hold
in order to conclude that label M dominates label L at time t. This
new condition ensures that every feasible extension of L does not
involve w € F,(yy as the next vertex, and therefore is also a feasible
extension of M. We further strengthen this condition by consider-
ing the set of already visited customers S(L) as follows

Fymy € Fuy US(L). (15)

Incorporating condition (15) to Rule 3 affects the efficiency of
the labeling algorithm. Similarly to the ABR for VRPs without inter-
mediate stops between customers, label extensions are discarded
because they may become infeasible. On the contrary, dominance
rules become weaker due to the introduction of a new condition.
Clearly, this implies that more labels are enumerated, although we
remark that the effect of condition (15) is limited to only those
labels L that end in a recharging station, otherwise v(L) = v(M) =
u(L) = u(M) and the inclusion is trivially satisfied.

4.4.3. Alternative recharge policies

So far, the battery consumption model and the labeling algo-
rithm have been presented under a partial-recharge policy. For-
tunately, adapting the model to consider a full-recharge policy is
straightforward. Fig. B.1(e) illustrates the battery level function af-
ter applying the charging step. Observe that there is a prefix of the
domain P = [min(dom(2})).t;] € dom(A}) where AP(f) <B=10
for all t € P. Under a full-recharge policy, it is infeasible to depart
from a recharge station j € Vs with that battery level.

Formally, let p be a path ending at a station j € V;, and let )Li.’
be its battery level function at vertex j. Then, all time instants ¢t €
dom(kj.’) such that Af(t) < B must be discarded. Observe that a
full-recharge policy can be enforced by setting MBR(j) = B for all
recharging stations j € Vi since Rule 2 removes any time from the
domain under this value.

Another variant introduced by Desaulniers et al. (2016) is the
possibility to restrict the number of en-route recharges. Given a
maximum number of recharges per route Rmax, extend the def-
inition of a label L of to consider a new resource r(L) indicat-
ing the number of recharges performed, and forbid an extension
to a recharging station if r(L) > Rmax. Additionally, the dominance

988

Rule 3 must be modified by including condition r(M) < r(L), which
enforces that all extensions of L are also feasible for M.

4.4.4. Pricing heuristics

The execution of the column generation is usually accelerated
by resorting to heuristics in order to identify columns with a neg-
ative reduced cost, while the exact labeling algorithm is executed
if no such column is identified. One type of heuristic adaptation
frequently used for labeling algorithms is to reduce the size of the
graph. At the beginning of each pricing iteration, the graph is re-
duced to consider only the k outbound arcs (i, j) € A from each
vertex i € V with the smallest reduced cost ¢;;. We refer to this ap-
proach as the k-shrink heuristic.

We further consider relaxing the dominance Rule 3 within the
pricing algorithm, maintaining the feasibility of the solutions but
eventually discarding routes with a negative reduced cost due to a
weaker dominance criterion. We refer to the heuristic where con-
dition (iv) is relaxed from Rule 3 as relax-S, while the heuristic re-
laxing condition (v) (i.e., the battery level) is referred to as relax-B.

4.4.5. Alternative objective functions

Although the TDEVRPTW minimizes the total cost of the routes,
we include a brief discussion regarding the feasibility and the im-
pact of considering further alternative objective functions. In some
time-dependent problems, such as the TDTSP (see, e.g. Cordeau
et al, 2014), the objective is to minimize the makespan of the
route for a vehicle that departs at the beginning of the planning
horizon, i.e., at time ty = 0. Our approach can be easily adapted to
consider such an objective function. In this case, the reduced cost
of a label L at time t € dom(L) is defined as t — 37, 77;, Where 7
are the values of the dual variables. Within the pricing algorithm,
setting the cost ¢;; =0 for all arcs (i, j) € A redefines c(L) as the
sum of the dual prices of path p(L) for a label L. Note that the ob-
jective function does not affect the extension rules, which remain
unchanged. However, dominance rules depend on the reduced cost
of the route. For a label L, when reaching v(L) at some time t the
reduced cost is t — c(L), and thus condition (iii) from Rule 3 effec-
tively compares the reduced cost of two labels L and M at some
fixed time t. Note that even when partial dominance can discard
some specific intervals, the optimal route preserves its makespan
in the domain.

A more complex objective function is considered for the TD-
VRPTW (see, e.g. Dabia et al., 2013; Lera-Romero et al., 2020b)
where vehicles are allowed to delay their departure from the de-
pot in order to minimize the duration of the route. Unfortunately,
handling this objective function within the BCP algorithm proposed
for the TDEVRPTW introduces significant complexity compared to
the TDVRPTW. The reason is that a new decision variable is added,
which is the initial departing time is ty. Given a path p, the bat-
tery level depends both on the completion time t and on the ini-
tial departing time ty, and becomes a two-dimensional function
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due to the delays both in the departure from the depot as well
as from the departure from a vertex, as discussed in Section 2.3.
Although the dominance procedure can be adapted, it would be-
come computationally too expensive to store this type of function
within each label and perform the corresponding comparisons in
the dominance step. Similarly, considering energy-dependent costs
for the path during the trip would suffer from the same drawback.
Note, however, that a fixed recharge cost c; can be easily included
for each recharge made at station j € Vs by defining ¢;; := ¢jj +¢;
for (i, j) € A.

