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Abstract

Technological advances in recent years have promoted
the development of virtual reality systems that have a
wide variety of hardware and software characteristics,
providing varying degrees of immersion. Immersion
is an objective property of the virtual reality system
that depends on both its hardware and software
characteristics. Virtual reality systems are currently
attempting to improve immersion as much as possible.
However, there is no metric to measure the level
of immersion of a virtual reality system based on
its characteristics. To date, the influence of these
hardware and software variables on immersion has
only been considered individually or in small groups.
The way these system variables simultaneously affect
immersion has not been analyzed either. In this
paper, we propose immersion metrics for virtual
reality systems based on their hardware and software
variables, as well as the development process that led
to their formulation. From the conducted experiment
and the obtained data, we followed a methodology to
generate immersion models based on the variables of
the system. The immersion metrics presented in this
work offer a useful tool in the area of virtual reality
and immersive technologies, not only to measure
the immersion of any virtual reality system but also
to analyze the relationship and importance of the
variables of these systems.

Keywords: Virtual Reality Immersion Immersion
Metrics

Resumen

Los avances tecnológicos de los últimos años han
impulsado el desarrollo de sistemas de realidad virtual
que cuentan con una gran variedad de caracterı́sticas
de hardware y software, proporcionando diversos
grados de inmersión. La inmersión es una propiedad
objetiva del sistema de realidad virtual que depende
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tanto de las caracterı́sticas de su hardware como de su
software. Actualmente, los sistemas de realidad virtual
están intentando mejorar la inmersión, tanto como
sea posible. Sin embargo, no existe una métrica para
medir el nivel de inmersión de un sistema de realidad
virtual en función de sus caracterı́sticas. Hasta la
fecha, la influencia de las variables de hardware y
software en la inmersión solo se ha considerado de
forma individual o en pequeños grupos. Tampoco
se ha analizado la forma en que estas variables del
sistema afectan simultáneamente a la inmersión. En
este artı́culo proponemos métricas de inmersión para
sistemas de realidad virtual en función de sus variables
de hardware y software, ası́ como del proceso de
desarrollo que condujo a su formulación. A partir del
experimento realizado y los datos obtenidos, seguimos
una metodologı́a para generar modelos de inmersión
basados en las variables del sistema. Las métricas
de inmersión presentadas en este trabajo ofrecen
una herramienta útil en el área de la realidad virtual
y las tecnologı́as inmersivas, no solo para medir la
inmersión de cualquier sistema de realidad virtual sino
también para analizar la relación e importancia de las
variables de estos sistemas.

Palabras Clave: Realidad Virtual, Inmersión y
Métricas de Inmersión.

1 Introduction

Virtual Reality (VR) systems are sophisticated human -
computer interaction interfaces that are used today in a
wide variety of application areas such as education
[1, 2, 3, 4], medicine [5, 6] and training [7, 8, 9,
10], among others. Some of the most popular VR
application areas today include entertainment and
video games [11, 12, 13] and each application has
different objectives, requiring different hardware and
software implementations.

For decades, there has been ongoing discussion
in the literature regarding which variables of a VR
system are related to immersion and the perceived
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level of presence. The influence of these hardware
and software variables on immersion has only been
considered individually or in small groups. To date, the
way in which all these variables simultaneously affect
immersion has not been analyzed. Furthermore, the
influence of all these variables has not been compared
with each other. This motivates the development of
metrics designed to calculate the immersion of a VR
system that incorporate all its variables along with
their respective levels of impact.

The main contribution of this work is the design
and development of immersion metrics that calculate
the level of immersion of a given VR system, based
on its hardware and software characteristics. This can
also be used to compare the immersion of different
commercial or ad hoc VR systems. In addition, these
metrics can be considered an useful design tool to
measure the immersion of prototypes, allowing to
adjust, as much as possible, the values of the variables
involved in the system. To achieve this goal, we
followed the methodology presented in section 3.

2 Background and Related Work

2.1 Presence and Immersion

Immersion is a relevant concept in VR that has
generated a lot of confusion regarding its similarity
to the concept of presence. The feeling of presence
is a subjective measure that depends on the sensation
and personal experience of each user. On the contrary,
according to Slater et al. [14], immersion refers to
an objective characteristic of a virtual environment
that is strongly linked to both hardware and software
components. According to this, the wider the sensory
bandwidth of a system, the more immersive the system
would be. For example, a system that includes 3D
spatial sound should be more immersive than a system
that does not include sound at all.

Immersion and presence are strongly related to
user preference in VR systems due to their profound
impact on the overall user experience [15, 16, 17]. The
level of immersion and presence directly influences
how users engage, perceive, and interact with virtual
environments. Some participants may prefer highly
immersive environments with a strong sense of
presence, as it enhances their sense of realism,
engagement, and emotional connection to the virtual
world. Understanding the user preference regarding
immersion and presence is crucial in designing VR
systems that offer a range of experiences, providing
customization options to accommodate different user
expectations, comfort levels, and desired levels of
engagement.

In this work, we examine the relation between the
variables of the VR system, focusing on the user
preference. To quantify the perceived quality of each
VR system, we use subjective measurements in the
form of user scores. These scores are closely tied to the

notion of presence, representing the user’s subjective
experience and level of engagement. Building upon
these subjective presence scores, we generate objective
immersion metrics to calculate a VR system’s level
of immersion based on its individual variables. It is
essential to note that these final objective immersion
metrics are rooted in the subjective presence scores,
highlighting the connection between user perception
and the quantification of immersion.

