
Discrete Applied Mathematics 164 (2014) 547–553

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Limited Packing and Multiple Domination problems:
Polynomial time reductions✩

V. Leoni ∗, G. Nasini
Depto. de Matemática, Universidad Nacional de Rosario, Rosario, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina

a r t i c l e i n f o

Article history:
Received 31 October 2011
Received in revised form 10 October 2013
Accepted 16 October 2013
Available online 4 November 2013

Keywords:
k-tuple dominating set
k-limited packing
Computational complexity
Polynomial time reductions

a b s t r a c t

The Limited Packing andMultiple Domination problems in graphs have closely-related def-
initions and the same computational complexity on several graph classes. In this work we
present twopolynomial time reductions between them. Besides,we take into consideration
generalized versions of these problems and obtain polynomial time reductions between
each one and its generalized version.

© 2014 Published by Elsevier B.V.

1. Introduction

Thewell-known concept of domination in graphs, introduced by Berge in 1962, was generalized by Harary and Haynes in
2000 [7]. On the other side, the notion of 2-packing in graphs, introduced byMeir andMoon in 1975,was recently generalized
by Gallant et al. [6].

These concepts are goodmodels formanyutility locationproblems in operations research. In the Limited Packingproblem
(LP), the utilities are necessary but probably obnoxious. That is why we are interested in placing the maximum number of
utilities in such a way that no more than a given number of them is near to each agent in a given scenario. In the Multiple
Domination problem (MD), we can think that every agent has a minimum requirement of expensive utilities and we want
to satisfy the requirements by placing at least a given number of them in its neighborhood, with the minimum cost.

Both problems are NP-complete for general graphs and several graph classes are known to be polynomial time solvable
instances of both of them. In first place, separate linear time algorithms forMD and LP for treeswere provided independently
in [8,2], respectively. Later, Liao and Chang extended their results by providing a linear time algorithm for MD for strongly
chordal graphs, a superclass of trees [9]. Also in [5], we proved that both problems are polynomial time solvable for spiders,
quasi-spiders and P4-tidy graphs. As regards graph classes where both problems are NP-complete, the authors in [9] showed
that MD is NP-complete for split graphs and bipartite graphs. In [5], the same results were obtained for LP.

These ‘‘symmetric’’ results lead us naturally to wonder if there is some kind of equivalence betweenMD and LP or, on the
contrary, if it is possible to find a graph class where one of them is polynomial time solvable and the other, NP-complete.
While working on this question, we started looking for polynomial time reductions between them.

In Section 3, we present two polynomial time reductions: one from LP to MD and the other, in the other direction. By
considering graph classes which are closed under the involved transformations, computational complexity results for one
of the problems give rise to results for the other.
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Both problems have quite natural generalizations in the following sense. First, different agentsmay have different facility
requirements. Second, some places where to locate the facilities may be ‘‘not allowed’’ (for the packing case) and ‘‘required’’
(for the covering case). In this sense, generalized versions for MD and LP were first introduced in [8,3], respectively.

In Section 4, we prove that, within graph classes that are closed under certain operations, LP and MD are, respectively,
‘‘as hard’’ as their generalizations.

The results in Section 3 have been already published – without proofs – in an electronic version [4].

2. Preliminaries, basic definitions and notation

Graphs in this work are simple and connected and, for a graph G, V (G) and E(G) denote respectively its vertex and edge
sets.

Given a graph G, a set C ⊆ V (G) is complete if |C | ≥ 1 and every two distinct vertices in C are adjacent in G.
Given a graph class G and a graph transformation P , we say that G is closed under P if P(G) ∈ G for all G ∈ G.
Given a family F of graphs, a graph G is F -free if for any induced subgraph G′ of G,G′

∉ F .
A stable set in G is a set of pairwise nonadjacent vertices and a clique, a set of pairwise adjacent vertices.
For v ∈ V (G),NG(v) and NG[v] denote respectively its neighborhood and closed neighborhood and dG(v) the degree of v

in G. The minimum and maximum degree in G are denoted by δ(G) and ∆(G), respectively. A pendant vertex in a graph is a
vertex of degree one.