4.5. Cutting planes

We incorporate the Subset Row Inequalities (SRCs) proposed by
Jepsen et al. (2008) as cutting planes to tighten the LP relaxation,
aiming to reduce the size of the branching tree. These valid in-
equalities have become a standard within VRP exact algorithms
based on the set-partitioning formulation (see, e.g. Costa et al.,
2019) and have also been used for the EVRPTW by Desaulniers
et al. (2016). Formally, an SRC s = (S, k) is defined by a set of cus-
tomers S C V., and a coefficient k ¢ N. Given a route r e  and

s= (S k), let vg = L@J be the number subsets in S having k ver-
tices that are visited by r. Then, the SRC reads

D s < P?J

reQ2

We consider the 3-SRC, i.e., having |S| = 3 and k = 2. Note that
since the SRCs are non-robust cuts, we refer the reader to Costa
et al. (2019) for the details on how to adapt the pricing problem.
Briefly, our cutting plane algorithm is as follows. After solving the
LP relaxation via column generation, a maximum of ngys violated
inequalities are iteratively added to the formulation following a
maximum violation criterion, reoptimizing the RMP at each step
without solving the pricing problem. Preliminary experiments indi-
cate that this approach tends to reduce the number of cuts added
to the RMP while preserving their impact on the quality of the LP
relaxation.

(16)

5. Computational experiments

In this section, we evaluate the time-dependent model pro-
posed in Section 2 and the BCP algorithm developed in
Section 4 for the TDEVRPTW. For this purpose, we introduce a set
of time-dependent benchmark instances, generated as an extension
of the ones proposed by Desaulniers et al. (2016), as described in
Section 5.1. The experiments are designed to obtain managerial in-
sights regarding the importance of incorporating time-dependent
travel times and, in addition, provide strong evidence about the
effectiveness of our approach through extensive experiments with
and without variable travel speeds. The experiments are conducted
on an Intel(R) Core(TM) i7-8700 CPU @ 3.20 gigahertz with 32 gi-
gabyte of RAM, and the algorithms are coded in C++ and use CPLEX
12.9 as an LP solver.

5.1. Experimental setup

In order to evaluate the different components of the model,
we extend the instances proposed in Desaulniers et al. (2016) for
the EVRPTW by incorporating time-dependent travel speeds, non-
linear recharging times, and time-dependent waiting times as fol-
lows.

Regarding time-dependent travel speeds, we we follow
the strategy proposed by Dabia et al. (2013). The planning
horizon [0,T =b,] is partitioned into five travel speed zones
T; =[0,0.2T], T, = [0.2T, 0.4T], T; = [0.4T, 0.6T], T, = [0.6T, 0.8T],
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Ts = [0.8T, 1.0T]. Each arc (i, j) € A is randomly assigned to one
of three speed profiles representing different traffic congestion
levels: high, normal, and low. Fig. 5(a) shows the speed function
vp assigned to each speed profile. To enable meaningful qualitative
comparisons, each speed function v, has an average speed of 1.0
over the planning horizon, which is the travel speed considered
in the time-independent instances. The parameter r required to
define the instantaneous consumption function P(v) is obtained
from the original instances.

All instances are enhanced with piecewise linear recharging
functions following the pattern proposed by Montoya et al. (2017).
Recall that the original EVRPTW instances from Desaulniers et al.
(2016) assume the charging of the battery is proportional to the
amount of energy to be recharged, i.e. the full charge of the bat-
tery with capacity B takes tg units of time, recharging B/t kWh per
unit. We define the piecewise linear recharging functions where a
full recharge of a battery with capacity B also requires tg units of
time as well, although the recharge per unit of time is not uniform
along the interval (Fig. 5(b)). In addition, each station belongs to
one of the following modes: fast, medium, and slow. The medium
mode is defined according to B and tg, while the slow and fast
modes are a scaled version of the medium mode, 2tg, and 0.5¢g,
respectively.

Regarding the time-dependent waiting times at stations, Keskin
et al. (2019) consider multiple scenarios that capture different real-
life situations. As our objective is more general than evaluating
only the waiting times, the instances are extended according to
the TD-Smooth-Long pattern, as it represents an intermediate sce-
nario where stations are neither too congested nor empty. Fig. 5(c)
shows the function considered, which is scaled for each instance
according to the planning horizon.

Note that the benchmark instances proposed by Desaulniers
et al. (2016) can be retrieved by setting all the speed profiles to
Vp(t) =1, defining the recharging functions with a unique piece
requiring the same total time as the medium charger to charge the
battery completely, removing the waiting times by setting ws(t) =
0 for every station s € V;. For the experiments, we define the fol-
lowing configurations for the instances:

« Basic: instances from Desaulniers et al. (2016) extended with
time-dependent information.

o NC: Basic extended with non-linear charging functions.

WT: Basic extended with time-dependent waiting time func-

tions.

e All: Basic extended with non-linear charging and time-
dependent waiting time functions.