2.2 Measuring Immersion

There are many questionnaires and surveys to measure
presence and immersion through causal factors and
different variables. However, only a small number of
them have been validated and are used regularly. In
2004, Baren and Ijsselsteijn [18] presented a complete
list of existing measurement methods, although today
this list is out of date.

One of the most used tools to measure presence in
virtual environments is the questionnaire. Each type
of questionnaire has its advantages and disadvantages.
While questionnaires with many items can provide
a detailed assessment of multiple dimensions of
presence, single-item questionnaires, such as the test
presented by Bouchard et al. [19], allow a rapid
assessment and are less prone to memory impairment
after exposure to the experience. The Bouchard
test has been used successfully in previous works
[20, 21, 22]. In this work, since the user must perform
as many trials as possible to populate a dataset (see
section 4.1), we required a questionnaire that was easy
to understand and quick to complete. For this reason,
in a similar manner as the Bouchard test, we employed
a single-item questionnaire that requires users to rate
their perceived level of presence according to their
preference.

2.3 Variables Contributing to Immersion

The literature presents an extensive work related
to the variables that may contribute to a higher
sense of presence in VR. This relates to the
characteristics of the user and those of the system.
The user characteristics refer to the psychological and
subjective characteristics that influence the degree of
perceived presence, and those of the system refer to the
technical characteristics of the system that influence
the perceived level of immersion.

Previous works present several variables related to
the immersion and the visual features provided by the
system. These include the field-of-view [23, 24], the
screen resolution [23, 25], the stereopsis [23, 25], the
response time or latency [26], brightness, contrast,
saturation, and sharpness [27], the level of detail
of the 3D models [28], the lighting of the virtual
environment [17], and the use of dynamic shadows
[17]. Regarding the variables related to audio, these
include the use of sound vs. not using sound [29, 30],
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Figure 1: Methodology followed in this work to
generate immersion metrics based on the hardware
and software characteristics of the VR system. The
first part deals with the analysis of the variables and
the population of a dataset in a user experiment. The
second part deals with the creation of immersion
models by using techniques of linear regression,
feature selection and validation.

the ambient sound [31], the 3D spatial sound [32, 33],
the use of headphones vr. the use of speakers [33],
and the echo or reverberation [31]. Finally, regarding
the variables related to the user’s tactile system and
tracking, these include the sensory bandwidth [34], the
level of body tracking [35], the degrees of freedom
[31], the affordance of the controls [36], the response
time or latency of the tracking [37], the locomotion
mode used to navigate through the virtual environment
[38], and the temperature and wind [32].

3 Methodology

In order to generate an immersion metric, we followed
a methodology that can be divided into two main parts
(see Fig. 1). The first part deals with the analysis
of variables and the dataset population. It is very
common for some variables to be named differently in
different studies. Hence, the first step in this part of the
methodology is the study and classification of all these

variables. The variables selected for the experiment
are presented in section 4.1.4.

Once the variables are selected, we required a
method to quantify the level of immersion produced
by a VR system, for the different values that the
variables can take. For this reason, we designed a user
study in which the user explores and interacts with a
virtual environment and reports the level of perceived
immersion. In each trial, this virtual environment is
generated based on the values taken by the variables
of the system. Hence, each trial contributes to a
new sample in a dataset that stores the relationship
between the VR system variables and the immersion
perceived by the user. After that, statistical analyses
were performed on this dataset to find which variables
are statistically significant. This process is detailed in
section 4.

The second part of this methodology deals with the
generation of immersion models, and is divided into
3 stages. In Stage 1, different regression models for
immersion are generated, based on the dataset obtained
in Part 1 and the statistically significant variables.
This is detailed in section 5.1. Some models, for
example, considered all the variables of the experiment
and others considered only the statistically significant
variables. In Stage 2, feature selection techniques
were applied to reduce the number of variables of the
models. This process is explained in section 5.2. All
the candidate models (the models generated in Stage
1 and Stage 2) went through a validation process in
Stage 3 (see section 5.3).

Finally, the best models in terms of predictive power,
number of terms and coefficients were selected as
immersion metrics. This is detailed in section 6.

4 Analysis of Variables and Dataset
Population

4.1 User Study

We conducted an experiment that required participants
to engage in a specific task within a virtual
environment and provide a score based on their
perceived level of presence and user preference. The
virtual environment is described in detail in section
4.1.3, and its visual, auditory, and tactile components
depend on the values assigned to the independent
variables in each trial. Consequently, with each new
trial, the independent variables assume different values,
resulting in a complete modification of the virtual
environment (see section 4.1.5).

4.1.1 Participants

A single-user study can provide valuable insights
and benefits when evaluating a specific methodology.
By focusing on a single user, researchers can delve
deeply into the individual’s experience, allowing for
a detailed examination of the methodology’s impact.

Journal of Computer Science & Technology, Volume 23, Number 2, October 2023

- 94 -



This approach enables researchers to closely monitor
and analyze the user’s interactions, behaviors, and
feedback in a controlled and concentrated manner. By
concentrating on a single user, researchers can capture
complex and specific data, highlighting any strengths
or limitations of the methodology. Furthermore,
by thoroughly examining one user’s experience,
researchers can gain a comprehensive understanding
of the methodology’s effectiveness, uncover potential
issues, and refine the approach before scaling up to
larger-scale studies. Considering these factors, we
selected this type of user study as the foundation for
subsequent research involving multiple users. (see
section 8) for more details on future work.

The present experiment was conducted by a 30-
year-old male self-perceived gender participant. The
participant had experience playing video games and
using VR systems.