For a given positive integer k, a k-limited packing inG is a subset of vertices B verifying |NG[v]∩B| ≤ k, for every v ∈ V (G).
From its definition, it is clear that every subset of a k-limited packing in G is also a k-limited packing in G.

The Limited Packing problem (LP) may be formulated as follows:

INSTANCE: A graph G; positive integers k, α.
QUESTION: Does G contain a k-limited packing of size at least α?

A nontrivial instance of LP is one for which k ≤ α ≤ |V (G)| − 1 and ∆(G) ≥ k.
On the other side, a k-tuple dominating set in G is a subset of vertices D verifying |NG[v] ∩ D| ≥ k, for every v ∈ V (G).

From its definition, it is clear that every superset of a k-tuple dominating set in G is also a k-tuple dominating set in G.
TheMultiple Domination problem (MD) may be formulated as follows:

INSTANCE: A graph G; positive integers k, α.
QUESTION: Does G contain a k-tuple dominating set of size at most α?

A nontrivial instance of MD is one for which k + 1 ≤ α ≤ |V (G)| − 1 and δ(G) + 1 ≥ k.
The concept of a k-limited packing in a graph was generalized in [3].
Let us denote by Z+ the set of nonnegative integers. Given a vector c = (cv) ∈ ZV (G)

+ and A ⊆ V (G), a subset B of vertices
is a (c, A)-limited packing in G if B ⊆ A and |NG[v] ∩ B| ≤ cv , for every v ∈ V (G). When A = V (G), we will simply refer
to (c, A)-limited packings as c-limited packings. Clearly, when cv = k for every v ∈ V (G), c-limited packings are k-limited
packings.

Given c ∈ ZV (G)
+ , let c′

∈ ZV (G)
+ be defined by c ′

v = min{cv, dG(v)+ 1} for each v ∈ V (G). It holds that B is a (c, A)-limited
packing in G if and only if B is a (c′, A)-limited packing in G. This fact leads us to define the Generalized Limited Packing
problem (GLP) in the following way:

INSTANCE: A graph G; A ⊆ V (G), α ∈ N,

c = (cv) ∈ ZV (G)
+ with cv ≤ dG(v) + 1 for all v ∈ V (G).

QUESTION: Does G contain a (c, A)-limited packing of size at least α?

We will consider an instance of GLP nontrivial, when A ≠ ∅, α ≤ |A| − 1 and cv ≤ dG(v) for some v ∈ V (G).
Observe that solving a nontrivial instance of LP given by G, k and α is equivalent to solving the nontrivial instance of GLP

given by G, A = V (G), α and c, where cv = k for each v ∈ V (G). Then, the NP-completeness of LP for a graph class implies
the NP-completeness of GLP for the same graph class.

In a similar way, the concept of a k-tuple dominating set in a graph has been generalized in [8]. In this work we have
modified the original notation slightly in order to make it consistent with the one for the packing case.

Given a vector r = (rv) ∈ ZV (G)
+ and R ⊆ V (G), a subset D of vertices is a (r, R)-dominating set in G if R ⊆ D and

|NG[v] ∩ D| ≥ rv , for every v ∈ V (G). When R = ∅, we will simply refer to (r, R)-dominating sets as r-dominating sets.
Clearly, when rv = k for every v ∈ V (G), r-dominating sets are k-tuple dominating sets.

Notice that G has (r, R)-dominating sets if and only if rv ≤ dG(v) + 1, for every v ∈ V (G). This fact leads us to introduce
the Generalized Multiple Domination problem (GMD) in the following way:

INSTANCE: A graph G; R ⊆ V (G), α ∈ N,

r = (rv) ∈ ZV (G)
+ with rv ≤ dG(v) + 1 for all v ∈ V (G).

QUESTION: Does G contain a (r, R)-dominating set of size at most α?