To evaluate the impact of the time-dependent travel speeds,
we further consider the time-independent versions of the above
benchmarks as indicated previously.

The configurations of our BCP algorithm relies on several pa-
rameters, some of them dependent on the type of instances con-
sidered. Regarding the heuristic pricing, we execute the relax-
S, relax-B, and k-shrink described in Section 4.4.4 with different
combinations of parameters. Based on limited preliminary experi-
ments, the configuration is as follows: relax-S first combined with
k-shrink for k = 3,7 and 12; relax-B; relax-S; and finally 7-shrink.
Once a configuration fails, is not attempted again in future itera-
tions, if any. If all heuristics fail to find a column with a negative
reduced cost, then the exact algorithm is executed. As for the cut-
ting planes, we set nmax = 200.

The recharge policy considered also impacts the configuration
of the BCP algorithm, in particular, whether single (S) or multiple
(M) recharges are allowed, and if they are restricted to be full (F)
or partial (P). Under SF and MF recharge policies, we set MBR(j) =
B for all j € V. For SF and SP, we set Rpax = 1 to limit the number
of recharges en route to 1.
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Fig. 5. Description of the dataset, including the speed function v,(t) for each profile p high (blue), normal (red), low (black) (Fig. 5(a)); a generic recharging function g from
Montoya et al. (2017) (Fig. 5(b)); and waiting time function w(t) from Keskin et al. (2019) (Fig. 5(c)). (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Table 2

Comparison of the quality of optimal solutions: time-independent vs time-dependent.

Dataset Al common Time independent Time dependent
cost makespan #rech #routes cost (%) makespan (%) #rech (%) #routes (%)
25 56 458.50 2879.88 1.09 4.11 -0.20 —-0.05 6.82 -3.04
Basic 50 43 702.85 4441.24 0.97 6.63 0.33 0.02 24.57 -0.70
100 14 1251.98 5449.47 1.28 12.93 0.38 2.16 4,53 2.21
25 56 457.03 2846.69 1.10 4.02 0.01 0.72 11.92 -2.22
NC 50 45 699.23 4256.58 1.08 6.51 0.55 0.84 14.13 0.00
100 14 1188.15 6643.29 1.21 12.14 0.61 0.50 4.07 2.94
25 56 462.79 2948.02 0.93 4.21 0.06 -0.01 531 —-0.85
WT 50 43 723.78 4582.24 0.89 6.88 0.46 0.91 9.68 2.36
100 13 1224.89 7364.81 0.90 13.54 0.65 0.89 7.74 —-0.57
25 56 461.17 2906.51 0.94 4.11 0.15 0.09 523 -0.87
ALL 50 44 717.97 4480.35 0.88 6.91 0.69 0.58 13.98 -0.99
100 12 1238.16 6825.26 0.90 13.17 0.48 1.75 11.35 3.16

5.2. Impact of the TDEVRPTW

The time-dependent model presented in Section 2 includes
more information and, therefore, is expected to produce better-
quality solutions. In this section, we evaluate and compare the so-
lutions produced when considering time dependency to their time-
independent counterparts.

To evaluate the time-dependent model, we initially conduct ex-
periments over the four datasets described in the previous sec-
tion with and without time-dependent travel speeds. For the ex-
periments, we consider the policy MP, with multiple stops and par-
tial recharge, as it stands as the more complex and rich scenario.
We evaluate the quality of the solution in each case over four met-
rics: total cost; the sum of the makespan of the routes; the average
number of recharges per route (#rech); and the number of routes
(#routes). Table 2 reports the results, disaggregated by dataset and
averaged over each instance size only over the instances that are
solved to optimality in both cases. Column |V¢| indicates the num-
ber of customers, column common shows the number of instances
solved to optimality in both contexts. For the time-independent
case, averages for each metric are reported in absolute terms and
used as a baseline. Let z; and z;; be the value of a given metric
for the time-independent and for the time-dependent case, respec-
tively. For the time-dependent setup, the values are reported as the
relative difference with respect to the time-independent scenario,
Le. (2 — 2¢4) /21

The main message of Table 2 is that incorporating the conges-
tion at the planning level induces differences between the optimal
solutions with respect to all metrics. For instance, the number of
recharges per route increases by more than a 10% on average and
up to 24% for the time-dependent case, suggesting that simplifying
travel speeds by averaging them impacts directly on the battery
discharge model. Notice, however, that including time-dependency
does not necessarily lead to higher cost solutions, as is the case
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of the 25 customer instances for the dataset NC. In fact, consider-
ing the congestion explicitly lead to faster routes in several cases,
still remaining feasible. We further highlight the differences in the
number of routes, that may become meaningful from a managerial
perspective.