4.1.2 Hardware

The experiment was conducted using a desktop
computer with an i5-7500 3.40GHz CPU, with 16GB
of RAM, and a GeForce GTX 1060 6GB GPU video
card. There was no performance degradation that
could have compromised the experience. Visual
stimulation and interactions were carried out using the
Oculus Rift CV1 1 system. The binocular field-of-view
of the system is approximately 110º. Its display has a
60Hz refresh rate and a resolution of 2160 × 1200
for both eyes. Head orientation and position are
recorded by the system’s integrated gyroscope and
accelerometer. The optical cameras of the system were
used to track the participant. The system also has a
mechanism to adjust the participant’s visual disparity.
Finally, the system’s integrated headphones were used
to deliver the audio.

4.1.3 Virtual Environment

According to Makransky et al. [39], maintaining
participant engagement and motivation is crucial
for obtaining highly accurate measurements. When
participants become bored or disengaged, it can have
a detrimental impact on the precision of the obtained
results. To address this concern, we developed a game
specifically designed to keep participants motivated
and engaged throughout the testing process. In this
game, the participant must survive a zombie attack for
a certain period of time. To keep the user motivated,
the difficulty of the scenario varies depending on the
remaining playing time. That is, the frequency with
which new enemies appear and their speed increase as
time goes by.

The participant is located at the intersection of two
corridors. The enemies appear at the end of those
corridors and start walking towards the participant,
who can only walk through a delimited (virtual) zone

1https://www.oculus.com/rift

of 3m×3m (figure 2). If the enemies get too close to
the participant, the game ends.

To evaluate the participant’s movements, different
obstacles were placed to obstruct the vision between
the participant and the enemies. Therefore, the
participant must move to shoot the enemies. The
participant has a gun in each hand to shoot (figure
3). The bullets are unlimited. The right side of the
guns shows the remaining time and the left side the
locomotion mode.

The delivered audio includes other sounds in
addition to the ambient background sound. When
the participant shoots, a shooting sound is generated
from the gun. In addition, the enemies produce three
different sounds: a sound when they appear at the end
of a corridor, another sound when they are close to the
participant, and another sound when they die.

4.1.4 Independent and Dependent Variables

The independent variables are those established by
the system in each test and do not depend on other
variables. The variables considered for the experiment
are listed in table 1.

On the other hand, the dependent variables are
those that depend on the independent variables.
These variables are rated, on a scale from 1 to 100,
with a questionnaire at the end of each test. To
avoid confusion between immersion and presence,
we instructed the users to rate how immersive they
felt. This choice was made to ensure clarity in the
assessment process since users generally have a better
understanding of the term ”immersion” as opposed
to ”presence” [40]. However, it is important to note
that immersion is an objective variable that cannot be
directly measured through subjective scores. In this
study, although the users are reporting their perceived
level of immersion, it is essential to acknowledge that
the variable being measured is the perceived level of
presence based on participants’ preferences. Hence, in
this work, and in a simmilar manner as in the Bouchard
questionnaire [41], we measured immersion with a
specific question: “How much did you feel immersed
in the experience? i.e., how much did you feel that
you SAW, HEARD and NAVIGATED like you do
in real life?”. The participant was given a thorough
explanation on the question and also the opportunity
to ask questions.

4.1.5 Procedure

Each time a new trial begins, the characteristics of
the scene related to all the independent variables
are modified. For numerical variables, a random
real value is computed within the established range
and, for categorical variables, a random integer value
associated with one of the categories of that variable
is computed. The virtual scenario is then generated
based on these variables and their computed values.
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Figure 2: Top aerial view of the virtual environment (left) and a close-up view (right). The participant is located at
the intersection of two corridors. Enemies emerge from the 4 corridors’ ends and walk towards the center.

Figure 3: The left side of each gun shows the walking mode (left). The right side of each gun shows the remaining
playing time (right).

Table 1: Independent variables considered in this study. These variables are arranged in categories, namely:
Trial Configuration variables, Visual Configuration variables, Audio Configuration variables and Locomotion
Configuration variables. For each variable, a brief description is presented.

Variable Category Variable Name Variable Description
Trial

Configuration Duration Time from 120 to 1200 seconds (2 to 20 minutes)

Visual
Configuration

Screen Resolution (Width and Height) from 0.1 to 1.0 multiplied by the device max resolution (2160x1200 for the Oculus Rift CV1)
Field-of-View (FOV) from 30% to 100% of the device max FOV
Frame Rate (FPS) from 8 to 60 FPS
Stereopsis Enabled or Disabled
Antialiasing (MSAA) Enabled or Disabled
Textures Enabled or Disabled
Illumination Ambient Light with No Shading, or Point Lights with Realistic Shading
Saturation from -1.0 (no saturation at all) to 1.0 (extremely saturated image)
Brightness from -0.8 to 0.8. Higher or lower values create completely dark or white scenes
Contrast from -0.8 to 0.8
Sharpness from 0.0 to 1.0
Shadows Shadow Strength from 0.0 to 1.0
Reflections (Specular Coefficient of Materials) Enabled or Disabled
3D Models Detail Low-Poly Models or High-Poly Models
Depth-of-Field Enabled or Disabled
Particles Enabled or Disabled

Audio
Configuration

Sound System No Sound, Speakers, or Headphones
Ambient Sound Enabled or Disabled
Reverberation Enabled or Disabled
3D Spatial Sound Enabled or Disabled

Locomotion
Configuration Locomotion Mode Real Walking, Teleportation, Joystick Movement, or Walking-in-Place (WIP)
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Figure 4: Scene with a low value of 3D models detail, no textures and a large field-of-view (left). Scene with a
high value of 3D models detail, textures activated, and a narrow field-of-view (right).