We will consider an instance of GMD nontrivial, when R ≠ V (G), α ≥ max{rv : v ∈ V (G)} and rv ≤ dG(v) for some
v ∈ V (G).
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Fig. 1. A graph G and P(G) in Definition 3.

Observe that solving a nontrivial instance of MD given by G, k and α is equivalent to solving the nontrivial instance of
GMD given by G, R = ∅, α and r, where rv = k for each v ∈ V (G). Thus, the NP-completeness of MD implies the NP-
completeness of GMD.

GLP and GMD are equivalent in the following sense:

Proposition 1 ([3]). Let G, A and c define an instance of GLP and B ⊆ V (G). Then, B is a (c, A)-limited packing in G if and only
if V (G) − B is a (r, V (G) − A)-dominating set in G, where rv = dG(v) + 1 − cv , for v ∈ V (G).

3. Polynomial reductions between MD and LP

Let us begin this section by stating a simple fact which shows the relevance of vertices of degree one in findingmaximum
k-limited packings.

For each v ∈ V (G), we denote

N1
G(v) := {w ∈ NG(v) : dG(w) = 1}.

Lemma 2. Given a k-limited packing B in a graph G and v ∈ V (G), there exists a k-limited packing B′ in G such that |B′
∩N1

G(v)| =

min{|N1
G(v)|, k} and |B|′ ≥ |B|.

Proof. It is straightforward that |B ∩ N1
G(v)| ≤ min{|N1

G(v)|, k}.
Therefore, it is enough to consider the case |B∩N1

G(v)| < min{|N1
G(v)|, k} and prove that there exists a k-limited packing

B′ such that |B|′ ≥ |B| and |B′
∩ N1

G(v)| > |B ∩ N1
G(v)|.

Observe that, since B ∩ N1
G(v) ≠ N1

G(v), there exists w ∈ N1
G(v) \ B.

If B ∩ NG[v] ⊆ N1
G(v), then B′

:= B ∪ {w} is a k-limited packing in G. If not, B′
:= (B \ {w′

}) ∪ {w} is a k-limited packing
in G, for each w′

∈ (B ∩ NG[v]) \ N1
G(v). Clearly, in both cases we have |B|′ ≥ |B| and |B′

∩ N1
G(v)| = |B ∩ N1

G(v)| + 1.

Lemma 2 motivates us to define the following graph transformation P , which is the basis for the reduction of MD to LP
in Theorem 4 below:

Definition 3. Given a graph G, P(G) is the graph obtained from G by adding for each v ∈ V (G), ∆(G) − dG(v) vertices that
are adjacent to v and define a stable set Sv (see Fig. 1).

Notice that

|V (P(G))| = |V (G)| +


v∈V (G)

[∆(G) − dG(v)] = |V (G)|[∆(G) + 1] − 2|E(G)|.

If |V (G)| = n, ∆(G) ≤ n − 1 and, since G is connected, |E(G)| ≥ n − 1. Then

|V (P(G))| ≤ n2
− 2(n − 1).

Notice that this bound is achievedwhen G is a star (a tree consisting of one vertex adjacent to all the others) on n vertices,
since in this case |E(G)| = ∆(G) = n − 1.

Theorem 4. Given G, k and α defining a nontrivial instance of MD, let α′
:= |V (P(G))| − α and k′

:= ∆(G) − k+ 1. Then G has
a k-tuple dominating set of size at most α if and only if P(G) has a k′-limited packing of size at least α′.

Proof. Let G, k and α define a nontrivial instance of MD, α′
:= |V (P(G))| − α and k′

:= ∆(G) − k + 1. Notice that k′
≥ 2.

Let R be a k-tuple dominating set in G with |R| ≤ α. We define B := V (P(G)) − R. Clearly, |B| ≥ α′. To prove that B is a
k′-limited packing in P(G), take w ∈ V (P(G)). If w ∉ V (G), |NP(G)[w] ∩ B| ≤ 2 ≤ k′. If w ∈ V (G),

|NP(G)[w] ∩ B| = |Sw ∩ B| + |NG[w] − R| = |Sw| + |NG[w] − R|.