By construction, the time-independent instances can be inter-
preted as the result of averaging the travel speeds from the time-
dependent ones. To highlight the congestion effects, we propose
a follow-up analysis by evaluating the solutions obtained for the
time-independent instances under the time-dependent context. In
this sense, we assume that the time-dependent instances represent
a better approximation of the real-world operations, and the infea-
siblities detected are the result of neglecting the time-dependency
and its effects. We focus on two different sources of infeasibilities.
We say a route r is time-infeasible if it is infeasible even when set-
ting the battery capacity is not restrictive, i.e. B = oo. Intuitively, a
time-infeasible route is infeasible either due to the violation of a
time window or because its makespan exceeds the planning hori-
zon. Similarly, we say a route r is battery-infeasible if all the dead-
lines of the time windows are removed, i.e. by setting b; = T for all
ieV, and r is still infeasible due to insufficient battery. These in-
feasibilities can be further measured and quantified. We define the
time-violation as the worst violation of a customer’s time window
divided by the horizon size T, and the battery-violation as the extra
energy required to make the route feasible divided by the battery
capacity B. Finally, we count the solution as infeasible if at least
one of its routes is infeasible.

Table 3 reports the results of the infeasibility tests, aggregated
by n, for each dataset. Column #inst indicates the number of in-
stances solved to optimality in the time-independent context. The
rest of the columns indicate the results of the metrics described
above. Column #inf-s stands for the number of infeasible solutions,
and columns %inf, %inf-t, and %inf-b represent the number of in-
feasible, time-infeasible and battery-infeasible routes, respectively,



G. Lera-Romero, JJ. Miranda Bront and FJ. Soulignac

Table 3
Feasibility analysis of the time-independent solutions evaluated in a time-
dependent context.

Dataset  |V.|  #inst #inf-s  %inf %inf-t  %inf-b  %A-t  %A-b
25 56 47 50.22 3049 23.32 1.47 0.76
Basic 50 48 41 60.07 40.28 26.15 1.61 0.54
100 17 17 82.16 5892 34.05 3.61 0.88
25 56 47 5045 33.64 23.64 1.49 0.61
NC 50 48 42 5734 3720 2594 176  0.60
100 16 16 7429 4857  32.00 3.71 0.76
25 56 46 5043  28.21 25.21 1.57 0.67
WT 50 48 42 62.05 3993 28.38 1.68 0.49
100 18 18 8743 5486 41.14 3.60 1.12
25 56 48 5044 27.19 25.88 1.54 0.61
ALL 50 48 42 57.14 36.88 27.57 1.66 0.57
100 15 15 7423 4724 36.81 3.46 1.05

over the total number of routes. ¥A-t and %A-b indicate the aver-
age violation of the time and battery-infeasible routes, respectively.

From the results, we note that a large number of solutions ob-
tained from the time-independent model become infeasible when
evaluated under the time-dependent model. By inspecting the so-
lutions, we note that on average more than 60% of the routes are
infeasible. Similarly to the classical TDVRP, a considerable percent-
age of these infeasibilities is due to a violation of the time win-
dows originated in the variations in the travel times, between 30
and 55% of the routes according to our results. However, a very
interesting result is that a significant number of infeasibilities are
due to the EV running out of battery while executing the route.
These percentages range between 20 and 40%, depending on the
scenario considered. From a managerial standpoint, these types of
infeasibilities may result in considerably expensive. Finally, we note
that the average violations are rather small in both cases. This may
be related to the parameters considered for the instances. Speed
profiles with higher variability and a different relation between h;
and h, could lead to larger values.

To further understand the practical impact of the model pro-
posed, we extend the above experiments by considering new
datasets incorporating some real-world values, aiming to incorpo-
rate at least partially some characteristics that are present in real-
time networks and vehicle fleets. The datasets Basic, NC, WT, and
ALL from described initially are extended into Basic-R, NC-R, WT-R,
and ALL-R, respectively, as follows:

e We consdier instances with n = 25,50 from the original
dataset.

o The travel time information (planning horizon, travel speed,
time windows, etc.) is scaled to represent more realistic
travel speeds. In these new datasets, the EV travel speed
ranges between 30 and 102 kilometer per hours approxi-
mately, with an average of 60 kilometer per hours. The plan-
ning horizon is expressed in hours (from 4 to 80 hours) and
location distances in km (between 10 and 60 kilometers).

o Some parameters are adjusted following the ones reported
in Schiffer et al. (2021). More specifically, the battery capac-
ity and the driving range obtained when driving at the aver-
age travel speed matches the specification of a Tesla Semi
500. The information regarding clients, locations and dis-
tances is not used since, to the best of our knowledge, it is
not public.

We replicated the original experiment using this new set of in-
stances, focusing on qualitative analysis. Table 4 reports the results
obtained. The key to the table is the same as in Table 2. Comparing
these two tables, we observe that incorporating time-dependency
into the model produces similar outcomes. The differences are con-
sistent across all the metrics reported in relative terms on both
data sets. The scaled dataset shows a smaller number of required
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recharges per route, likely due to the fact that the battery capac-
ity of the Semi 500 is proportionally larger than that of the previ-
ous instances. As a result, fewer recharges per route are required
and the differences across datasets are negligible for n = 25, and
more significant for n = 50. In the former, waiting times and non-
linear charging times have almost no impact as few recharges are
performed and and the routes have few vertices, minimizing the
potential impact. Finally, note that the average makespan reported
for the new instances is significantly smaller because the time is
measured in hours.