Hence, for each trial, the participant would perceive a
completely different experience. Figure 4 shows two
examples of different dynamically generated virtual
scenes.

Each trial ends either when the participant survives
for the specified time or when an enemy gets close
enough. Following the principles proposed by Slater
et al. [42], it is important to take measurements as
soon as possible after the experience. Immediately
after the trial ends, the enemies that are still in the
scene disappear and a floating screen appears for the
user to answer the question related to the perceived
total immersion.

The experiments were conducted without a pre-
defined schedule, taking place on various weekdays
and at different times of the day. Each experimental
session lasted between one and two hours and the
overall duration of the entire experiment, comprising
401 trials, was around 30 days. Finally, it is
important to mention that the participant took a 5-
minute break between trials. No noticeable symptoms
of cybersickness occurred at any time.

4.1.6 Results

The data from the experiment was saved into a dataset
for later analysis. This dataset is represented by a
table, where each row corresponds to a sample and
each column to a variable. The data collected during
each trial constitutes a sample in this dataset. For this
experiment, the participant performed 401 successful
trials, thus generating 401 rows in the dataset. The
dataset is public and available online [43].

4.2 Statistical Analysis

Based on the obtained dataset, we performed statistical
analyses to evaluate the relationship between the
different variables and the perceived immersion. We
present the most relevant results of the analyses
relating total immersion.

We performed Kolmogorov-Smirnov tests for
normality, which showed that the data did not

follow a normal distribution. For this reason, we
used non-parametric tests for statistical analysis,
i.e., we employed non-parametric Kruskal-Wallis
tests to evaluate the statistical differences of the
independent variables on immersion. We used Dunn’s
pairwise comparison with Bonferroni correction to
identify where the differences occurred. In all these
cases, a confidence interval of 95% was considered.
Finally, correlation analyses were performed to
study possible relationships between the independent
variables and the perceived immersion. We used
Spearman correlations for ordinal variables and
Pearson correlations for continuous variables.

Considering the visual variables with respect to total
immersion, a small correlation was found with screen
width (r(401) = 0.276, p < 0.01), frames per second
(r(401) = 0.148, p < 0.01) (figure 5 left), and contrast
(r(401) = 0.125, p = 0.012). Also, a significant
difference was found between using textures and not
using textures ( χ2 = 65.017, p < 0.01) (figure 5
right).

For the audio variables, a statistically significant
difference was found between the different audio
output modes (χ2 = 8.222, p = 0.02). According to
Dunn’s test, this difference is found between the group
with no sound and the group with headphones (figure
6 left).

Regarding the relationship with the locomotion
variables, a statistically significant difference was
found between the navigation modes (χ2 = 28,074,
p < 0.01) (figure 6 right). Subsequent analysis with
Dunn’s test revealed that the difference occurs between
all groups.

5 Generation of Models

In this work, we carried out a process to find the
best regression models for immersion based on the 22
independent variables of the experiment. This process,
organized in 3 stages, is described below.
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Figure 5: Relationship between frames per second and total immersion (r(401) = 0.148, p < 0.01) (left). Boxplot
for the relationship between the use of textures and total immersion (χ2 = 65.017, p < 0.01) (right).

Figure 6: Boxplot for the relationship between audio output and total immersion (χ2 = 8.222, p = 0.02) (left), and
between navigation mode and total immersion (χ2 = 28.074, p < 0.01) (right).

5.1 Stage 1: Direct Models

In the first stage, we fitted regression models using the
variables from the experiment. The five generated
models are detailed in the subsections below and
summarized in table 2. Each model is represented by
a Total Immersion (TI) function, being n the number
of variables (x) and m the number of coefficients (β ).

5.1.1 Simple Linear Model

This model consists of a linear regression between total
immersion and the 22 independent variables. From
these results, we can generate a function of the form:

T I =β0 +β1 × x1 +β2 × x2 +β3 × x3 + ...+βm × xn (1)

5.1.2 Simple Model with Interactions

Since the interaction between variables can affect the
final result, this multivariate model considers the 22
independent variables and incorporates the interactions
between each pair of independent variables. Then, the
function corresponding to this model has the following
form:

T I =β0 +β1 × x1 +β2 × x2 +β3 × x1 × x2 + ...+

βm × xn−1 × xn
(2)

5.1.3 Complete Model without Interactions

In this case, this model includes the 22 variables
and also these variables in order 2. Unlike the

previous model, the interaction between variables is
not considered. The function corresponding to this
model has the following form:

T I =β0 +β1 × x1 +β2 × x2
1 +β3 × x2 +β4 × x2

2 + ...+

βm × x2
n

(3)

5.1.4 Complete Model

The Complete Model is the model that, in addition to
including all the 22 independent variables, it includes
both the interactions between each pair of them, as
well as these variables in order 2. The function
corresponding to this model has the following form:

T I =β0 +β1 × x1 +β2 × x2
1 +β3 × x2 +β4 × x2

2+

β5 × x1 × x2 + ...+βm−1 × x2
n +βm × xn−1 × xn

(4)

5.1.5 Manual Model

Generally, researchers rely on theory and experience to
decide which candidate variables should be included
in a regression model. In this sense, some techniques
recommend that the set of predictor variables included
in the final regression model be based on an a priori
data analysis.