Since R is a k-tuple dominating set in G, |NG[w] ∩ R| ≥ k, thus |NG[w] − R| ≤ dG(w) + 1− k. Therefore, |NP(G)[w] ∩ B| ≤ k′.
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Fig. 2. A graph G and D3(G) in Definition 6.

To see the converse, let B be a k′-limited packing in P(G) of size at least α′. Taking into account Lemma 2, since Sv ⊆

N1
P(G)[v] and |Sv| ≤ k′ for each v ∈ V (G), we can assume w.l.o.g that Sv ⊆ B, for all v ∈ V (G). Let R := V (G) − B. We will

prove that R is a k-tuple dominating set in G.
For v ∈ V (G), |NG[v] ∩ R| = dG(v) + 1 − |NG[v] ∩ B| and |NG[v] ∩ B| = |NP(G)[v] ∩ B| − |Sv|.
Then,

|NG[v] ∩ R| = 1 − |NP(G)[v] ∩ B| + ∆(G).

Since B is a k′-limited packing in P(G), |NG[v] ∩ R| ≥ 1 − k′
+ ∆(G) = k as desired.

We have the following immediate corollary:

Corollary 5. Let G be a graph class that is closed under P. If LP is polynomial time solvable on G, then MD is also polynomial time
solvable on G. Besides, if MD is NP-complete on G, then LP is also NP-complete on G.

As regards NP-completeness results, recall that MD is NP-complete on split graphs [9], and therefore, on the superclass
of chordal graphs. Since the class of chordal graphs is closed under P , from Corollary 5 we obtain that LP is NP-complete on
this class as well, a result already obtained in [5] from the NP-completeness of LP on split graphs. However, Corollary 5 does
not allow us to derive the NP-completeness of LP on split graphs since it is not a closed under P class.

The remainder of this section is devoted to give a reduction from LP to MD. For this purpose, we introduce the following
transformation:

Definition 6. Given a graph G and a positive integer k with 1 ≤ k ≤ ∆(G),Dk(G) is the graph obtained from G by adding,
for each v ∈ V (G) with dG(v) < ∆(G), ∆(G) + 1 − min{k, dG(v)} vertices defining a clique Qv , and making v adjacent to
exactly ∆(G) − dG(v) vertices of Qv (see Fig. 2).

Notice that

|V (Dk(G))| = |V (G)| +


v: dG(v)<∆(G)

[∆(G) + 1 − min{k, dG(v)}].

Since min{k, dG(v)} ≥ 1 and |{v ∈ V (G) : dG(v) < ∆(G)}| ≤ |V (G)| − 1, if |V (G)| = nwe have:

|V (Dk(G))| ≤ n + (n − 1)(n − 1).

Again, when G is a star on n vertices, the bound is achieved.
This transformation allows us to prove:

Theorem 7. Given G, k and α defining a nontrivial instance of LP, let

α′
:= |V (Dk(G))| −


v: dG(v)≤k−1

(k − dG(v)) − α and k′
:= ∆(G) − k + 1.

Then G has a k-limited packing of size at least α if and only if Dk(G) has a k′-tuple dominating set of size at most α′.

Proof. Let G, k and α define a nontrivial instance of LP.
Notice that δ(Dk(G)) = ∆(G)−min{k, ∆̃(G)}, where ∆̃(G) = 0 ifG is regular and ∆̃(G) = max{dG(v) : dG(v) ≤ ∆(G)−1}

otherwise. Since k′
≤ δ(Dk(G)) + 1, there exists a k′-tuple dominating set in Dk(G). Besides, observe that |Qv| = k′ for each

v such that dG(v) > k and |Qv| = k′
+ [k − dG(v)] for each v such that dG(v) ≤ k − 1.