Table 5 replicates the qualitative analysis, using the same key
as Table 3, showing some interesting insights. Note that the
time-dependency remains an important factor regarding feasibil-
ity, where a significant number of routes obtained in a time-
independent context become infeasible when evaluated under the
time-dependent model. However, the number of infeasible routes
due to battery depletion is relatively moderate. This is may be
caused by different reasons. As mentioned previously, the battery
capacity is a less restrictive resource in the new set of instances.
Also, the vehicle information considers a mid-haul logistic context,
where the weight may be relevant. In addition, our instances still
assume that the impact of the load can be neglected. Note also
that for larger instances that require more recharges per route, a
similar behavior as that of the non-scaled dataset appears again.

5.3. The CBR branching rule

In this section, we evaluate the CBR within the framework. To
reduce the potential impact of external factors, we conduct the
experiments over the original time-independent instances from
Desaulniers et al. (2016). Moreover, both CBR and ABR are tested
on a pure BP (without the SRCs) in order better appreciate the im-
pact when enumerating more nodes in the branch and bound tree.
An important observation is that the ABR can be implemented by
removing arcs from the support digraph since, for these instances,
no arcs between two recharging stations exist. We consider such a
simplified implementation in this experiment, although we remark
that this may result beneficial for the ABR compared to the general
case, given that no additional constraints must be included in the
RMP and no edges are removed from the underlying graph.

Table D.7 in Appendix D presents the detailed results. The key
takeout is that using CBR in this context is beneficial, as BP-CBR is
able to close 15 more instances than BP-ABR. One of the reasons
is the number of nodes enumerated, where CBR obtains reductions
of about 50% percent on average. This effect is more evident in
larger instances. However, we highlight that the average execution
decreases at a smaller rate. Recall that the pricing problem needs
to be modified within the CBR, and some pricing iterations may
become more expensive in terms of the computation times due to
this overhead, while the ABR is implemented by removing arcs.

5.4. Performance of the BCP

We conduct extensive computational experiments to evaluate
the performance of the BCP algorithm under different contexts and
configurations. The first experiment compares the effectiveness of
the BCP on the four configurations (Basic, NC, WT, and All) for
both time-dependent and time-independent versions, restricted to
the MP recharge policy to maintain the number of experiments
manageable. Again, we select this policy since it stands as the
most challenging scenario. Table 6 reports the number of instances
solved to optimality (opt), the average execution time (time), the
average number of nodes enumerated (nodes), the average num-
ber of cuts added on the root node (cuts), and the average number
of columns added when solving the root node (rCols) and during
the entire execution (tCols). To evaluate the impact of the SRCs,
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Table 4
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Comparison of the quality of optimal solutions: time-independent vs. time-dependent, scaled dataset.

Dataset [Vel common Time independent Time dependent
cost makespan #rech #routes cost (%) makespan (%) #rech (%) #routes (%)
Basic-R 25 56 450.59 46.43 0.35 3.84 -0.07 0.60 17.51 —1.40
50 39 698.60 73.82 0.22 6.38 0.94 1.02 88.24 0.80
NC-R 25 55 450.72 46.65 0.37 3.89 -0.28 0.50 37.22 -2.80
50 37 696.53 75.98 0.25 6.49 0.57 0.82 51.88 1.25
WT-R 25 56 450.59 46.49 0.26 3.89 0.13 0.57 -0.07 -1.38
50 42 690.49 71.54 0.16 6.33 48.48 -0.12 49.00 -1.50
ALL-R 25 56 450.59 46.45 0.10 3.86 0.13 0.74 145.96 —75.46
50 45 683.69 70.08 0.18 6.38 48.65 -0.26 36.87 -73.51
Table 5
Feasibility analysis of the time-independent solutions evaluated in a time-dependent context, scaled dataset.
Dataset A #inst #inf-s %inf %inf-t %inf-b %BA-t %A-b
Basic-R 25 56 31 24.53 24.53 0.00 1.74 -
50 41 25 26.69 26.69 0.40 2.28 0.91
NC-R 25 56 31 25.00 25.00 0.00 1.77 -
50 40 24 25.93 25.93 0.41 2.30 0.94
WT-R 25 56 31 24.19 24.19 0.00 1.72 -
50 43 25 25.57 25.57 0.38 2.18 0.87
ALL-R 25 56 31 24.07 24.07 0.00 1.71 -
50 45 24 23.00 23.00 0.35 2.07 0.79
Table 6
Performance for the BCP for all variants, with and without time-dependency and under a MP recharge policy.
Dataset |V¢| inst Time independent Time dependent
opt time nodes cuts rCols tCols %hg %eg %cg opt time nodes cuts rCols tCols %hg %eg %cg
25 56 56 7.05 104 261 2219.00 222043 0.07 0.50 0.00 56 2513 114 270 2270.75 227455 0.07 043 0.01
Basic 50 56 48 19327 2.88 14.79 11933.58 11999.83 0.05 0.80 0.06 44 197.67 2.00 1523 11284.19 11471.16 0.10 0.79 0.09
100 56 17 77594 11.82 73.05 22141.85 24231.59 0.03 1.96 0.27 17 82230 10.88 65.05 48783.71 58343.88 0.03 2.02 0.34
25 56 56 872 125 229 214925 215834 0.04 046 0.02 56 43.16  1.11 325 2493.89 2498.39 0.03 0.49 0.02
NC 50 56 48 35040 2.83 15.13 13961.58 14149.81 0.09 069 0.06 47 29180 1.51 15.04 1104596 11140.26 0.08 0.72 0.05
100 56 16 536.48 9.63 63.00 52014.05 3447538 0.03 191 0.22 15 44646 7.67 58.74 36713.32 31578.73 0.03 1.64 0.19
25 56 56 564 121 2.80 210636 214141 0.05 0.59 0.02 56 21.84 175 341 2162.05 220452 0.10 0.59 0.05
WT 50 56 48 21954 6.75 16.75 1041823 10703.42 0.07 095 0.10 44 16587 345 1565 952737 9757.80 0.08 090 0.12
100 56 18 907.41 20.00 77.68 45534.16 21655.06 0.02 2.07 043 14 727.61 16.86 61.57 50785.70 18950.93 0.01 2.34 0.70
25 56 56 6.77 121 213 213171 213491 0.09 043 0.01 56 41.76  1.04 254 2303.34 2303.38 0.04 0.48 0.00
ALL 50 56 48 259.72 3.75 17.13 11543.60 11720.15 0.08 0.78 0.06 47 26320 3.21 14.83 1225594 1251798 0.11 0.82 0.08
100 56 15 530.57 14.87 69.04 52582.96 22963.67 0.04 249 0.76 13 489.25 1454 69.76 37435.19 19116.54 0.02 2.34 0.54