In section 4.2, we analyzed the statistical relation-
ship between each of the independent variables and the
total immersion. Hence, we propose another model
that considers only the variables that affected the total
immersion in a statistically significant way. For this
model, we included the variables screen width, frames
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per second, contrast, duration time, textures, audio
output, and navigation mode. For these variables, we
have also included in the model the order 2 variables
and the interactions between each pair of independent
variables.

5.2 Stage 2: Feature Selection

Feature selection techniques help to identify a more
condensed set of variables that feed the model in a
meaningful way. These techniques iteratively add
or remove potential variables, testing for statistical
significance after each iteration.

The Complete Model presented in the previous
section has 308 coefficients and it includes the
combination of all the studied variables. We performed
feature selection to this model as a way to reduce
the number of variables and, therefore, the model’s
complexity. However, decreasing the number of
variables in the model can negatively affect the model’s
predictive power.

The literature presents many feature selection
techniques. We used Stepwise Regression because this
technique provides the ability to handle a large number
of potential predictor variables, and fine-tuning the
model to choose the best predictor variables from the
available options. The Stepwise Regression technique
allows us to establish a target p-value. The smaller
the p-value, the smaller the number of variables that
will fulfill that value, thus obtaining a smaller model.
Hence, we defined 4 groups based on 4 different
target p-values: Model A (p = 0.05), Model B (p
= 0.01), Model C (p = 0.005), and Model D (p =
0.001). Finally, for each of these 4 groups, 3 models
were generated: one with Forward Selection, another
with Backward Selection, and another with Stepwise
Selection. Therefore, 12 new models were obtained,
presented in table 3.

All the models that used the Forward Selection
technique resulted to be equal to the Complete Model
from stage 1. This indicates that the algorithm did not
stop until all variables were included. On the other
hand, both the A Backward model and the A Stepwise
model, as well as the D Backward model and the D
Stepwise model, are also equal to each other. Two
models are equal when they have the same coefficients,
predictors and prediction values.

5.3 Stage 3: Validation

We validated all the generated models (i.e. the ones
from stage 1 and stage 2) using cross-validation with
k iterations with repetition. Ten repetitions were used.
In summary, the k iteration cross-validation procedure
with k = 10 divides the dataset into 10 subsets. It
uses 9 of these 10 subsets to train the model and the
remainder one to test it. Thus, a prediction error is
obtained. This process is repeated for all the 10 subsets,

and the total prediction error is the average of the 10
individual errors.

In this case, we also use repetition, that is, the entire
process described above is carried out 10 times. Hence,
the final prediction error is the result of averaging the
10 runs. This is done for each model, thus obtaining
the values of Root Mean Square Error (RMSE), R2

adjusted, and Mean Absolute Error (MAE).
All the models are arranged in table 4, ordered

according to the number of coefficients. This table
groups the models that are equal. As mentioned before,
the best prediction can be defined by the highest
adjusted R2 or the lowest RMSE or MAE values. In
this work, we follow the value of R2 to decide which
model is “better” in terms of predictive power.

6 Immersion Metrics: Selected Models
and Functions

From among the obtained models, our goal was to
find the one (or ones) that were most closely related
to the intended use of the model. A model with a high
predictive power would provide a better immersion
approximation based on the variables of the VR system.
A model with fewer predictors requires fewer variables
of the VR system. A model with fewer coefficients can
be computed faster. Hence, when selecting the best
models, we need to consider the trade-off between
predictive power, number of coefficients, and number
of predictors.

Of the resulting models presented in table 4, the
model with the best predictive power, based on R2,
is the A Backward or A Stepwise model, both with
177 coefficients and R2 = 0.5973. The table also
presents models with a similar R2 and with fewer
coefficients. Therefore, in the search of the best
models, we discarded the model with 177 coefficient
and analyzed in detail the models with 42, 40, and
39 coefficients that have, respectively, an R2 equal to
0.5542, 0.5297, and 0.5314.

Regarding the B Stepwise, B Backward and C
Stepwise models, none of them include the variables
reflections, reverberation and 3D spatial sound. The B
Backward model also does not include the variable
saturation. It is interesting that the 3D spatial
sound, which according to the literature is a variable
widely influential, was not considered by these models
[32, 33]. On the other hand, some models did not
consider the variables reflections, reverberation and
saturation. Taking this into account, we consider that
the B Stepwise model, with 42 coefficients, is the
best of these three models since, although it has more
coefficients, it has greater predictive power.

Then, the Complete Model without Interaction, with
34 coefficients, and the Simple Linear Model, with 25
coefficients, were discarded. Both include all the 22
variables, and their predictive power is lower than the
other models.
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Table 2: Stage 1 Models Comparison.
Model Name R2Ad justed AIC Predictors Coefficients
Simple Linear 0.4121 3303 22 25
Simple with Interactions 0.5647 3208 22 299
Complete without Interactions 0.4423 3288 22 34
Complete 0.5999 3155 22 308
Manual 0.4182 3289 7 14

Table 3: Stage 2 Models Comparison.
Model Name R2Ad justed AIC Predictors Coefficients
A Forward 0.5999 3155 22 308
A Backward 0.7604 3040 22 177
A Stepwise 0.7604 3040 22 177
B Forward 0.5999 3155 22 308
B Backward 0.5704 3191 19 40
B Stepwise 0.5925 3172 18 42
C Forward 0.5999 3155 22 308
C Backward 0.492 3244 13 24
C Stepwise 0.5741 3187 18 39
D Forward 0.5999 3155 22 308
D Backward 0.4362 3277 9 15
D Stepwise 0.4362 3277 9 15

Table 4: Comparison and Validation of all models. The grouped models are exactly the same. The Coefficients
column is highlighted to emphasize that the coefficients are sorted from highest to lowest.