Let B be a k-limited packing in Gwith |B| ≥ α.
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For each v ∈ V (G) with dG(v) ≤ k − 1, let Av ⊆ NDk(G)[v] ∩ Qv with |Av| = k′. By defining

R := (V (G) − B) ∪


v: k≤dG(v)<∆(G)

Qv ∪


v: dG(v)≤k−1

Av,

we will prove that R is a k′-tuple dominating set in Dk(G) of size at most α′.
Notice that for every v ∈ V (G), |NDk(G)[v] ∩ R ∩ Qv| ≥ k′ and therefore |NDk(G)[v] ∩ R| ≥ k′.
Otherwise, if v ∈ Qw for some w, from the construction of R clearly follows that |R ∩ NDk(G)[v]| ≥ k′.
Let us now prove that |R| ≤ α′. Clearly,

|R| = (|V (G)| − |B|) +


v: k≤dG(v)<∆(G)

|Qv| +


v: dG(v)≤k−1

|Av|

= |V (G)| +


v: k≤dG(v)<∆(G)

|Qv| +


v: dG(v)≤k−1

[|Qv| − (k − dG(v))] − |B|

≤ |V (Dk(G))| −


v: dG(v)≤k−1

[k − dG(v)] − α = α′.

Conversely, let R be a k′-tuple dominating set in Dk(G) with |R| ≤ α′.
First, we will prove that we can assume |R ∩ Qv| = k′ for each v with dG(v) < ∆(G), i.e. |R ∩ Qv| = |Qv| if dG(v) ≥ k and

|R ∩ Qv| = |Qv| + k − dG(v) otherwise.
Let v ∈ V (G)with dG(v) < ∆(G). FromDefinition 6 follows that there existsw ∈ Qv not adjacent to v, i.e.NDk(G)[w] = Qv .

Then, since |NDk(G)[w] ∩ R| ≥ k′, we have |Qv ∩ R| ≥ k′.
Therefore, if dG(v) ≥ k, since |Qv| = k′ we have |R ∩ Qv| = |Qv| = k′.
In the case dG(v) ≤ k − 1, since |NDk(G)[v] ∩ Qv| = ∆(G) − dG(v) ≥ k′, we can take Av ⊆ NDk(G)[v] ∩ Qv with |Av| = k′.

Notice that Rv
:= (R − Qv) ∪ Av is a k′-tuple dominating set in Dk(G), |Rv

| ≤ |R| and |Rv
∩ Qv| = |Qv| − [k − dG(v)] = k′.

Secondly, we consider B := V (G) − R. We will prove that B is a k-limited packing in G. Clearly, this is true if and only if
for each v ∈ V (G)

dG(v) + 1 − |NG[v] ∩ R| ≤ k. (1)

Let v ∈ V (G). Since R is a k′-tuple dominating set in Dk(G), |NDk(G)[v] ∩ R| ≥ k′ for each v ∈ V (Dk(G)). On the one hand,
if dG(v) = ∆(G) it is clear from the definition of Dk that NG[v] = NDk(G)[v]. Therefore, inequality (1) trivially holds. On the
other hand, if dG(v) < ∆(G) we have

dG(v) + 1 − |NG[v] ∩ R| = dG(v) + 1 − |NDk(G)[v] ∩ R| + |NDk(G)[v] ∩ Qv ∩ R|
≤ dG(v) + 1 − |NDk(G)[v] ∩ R| + |NDk(G)[v] ∩ Qv|.

Since by construction |NDk(G)[v] ∩ Qv| = ∆(G) − dG(v), again inequality (1) holds.
Let us finally prove that |B| ≥ α. Clearly,

|B| = |V (G)| − |R ∩ V (G)| = |V (G)| −


|R| −


v:dG(v)<∆(G)

|Qv ∩ R|


= |V (G)| +


v:k≤dG(v)<∆(G)

|Qv| +


v:dG(v)≤k−1

{|Qv| − [k − dG(v)]} − |R|

≥ |V (Dk(G))| −


v:dG(v)≤k−1

[k − dG(v)] − α′
= α.