we report the average % gap (%eg) of the first LP relaxation and
also at the root node (%cg). In addition, to assess for the effective-
ness of the pricing heuristics, we report the % gap remaining to
be closed when the exact labeling algorithm is invoked in the first
LP relaxation (%hg). More specifically, we measure the difference
between the LP value of the RMP when the exact labeling algo-
rithm is called for the first time and the LP relaxation. Again, these
metrics are reported in an aggregated fashion over each dataset
and |V¢|. The columns time, nodes, and tCols are averaged over the
instances solved to optimality for each metric, while the columns
cuts, rCols, %hg, %eg and %cg are averaged over the instances where
the root node was closed.

Table 6 suggests that incorporating the different variants has
a limited impact on the performance of our algorithm. This is
the expected behavior for our time-dependent framework since
the time-dependent waiting times are directly encoded into the
travel time functions and the non-linear charging functions are
handled in the extension step of the labeling algorithm. We re-
mark, however, that the time-dependent instances appear to be
slightly harder to solve compared to their time-independent coun-
terparts, leaving all other variables fixed. For instance, the number
of columns required to execute the algorithm are in the same or-
der regardless of the variant. The pricing problem becomes harder
to solve in a time-dependent context, which is reasonable consid-
ering that the battery level function within each label has poten-
tially more breakpoints. In fact, we observe that the BCP tends to

992

enumerate fewer nodes in a time-dependent setup compared to
its time-independent counterpart for comparable execution times.
The cutting planes have a positive impact causing a dramatic gap
reduction at the root node. As expected, the total number of cuts
increases for as n increases. We note that the BCP produces re-
markable gaps at the root node, below 1% on average, as a result
of combining elementary routes with SRCs. Finally, the values re-
ported for %hg indicate that the pricing heuristics are essential to
moving forward the column generation -almost to optimality- al-
though the exact algorithm and the cutting planes are still neces-
sary to further reduce the gap.

5.5. Benchmark with other exact algorithms

Exact algorithms based on extended formulations outperform
compact models in almost all contexts, becoming the current
standard within the VRP literature. This pattern is even more
pronounced in the case of TDVRPs, as the LP relaxation of the
compact formulations tends to be weaker due to the presence
of variable travel times. To provide further evidence regarding
the effectiveness of our framework using a high standard base-
line, we establish a direct comparison between our BCP and the
results reported by Desaulniers et al. (2016) over the original
EVRPTW instances with all four recharge policies (SF, SP, MF, MP).
Besides the TDEVRPTW, this is an interesting experiment itself
since the BCP algorithms incorporate different components. Briefly,
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Desaulniers et al. (2016) implements a bidirectional labeling al-
gorithm, ng-route relaxations, and a different cutting plane algo-
rithm. We remark, however, that our framework includes a signifi-
cant overhead to manage piecewise linear functions.

The results are shown in Table D.8 in Appendix D, where the
key is the same as in the previous experiments. In this case, av-
erages are computed over all instances solved to optimality by
the corresponding method. Indeed, we are able to solve to op-
timality 13 and 45 more instances compared to the mono and
bi-directional versions from Desaulniers et al. (2016), respectively.
This indicates that our BCP is competitive, although we remark
that our computer is approximately 20% faster. Besides the compu-
tation times, the remaining metrics suggest that some new com-
ponents of the algorithm have a positive impact. The number
of nodes enumerated remains moderate, particularly for instances
with n =50, 100. The root gaps share the same behavior as they
are smaller than %0.20 on average. We believe this is due to a
combination of factors, namely considering elementary routes that
lead to tighter lower bounds, the CBR branching, and the enhanced
preprocessing rules. We emphasize that improved results for the
EVRPTW are reported in Desaulniers et al. (2020) using an en-
hanced variable fixing method.