Model Information Validation Information
Model Name R2Ad justed AIC Predictors Coefficients RMSE R2Ad justed MAE

Complete
A Forward
B Forward
C Forward
D Forward

0.5999 3155 22 308 32.18 0.1403 25.47

Simple with
Interactions 0.5647 3208 22 299 30.56 0.1393 24.23

A Backward
A Stepwise 0.7604 3040 22 177 12.71 0.5973 10.23

B Stepwise 0.5925 3172 18 42 12.62 0.5542 10.29
B Backward 0.5704 3191 19 40 12.99 0.5297 10.59
C Stepwise 0.5741 3187 18 39 12.94 0.5314 10.68

Complete without
Interactions 0.4423 3290 22 34 14.71 0.4037 12.01

Simple Linear 0.412 3303 22 25 14.86 0.3869 12.16
C Backward 0.492 3244 13 24 13.78 0.4691 11.36
D Backward
D Stepwise 0.4362 3277 9 15 14.36 0.4235 11.75

Manual 0.4182 3289 7 14 14.55 0.4091 11.94

Table 5: Selected Immersion Models.
Model Information Validation Information

Model Name Coefficients Predictors R2Ad justed
Model 1 42 18 0.5542
Model 2 24 13 0.4691
Model 3 15 9 0.4235
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We consider that the C Backward Model, with
24 coefficients, is also one of the best models since
it includes 13 of the 22 variables, even though its
predictive power is lower than the other models
with more coefficients and variables. Of the 22
variables, this model does not include the stereopsis,
antialiasing, illumination mode, saturation, shadow
strength, reflections, depth of field, reverberation or
3D spatial sound. We consider that the variables
stereopsis, lighting mode, and 3D spatial sound are
relevant since, according to the literature [32, 33],
they have a significant influence on immersion and
presence.
TotalImmersion =−52.795864+
screenWidth×0.023127+
fieldOfView×0.233013+
framesPerSecond×1.524708+
stereopsisActivated×−3.741471+
antialiasingActivated×−14.463670+
textureModeWithTextures×−3.558318+
illuminationModeLightsAndShading×1.792554+
brightness×−5.050710+
contrast×15.784897+
sharpness×26.061258+
shadowStrength×14.743503+
modelsDetailHigh×1.604808+
depthOfFieldActivated×7.430725+
particlesActivated×4.942608+
audioOutputModeSpeakers×1.870371+
audioOutputModeHeadphones×11.826967+
ambientSoundActivated×11.696136+
locomotionModeJoystick×18.260037+
locomotionModeWalkInPlace×2.375830+
durationTime×0.002978+
screenWidth2 ×−0.000008+
framesPerSecond2 ×−0.017609+
screenWidth× illuminationModeLightsAndShading×0.007121+
fieldOfView× contrast ×−0.227759+
fieldOfView× sharpness×−0.431735+
stereopsisActivated× shadowStrength×−13.691010+
stereopsisActivated×durationTime×0.015409+
antialiasingActivated×durationTime×0.017004+
textureModeWithTextures× contrast×8.744551+
textureModeWithTextures×modelsDetailHigh×10.788037+
textureModeWithTextures×durationTime×0.019434+
shadowStrength×particlesActivated×−14.702403+
ambientSoundActivated×durationTime×−0.017771+
locomotionModeJoystick×durationTime×−0.014104+
locomotionModeWalkInPlace×durationTime×0.016911+
modelsDetailHigh×depthOfFieldActivated×−8.055026+
particlesActivated×ambientSoundActivated×6.549401+
antialiasingActivated×audioOutputModeSpeakers×7.244033+
antialiasingActivated×audioOutputModeHeadphones×−2.993224+
antialiasingActivated× illuminationModeLightsAndShading×
−6.452346+
textureModeWithTextures× illuminationModeLightsAndShading×
−7.164925

(5)
Finally, the models with 15 and 14 coefficient are

very similar in terms of predictive power, number of
coefficients, and number of predictors. The model
with 15 coefficients includes 3 variables that the model
with 14 coefficients does not. These are field-of-view,
definition and models detail. On the other hand, the
model with 14 coefficients includes a variable that the
model with 15 coefficients does not, which is contrast.
According to the statistical analysis, the variable
contrast influences the total immersion, although very
slightly. However, according to the literature, the
variables field-of-view and detail of the models are
more significant and influential than contrast. For this
reason, we selected the model with 15 coefficients
instead of the one with 14.

After this process, three models were selected,
which are presented in table 5. For clarity, we will

call these models “Model 1”, “Model 2”, and “Model
3”. The table details the number of coefficients, the
number of predictors and the adjusted R2, indicating
the predictive power of each model.