Again, we have the following immediate corollary:

Corollary 8. Let G be a graph class which is closed under Dk for every k. If MD is polynomial time solvable on G, then LP is also
polynomial time solvable on G. Besides, if LP is NP-complete on G, then MD is also NP-complete on G.

The class of strongly chordal graphs (a superclass of trees) is closed underDk, for all k. As it was pointed out in the prelim-
inaries of [5], an O(n3)-algorithm for solving LP on a strongly chordal graph G can be derived from the total balancedness of
the incidence matrix of the closed neighborhoods of the vertices of G. If now we take into account the linear time algorithm
provided in [9] for solving MD in strongly chordal graphs, Theorem 7 allows us to state that there exists an O(n2)-algorithm
for solving LP in this graph class.

Finally, as a corollary of Theorems 4 and 7, we have:

Corollary 9. LP andMD are polynomially equivalent on graph classes that are closed under transformations P and Dk, for every k.

Looking for graph classes that are closed under both transformations, the class of regular graphs is a trivial example.
Moreover, following the ideas of Theorem 9 in [1], we can state a more general result concerning graph classes defined by
forbidden induced graphs:
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Theorem 10. Let F be a family of graphs satisfying the following property: for every graph G in F , |V (G)| ≥ 2 and, for every
v ∈ V (G), no connected component of G − v is complete. Then LP and MD are polynomially equivalent in the class G of F -free
graphs.

Proof. It is clear that no connected component of a graph in F is complete.
Let k be a positive integer with 1 ≤ k ≤ ∆(G). From Corollary 9, we only need to prove that G is closed under transfor-

mations Dk and P .
Let G ∈ G. We will prove that Dk(G) ∈ G, i.e. that every induced subgraph of Dk(G) does not belong to F .
Let G′ be a subgraph of Dk(G) induced by V ′ with |V ′

| ≥ 2. Let us denote V new , the set consisting of the vertices added to
G in the construction of Dk(G), i.e. V new

:=


v: dG(v)<∆(G) Qv .
If V ′

⊆ V (G), then G′ is an induced subgraph of G and, as a consequence, G′
∉ F .

If G′ has a connected component C ⊆ V new, C is complete and then G′
∉ F .

In the remaining cases G′ has a connected component C such that C∩V (G) ≠ ∅ and C∩V new
≠ ∅. In this case, C∩Qv ≠ ∅

for some v ∈ V ′
∩ V (G). This implies that C ∩ Qv is a complete connected component of G′

− v and therefore G′
∉ F .

To prove that G is closed under transformation P , it is enough to repeat the same proof by just replacing Dk by P and Qv

by Sv .

Following again the ideas in [1], Theorem 10 allows us to state that LP and MD are polynomially equivalent in the class
of distance-hereditary graphs, for instance.

From the previous theoremwe know that a candidate for being a graph class where one problem is NP-complete and the
other polynomial time solvable, contains within its minimal forbidden induced subgraphs at least a graph G0 with a vertex
v such that G0 − v has a complete connected component.

4. Polynomial reductions between GLP and LP and between GMD and MD

In this section we will prove that, within graph classes that are closed under certain operations, LP and MD are,
respectively, ‘‘as hard’’ as their generalizations.

Let us start by remarking some simple facts related to the role that vertices of degree one have in an instance of problems
GLP and GMD.

Let G be a graph, v ∈ V (G) with dG(v) = 1 and w, the vertex adjacent to v in G. Consider the instance of GLP given by
such G, a set A and a vector c, where cv = 0. It is easy to see that solving that instance is equivalent to solving the instance
of GLP given by G, A − {v, w} and c. As regards GMD, consider the instance given by such G, a set R and a vector r with
rv = 2. It is also not difficult to see that solving it is equivalent to solving the instance of GMD given by G, R ∪ {v, w} and r.

The above observations motivate us to introduce the following graph transformation:

Definition 11. Given a graph G and a set F ⊆ V (G), TF (G) is the graph obtained from G by adding for each v ∈ F , a pendant
vertex that is adjacent only to v.