6. Conclusions

In this paper, we propose a general model for the TDEVRPTW
that accounts for the effect of congestion on the discharge of the
battery. Moreover, we develop a general framework that unifies
and integrates several realistic characteristics considering some of
the most relevant operational constraints for the EVRP from the
literature, so far addressed independently in the related litera-
ture. From a managerial standpoint, we show that neglecting the
time-dependent travel speeds at the planning level can affect the
quality of the routing plans, potentially incurring in violations of
the time windows and exceeding the driving range. Our experi-
ments suggest that up to 40% of the infeasibilities of the distribu-
tion, plan can be caused by exceeding the battery capacity of the
EVs, and that this effect is more moderate in less stressed scenar-
ios. From an algorithmic perspective, we develop a new BCP al-
gorithm that generalizes existing methods for the EVRPTW, capa-
ble of handling time-dependent waiting times, non-linear charging
functions, time-dependent travel times, and speed-dependent bat-
tery discharge functions. We introduce a new branching rule de-
rived to efficiently manage the intermediate stops between cus-
tomers. Overall, the proposed algorithm shows to be very effec-
tive on a large set of instances from a wide spectrum of scenar-
ios, solving instances with up to 100 customers to optimality and
with a performance comparable to the literature for the (time-
independent) EVRPTW.

As future research, we believe that the evaluation of the model
on real data is one of the most interesting directions. This would

European Journal of Operational Research 312 (2024) 978-995

bring the model and the experiments closer to real-world oper-
ations. In terms of the algorithm, incorporating additional com-
ponents such as variable fixing could increase the size of the in-
stances solved. An interesting and challenging problem aiming to
reduce the gap between the models and their practical implemen-
tation regards devising real-time algorithms capable of adjusting
the routes during their execution to account for possible changes
in the traffic conditions and other deviations from the original
schedule. A promising research line regards the adaptation of the
joint vehicle routing and speed optimization problem studied in
Fukasawa et al. (2018) to consider routing with EVs, eventually
considering a heuristic framework and the single-vehicle to re-
optimize each route independently. Furthermore, integrated mod-
els exploring the impact of both the load and the speed would be
challenging algorithmically but could lead to meaningful manage-
rial insights.
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Appendix A. Proof of Proposition 1

Proof. Suppose f has |[f| pieces fi,...,fj; in the domain
[b(x),b(y)], and let b(x) =up,...,u; =b(y) be its breakpoints.
Since b is continuous and non-decreasing, it follows that there
exist x=tg < ... < tjs =y such that b(t;) =u; for every 1<i<
|fl. By induction on i=0,...,|f| we shall prove that G is
continuous, piecewise linear, and non-decreasing in the domain
[to,t;]. The base case i =0 is trivial. For the inductive step i+ 1,
let z=max{f(t") | t' € [u;, ui1]}. If z<G(t;), then G(t) =G(t;) =
max{f(t') | t’ e [up, u;]} for every t e [t;, t;,1]; clearly G is contin-
uous, piecewise linear, and non-decreasing in [tg, t;.1]. Otherwise,
since f is continuous and f; is linear, it follows that f; is increas-
ing and there exists some u* € [u;, u;q] such that f;(u*) = G(t;) >
f(u;). Note, also, that u* = b(t*) for some t* € [t;, t;;1] because b
is continuous. Therefore, G(t) = G(t;) for every t € [¢;, t*] and, since
b is non-decreasing, G(t) = f;(b(t)) = max{f(t") | t’ € [ug, b(t)]} for
every t € [t*, t;;1]. Since f; is linear, we conclude that G is contin-
uous, piecewise linear, and non-decreasing in [to, t;,.1]. O

Appendix B. Example for the battery level function
Fig. B.1 illustrates the idea of the battery level function and its

different steps. Suppose there is a two-vertex path p = (i, j) trav-
eled by an EV for i, j € V. For simplification purposes suppose there

Bij(t) 7ij(t) g;(t) Ap(t) CHG,(t)
10 10 10 10 4 10 4
9 9 I
8 8t 8t
’ f
4 4 4 4
2 2
i 1 14
T > ¢ S : : > ¢ : st
2 4 6 8 10 1 3 567 10 67 910 3 6 10 3 67 910
(a) (b) (c) (d) (e)

Fig. B1. Example of the battery level function A, (t), including the discharge function B;; (B.6a), travel time 7;; (B.6b), charge function g;(t) (B.6¢), TRV;;, j € V \ V; (B.6d), and