The functions for Model 1, Model 2 and Model
3 are presented in equations 5, 6 and 7, respectively.
These functions can be used to estimate the level of
immersion of a given VR system based on its hardware
and software features.
Total Immersion =−38.16095974+
screenWidth×0.008504384+
f ieldO fView×0.196812152+
f ramesPerSecond ×1.541130003+
textureModeWithTextures×−5.46407892+
brightness×−4.085710982+
contrast ×19.38644806+
sharpness×23.33455116+
modelsDetailHigh×−1.670228672+
particlesActivated ×−3.069366777+
audioOut putModeSpeakers×5.297975701+
audioOut putModeHead phones×10.45405873+
ambientSoundActivated ×−2.809009675+
locomotionModeJoystick×18.95378116+
ocomotionModeWalkInPlace×1.551341478+
durationTime×0.012916461+
f ramesPerSecond2 ×−0.018563525+
f ieldO fView× contrast ×−0.222598953+
f ieldO fView× sharpness×−0.38192204+
textureModeWithTextures×modelsDetailHigh×8.765077901+
textureModeWithTextures×durationTime×0.019749586+
particlesActivated ×ambientSoundActivated ×7.579476366+
locomotionModeJoystick×durationTime×−0.015178069+
locomotionModeWalkInPlace×durationTime×0.015704389

(6)

Total Immersion =−44.78322466+
screenWidth×0.008237546+
f ieldO fView×0.227429898+
f ramesPerSecond ×1.608568062+
textureModeWithTextures×9.717910348+
sharpness×26.4102586+
modelsDetailHigh×−3.064720396+
audioOut putModeSpeakers×5.519798682+
audioOut putModeHead phones×10.19128742+
locomotionModeJoystick×5.692683516+
locomotionModeWalkInPlace×13.37931564+
durationTime×0.017860572+
f ramesPerSecond2 ×−0.019223957+
f ieldO fView× sharpness×−0.431998513+
textureModeWithTextures×modelsDetailHigh×9.859037709

(7)

7 Immersion in Commercial Devices

We tested the immersion metrics on three of today’s
most popular commercial VR systems, with very
different hardware and software characteristics each.
These are the Oculus Rift S2, the Oculus Quest 23 and
the Oculus GO4.

To carry out this analysis, we used the application
Beat Saber5 which can run on all three devices. Beat
Saber is a rhythm game developed exclusively for VR
that has become one of the most popular VR-games in
recent years. The game is developed for the three VR
devices we are considering, hence we can use it for
the immersion calculation using our metrics. All three

2https://www.oculus.com/rift-s/
3https://www.oculus.com/quest/
4https://www.oculus.com/go/
5 https://beatsaber.com/
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Table 6: Immersion calculated on the Oculus Rift S,
the Oculus Quest, and the Oculus GO, for the Beat
Saber game, using the 3 immersion metrics.

Oculus Rift S Oculus Quest Oculus GO
Model 1 57.95020 54.40024 48.17092
Model 2 60.74711 63.46851 52.51633
Model 3 74.07102 76.70703 58.41741

viewers can run the game at 60 frames per second, as
indicated by the game specification.

To use our immersion metrics, we need to know the
game’s software specifications (for example if shadows
are being used or not, or the level of brightness
or saturation). Since some of these variables are
not specified, we had to estimate them by analyzing
gameplays, images, and videos of the game.

The results of the immersion calculation are shown
in table 6 for the three models and the three devices.
The Oculus GO presented the lowest immersion for
the three models. This is consistent with the technical
specifications of the device, as well as users’ ratings
over the past few years. This viewer was Oculus’ first
attempt to make a viewer completely independent of
a PC, and its tracking system and visual quality are
inferior than the other devices.

On the other hand, the Oculus Rift S and the
Oculus Quest turned out to be very similar in terms
of immersion. Based on Model 1, the Oculus Rift S
presented more immersion than the Oculus Quest, but
for Models 2 and 3, the Oculus Quest outperformed
the Oculus Rift S. This small difference between these
two devices was expected since, based on the variables
used by the metrics, the only difference between the
two was the screen resolution, which the Oculus Quest
narrowly exceeds.

8 Discussion

The objective of this study was to investigate
the various variables of VR systems and their
impact on system immersion and perceived level
of presence, as determined by user preferences.
To achieve this, a user study was conducted, and
comprehensive statistical analyses were performed
using a methodology specifically designed to generate
immersion metrics. This section presents a discussion
about the obtained results, the limitations of the study,
and some directions for future work.

8.1 Variables

The statistical analyses described in section 4.2
provided interesting results. Some visual variables
presented small correlations with immersion, namely
the screen width, the frames per second, and the
contrast. The screen resolution and the frames per
second are variables widely studied in the literature,
and it is suggested that a bigger screen resolution

and faster frames per second are clearly related to
a higher level of immersion. On the other hand, it
was interesting to see that the contrast affected, albeit
slightly, the level of immersion. This can be related to
the role of contrast in detecting the edge and details of
objects.

The use of textures significantly affected the level
of immersion. This suggests that the user felt more
immersed when the objects and the environment
exhibited a convincing material. Most objects in the
real world present some kind of defined texture or
material. This might explain why a lower immersion
was perceived when seeing objects with only solid
colors and no textures.

The statistical analysis performed in this study did
not find significant effects for certain visual variables
that have been identified in the literature as influential.
It is important to acknowledge that this outcome may
be attributed to the unique user characteristics of the
individual participant in this study. It is possible that
the impact of these visual variables on immersion
could differ among other participants. It is necessary
to consider the individuality of users and the potential
variations in their responses when interpreting these
findings.

We expected the field-of-view to highly influence
the perceived immersion, for example. Nowadays,
every modern VR headset seeks to improve the field-
of-view, among other variables. In addition, the
stereopsis was another variable that did not affect the
immersion significantly. This is a variable directly
related to depth perception, both in a real and virtual
environment. It should be considered that there are
people who have a deficiency in stereoscopic vision
and yet perceive depth. The depth perception is also
related to the different depth cues in a scene. The
result obtained is consistent with this and undoubtedly
arises when analyzing the different parameters as a
whole. Therefore, in future work it would be extremely
interesting to study the influence and relationship
between the variables that provide depth information
in more detail.