The following straightforward lemmas, show respectively that we can restrict ourselves to work on instances of for GLP
(GMD) where all vertices are allowed (nonrequired):

Lemma 12. Given G, A, α and c defining an instance of GLP, let F := V (G) − A and c′
∈ ZV (TF (G))

+ be defined by c ′
v = cv , for

each v ∈ V (G) and c ′
v = 0, for v ∈ V (TF (G)) − V (G). Given B ⊆ V (G), B is a (c, A)-limited packing in G if and only if B is a

c′-limited packing of TF (G).

Lemma 13. Given G, R, α and r defining an instance of GMD, let r′ ∈ ZV (TR(G))
+ be defined by r ′

v = rv , for each v ∈ V (G) and
r ′
v = 2, for v ∈ V (TR(G)) − V (G). Given D ⊆ V (G),D is a (r, R)-dominating set in G if and only if D ∪ (V (TR(G)) − V (G)) is
a r′-dominating set in TR(G).

In order to present the reduction from GLP to LP, we introduce the following graph transformation:

Definition 14. Given a graph G, c = (cv) ∈ ZV (G)
+ and a positive integer k with k ≥ cv for every v, Pc,k(G) is the graph

obtained from G by adding for each v ∈ V (G), k − cv vertices that are adjacent to v and define a stable set Sv .

Therefore, we have:

Proposition 15. Let G, A, α and c define an instance of GLP. Let also k := max{cv : v ∈ V (G)}, α′
:= α +


v∈V (G)(k − cv)

and G′
= Pc,k(G). Then G has a c-limited packing of cardinality at least α if and only if G′ has a k-limited packing of cardinality

at least α′.

Proof. From Lemma 12, we can assume A = V (G).
Given a c-limited packing B in G of cardinality at least α, it is not difficult to see that

B′
:= B ∪


v∈V (G)

Sv

is a k-limited packing in G′ of cardinality at least α′.
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To see the converse, take a k-limited packing B′ in G′ of cardinality at least α′. From Lemma 2, we can assume that B′

contains Sv for all v. Therefore for each v ∈ V (G), |B′
∩ NG[v]| = |B′

∩ NG′ [v]| − |Sv| ≤ k − k + cv = cv , i.e. B′
∩ V (G) is a

c-limited packing in G and besides, its size is at least α.

In order to present the reduction from GMD to MD, we introduce another graph transformation:

Definition 16. Given a graph G, r = (rv) ∈ NV (G)
=

and a positive integer k with k ≥ rv for every v,Hr,k(G) is the graph
obtained from G by adding, for each v ∈ V (G) with k > rv, k vertices defining a clique Qv , and making v adjacent to exactly
k − rv vertices of Qv .

In this case, we are able to prove:

Proposition 17. Let G, R, α and r define an instance of GMD. Let also k := max{rv : v ∈ V (G)}, α′
:= α + k|V (G)| and

G′′
= Hr,k(G). Then G has an r-dominating set of cardinality at most α if and only if G′′ has a k-tuple dominating set of cardinality

at most α′.

Proof. From Lemma 13, we can assume R = ∅.
Given an r-dominating set D in G of cardinality at most α, it is not difficult to see that D′

:= B ∪


i∈V (G) Qv is a k-tuple
dominating set of G′′ of cardinality at most α′.

Conversely, take a k-tuple dominating set D′ in G′′ of cardinality at most α′. From Definition 16, for each v ∈ V (G) there
exists w ∈ Qv such that NG′′ [w] = Qv , thus not adjacent to v. Since |NG′′ [w] ∩ D′

| ≥ k′, we have


v∈V (G) Qv ⊆ D′ and thus
D′

−


v∈V (G) Qv is an r-dominating set in G of size at most α.

We have proved that the generalized problems considered in this work are, within graph classes that are closed under
the transformations involved, not harder than those with uniform capacities. But, the question concerning the existence of
a graph class where one of the latest is polynomial time solvable and the other NP-complete is still open.
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