CHG;, j e Vs (B.6e).
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Table D.7
Comparison of the different branching strategies from Section 4.3.
Dataset Vel common CBR ABR
opt time nodes opt time nodes
25 56 56 2.26 5.29 56 2.59 6.39
SF 50 45 51 76.10 38.11 51 89.48 55.80
100 10 12 451.64 221.60 12 477.81 273.60
25 55 56 7.49 5.55 55 9.89 7.76
MF 50 45 49 205.46 25.04 48 176.50 67.84
100 10 12 509.64 89.40 11 740.99 173.20
25 56 56 2.08 4.39 56 2.19 6.96
SP 50 48 53 139.21 42.04 50 180.41 66.50
100 16 17 554.79 45.75 16 661.23 80.75
25 55 56 8.39 522 55 11.62 12.53
MP 50 45 50 247.63 35.80 46 348.45 120.96
100 9 9 399.76 48.11 9 727.74 92.56
Table D.8
Comparison with numerical results from Desaulniers et al. (2016) for the time-independent scenario.
Var. A inst  Desaulniers et al. (2016) BCP
Monodirectional Bidirectional
opt  time nodes  %rg opt  time nodes  %rg opt  time nodes  %rg
25 56 55 13.90 1.25 0.08 56 30.60 1.25 0.08 56 2.23 136 0.03
SF 50 56 46 265.97 774 014 47 250.87 7.47 0.16 47 92.28 274  0.09
100 56 13 575.68  33.92 012 14 61530 36.43 013 19 552.28 18.16  0.23
25 56 55 112.98 1.22 004 56 16.03 1.21 0.04 56 1.78 1.11 0.01
SP 50 56 44 255.35 4.68 0.09 50 297.38 716 012 49 162.39 3.12 0.08
100 56 18 578.65 6.44 0.06 22 62840 1536 008 22 572.31 1264  0.12
25 56 53 93.22 1.19 003 56 93.43 1.21 0.03 56 11.08 1.50 0.02
MF 50 56 44 357.85 27.09 005 46 25894  31.17 0.05 46 138.58 1.74 0.04
100 56 10 599.27 1720 010 13 780.16  77.15 0.14 18 625.86 12.89  0.19
25 56 52 151.33 1.08 0.01 54 23.48 1.11 0.01 56 7.05 1.04 0.00
MP 50 56 37 37472  85.43 012 45 49480 82.78 0.12 48 193.27 2.88 0.06
100 56 15 855.50 540 0.10 18 576.32  13.11 0.11 17 775.94  11.82 0.13

are no time windows (a; = a; =0, b; =bj =T), vertex i = o is the
depot, and the travel time is illustrated in Fig. B.1(b), the battery
capacity is B =10 and the discharge function B;; is as described in
Fig. B.1(a). Finally, let §(t) be the non-linear recharging function as
defined in Fig. B.1(c).

The single vertex path pg = (i) = (0) has a constant battery
level function Ap,(t) = B for all t € [0, T], which represents a full-
charge when departing from the depot. Then, the battery level
function A, results from extending A, over the arc (i, j). In this
case, we have two possible scenarios: (i) j € V \ Vs or (ii) j e V.

In the first scenario, the battery level function A, after travers-
ing arc (i, j) is depicted in Fig. B.1(d). Here, the red segment shows
the times when the battery level was achieved by means of wait-
ing. For example, the battery level if arriving at j exactly at time
t =10 is 4. This occurs since vertex i must be departed from at
time t’ =9, and then the battery consumption must be 6. Ob-
serve however that 1,(10) = 8, since the EV can arrive at j at time
t’ = 6 < 10 with battery level 8 and then wait 4 units of time.

The second scenario shows the battery level function A, when
Jj € Vs is a recharging station. In this case, function CHG; is applied
and the result is illustrated in Fig. B.1(e). The red portion of the
domain includes those times when the battery level was achieved
after performing a recharge.

Appendix C. Proof of Proposition 3

Proof. Clearly, having yr € {0, 1} for r € Q guarantees z; {0, 1} by
definition since each arc (i, j) can be present in at most one route
having y, > 0. Conversely, recall that for each customer set S C V¢
there is at most one route that visits exactly S in 2. Additionally,
constraints (12), (14) and hypothesis that z;; € {0, 1} enforce that
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for each customer k e V¢ there is exactly one active variable Z;
and z;, for some i, j € V. U {o, d}. If two active routes ry, r, € Q such
that y,,yr, > 0 share a customer k € V¢, then the customer vertex
following k in CR(rq) and CR(r,) must be the same (or the pre-
vious vertex is the depot). An analogous argument also holds for
the previous customer vertex. As a result, it is simple to verify that
CR(rq) =CR(ry), and then r{ =r, since there is a unique route in
Q foreachScV.. O

Appendix D. Intances and detailed results

Table D.7 shows the results for the two branching rules, CBR
and ABR. We report the number of instances solved to optimality
(opt), the total execution time (time), and the number of nodes
enumerated (nodes) aggregated by each recharge policy and in-
stance customer count |V¢| and averaged over the instances solved
by both methods (common).

The results of the comparison with the methods developed by
Desaulniers et al. (2016) are shown in Table D.8, where the key
is the same as in the previous experiments. In this case, averages
are computed over all instances solved to optimality by the cor-
responding method. To enable a comparison, the values of %rg for
the algorithms developed Desaulniers et al. (2016) are computed
over all instances based on the results they report.
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