Regarding audio, the results are consistent with
those in the literature. As expected, the use of
headphones presented the higher level of immersion,
followed by the use of speakers, and the absence
of sound. The headphones deliver the audio to
each one of the user’s ears, occluding the external
noise, and thus improving the immersion, no matter
whether the 3D spatial sound, ambient sound, or
reverberation were active or not. It is interesting to
note that these three variables did not significantly
affected the immersion but, based on the literature,
they are relevant. The 3D spatial sound, for instance,
is not clearly perceived unless the user is wearing
headphones [32]. Future work will consider the
analysis of the audio variables in more detail.

Regarding the locomotion mode, there was a clear

Journal of Computer Science & Technology, Volume 23, Number 2, October 2023

- 102 -



difference between all groups, being the walk in place
the most immersive technique, followed by the use
of joystick, and finally by teleportation. In this study,
due to physical constrains, the real walking technique
could not be used. However, the results are consistent
with the literature, suggesting that the physical body
movement of walking did influence the final perceived
immersion.

We have relied on the literature and on our previous
knowledge to select and study the variables that were
used in this work. However, the study of immersion
should not be limited only to these variables. As
technology advances, new variables will emerge that
must be considered, studied, and incorporated into the
metrics.

8.2 User Study

The obtained results relate to a specific target
population characterized by the attributes of the
individual user who participated in the experiment. It
is evident that the unique user characteristics observed
in our study may have impacted the outcomes,
potentially yielding different results compared to prior
research. Nonetheless, the results remain interesting
and, most importantly, they highlight the significance
of considering both the individual variables and their
interrelationships in relation to system immersion.
For this reason, future work will conduct additional
experiments involving a larger number of participants,
allowing for a more comprehensive exploration on the
topic.

To evaluate the perceived quality of each VR system,
we rely on subjective assessments in the form of user
scores. These scores closely relate to the notion
of presence, as they reflect the user’s subjective
experience and level of engagement. Basing on
these subjective presence scores, we derive objective
immersion metrics that facilitate the quantification
of a VR system’s immersion level based on its
variables. It is crucial to emphasize that these final
objective immersion metrics are firmly rooted in the
subjective presence scores, underscoring the profound
interplay between user perception and the objective
measurement of immersion.

In this study, we have used a single-item measure
to assess immersion based on the user’s preferences.
There are other questionnaires that provide more
information about the different factors that shape
presence and immersion but, because they are much
larger or complex, participants can get bored and lead
to wrong results. Future work should consider the use
of other measures to gather more information about
the relationship between immersion and the variables
of the VR system.

8.3 Generation of the Metrics

We followed a specific methodology to generate
immersion metrics, i.e., through the use of regression
models in addition to feature selection and validation
techniques. Other alternatives or techniques can
be considered in the different parts of the metrics
generation process to get insight about the relationship
between the variables and the effect on the immersion.
We have made the dataset available online for the
public. Future work, therefore, should consider the
study and application of other techniques.

After generating the immersion models, a selection
process was carried out to determine which one
(or ones) of these could be considered the best
models. In this process (described in section 6), we
made decisions to discard some models in favor of
others. For this purpose, we focused on the predictive
power, the number of coefficients and the number
of predictors of the models, without considering the
particular variables of each model. However, for a
particular system or application, it might be interesting
to favor the model that includes a particular variable
such as, for example, 3D spatial audio. This should
be considered in future work

Based on these results, the Complete Model turned
out to be not as powerful as it seemed on stage 1,
now obtaining only a R2 = 0.1403. This could most
likely be due to overfitting. It is highly probable
that a model that uses all the variables and all the
combinations between them will be adjusted to very
specific characteristics of the training data that have
no causal relationship with the objective function.

Our immersion metrics are intended to work with
any VR system, based on its hardware and software
characteristics. However, as mentioned above, some
of the studied variables depend on both the virtual
scenario being used, as well as the specific task
being performed. In this sense, future work should
also consider the evaluation of immersion metrics in
various case studies and different application domains.

9 Conclusions

Currently, the development of new VR systems with
different hardware and software characteristics has
been accelerated. Every system tries to outperform the
others, but most of them rely only on technological
advances to improve the user’s immersion and
experience. However, not only the most common
hardware variables (such as the field-of-view or the
screen resolution) should be considered.

VR systems consider both hardware and software
variables that influence the total immersion of the
system. It is necessary to know which variables are
most influential and how. Thus, for example, if we
need to select among different variables to include
in a new VR system, we may choose those with
the highest impact on the level of immersion. The
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influence of these hardware and software variables
on immersion has only been considered individually
or in small groups of these. To date, the way they
all simultaneously affect immersion has not been
analyzed. The motivation of this study is based on the
study and application of these hardware and software
variables of the VR system and their relationships to
construct an immersion metric. In this way, the level of
immersion of any VR system can be estimated without
the need of user tests.

The work we carried out has been highly
challenging. The obtained results contribute to the area
of immersive technologies and more specifically to
the area of VR. Commercial VR systems developed in
recent years are based on the assumption that the better
the hardware the higher the immersion and therefore,
the better the experience. Even though upgrading
the hardware can help to improve immersion, this
is not the only issue to be considered. To truly
improve immersion, the combination of variables to be
considered must be improved. Immersion metrics can
be designed to consider these characteristics of a VR
system and help to decide which variables to favor both
when designing a new VR system and when estimating
the immersion of existing VR systems. This allows
the comparison between different systems, being able
to choose the best alternative according to the task to
be performed.
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